/* * Copyright 2009-2012 Freescale Semiconductor, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../common/qixis.h" #include "../common/vsc3316_3308.h" #include "t4qds.h" #include "t4240qds_qixis.h" DECLARE_GLOBAL_DATA_PTR; static int8_t vsc3316_fsm1_tx[8][2] = { {0, 0}, {1, 1}, {6, 6}, {7, 7}, {8, 8}, {9, 9}, {14, 14}, {15, 15} }; static int8_t vsc3316_fsm2_tx[8][2] = { {2, 2}, {3, 3}, {4, 4}, {5, 5}, {10, 10}, {11, 11}, {12, 12}, {13, 13} }; static int8_t vsc3316_fsm1_rx[8][2] = { {2, 12}, {3, 13}, {4, 5}, {5, 4}, {10, 11}, {11, 10}, {12, 2}, {13, 3} }; static int8_t vsc3316_fsm2_rx[8][2] = { {0, 15}, {1, 14}, {6, 7}, {7, 6}, {8, 9}, {9, 8}, {14, 1}, {15, 0} }; int checkboard(void) { char buf[64]; u8 sw; struct cpu_type *cpu = gd->arch.cpu; unsigned int i; printf("Board: %sQDS, ", cpu->name); printf("Sys ID: 0x%02x, Sys Ver: 0x%02x, ", QIXIS_READ(id), QIXIS_READ(arch)); sw = QIXIS_READ(brdcfg[0]); sw = (sw & QIXIS_LBMAP_MASK) >> QIXIS_LBMAP_SHIFT; if (sw < 0x8) printf("vBank: %d\n", sw); else if (sw == 0x8) puts("Promjet\n"); else if (sw == 0x9) puts("NAND\n"); else printf("invalid setting of SW%u\n", QIXIS_LBMAP_SWITCH); printf("FPGA: v%d (%s), build %d", (int)QIXIS_READ(scver), qixis_read_tag(buf), (int)qixis_read_minor()); /* the timestamp string contains "\n" at the end */ printf(" on %s", qixis_read_time(buf)); /* * Display the actual SERDES reference clocks as configured by the * dip switches on the board. Note that the SWx registers could * technically be set to force the reference clocks to match the * values that the SERDES expects (or vice versa). For now, however, * we just display both values and hope the user notices when they * don't match. */ puts("SERDES Reference Clocks: "); sw = QIXIS_READ(brdcfg[2]); for (i = 0; i < MAX_SERDES; i++) { static const char * const freq[] = { "100", "125", "156.25", "161.1328125"}; unsigned int clock = (sw >> (6 - 2 * i)) & 3; printf("SERDES%u=%sMHz ", i+1, freq[clock]); } puts("\n"); return 0; } int select_i2c_ch_pca9547(u8 ch) { int ret; ret = i2c_write(I2C_MUX_PCA_ADDR_PRI, 0, 1, &ch, 1); if (ret) { puts("PCA: failed to select proper channel\n"); return ret; } return 0; } /* * read_voltage from sensor on I2C bus * We use average of 4 readings, waiting for 532us befor another reading */ #define NUM_READINGS 4 /* prefer to be power of 2 for efficiency */ #define WAIT_FOR_ADC 532 /* wait for 532 microseconds for ADC */ static inline int read_voltage(void) { int i, ret, voltage_read = 0; u16 vol_mon; for (i = 0; i < NUM_READINGS; i++) { ret = i2c_read(I2C_VOL_MONITOR_ADDR, I2C_VOL_MONITOR_BUS_V_OFFSET, 1, (void *)&vol_mon, 2); if (ret) { printf("VID: failed to read core voltage\n"); return ret; } if (vol_mon & I2C_VOL_MONITOR_BUS_V_OVF) { printf("VID: Core voltage sensor error\n"); return -1; } debug("VID: bus voltage reads 0x%04x\n", vol_mon); /* LSB = 4mv */ voltage_read += (vol_mon >> I2C_VOL_MONITOR_BUS_V_SHIFT) * 4; udelay(WAIT_FOR_ADC); } /* calculate the average */ voltage_read /= NUM_READINGS; return voltage_read; } /* * We need to calculate how long before the voltage starts to drop or increase * It returns with the loop count. Each loop takes several readings (532us) */ static inline int wait_for_voltage_change(int vdd_last) { int timeout, vdd_current; vdd_current = read_voltage(); /* wait until voltage starts to drop */ for (timeout = 0; abs(vdd_last - vdd_current) <= 4 && timeout < 100; timeout++) { vdd_current = read_voltage(); } if (timeout >= 100) { printf("VID: Voltage adjustment timeout\n"); return -1; } return timeout; } /* * argument 'wait' is the time we know the voltage difference can be measured * this function keeps reading the voltage until it is stable */ static inline int wait_for_voltage_stable(int wait) { int timeout, vdd_current, vdd_last; vdd_last = read_voltage(); udelay(wait * NUM_READINGS * WAIT_FOR_ADC); /* wait until voltage is stable */ vdd_current = read_voltage(); for (timeout = 0; abs(vdd_last - vdd_current) >= 4 && timeout < 100; timeout++) { vdd_last = vdd_current; udelay(wait * NUM_READINGS * WAIT_FOR_ADC); vdd_current = read_voltage(); } if (timeout >= 100) { printf("VID: Voltage adjustment timeout\n"); return -1; } return vdd_current; } static inline int set_voltage(u8 vid) { int wait, vdd_last; vdd_last = read_voltage(); QIXIS_WRITE(brdcfg[6], vid); wait = wait_for_voltage_change(vdd_last); if (wait < 0) return -1; debug("VID: Waited %d us\n", wait * NUM_READINGS * WAIT_FOR_ADC); wait = wait ? wait : 1; vdd_last = wait_for_voltage_stable(wait); if (vdd_last < 0) return -1; debug("VID: Current voltage is %d mV\n", vdd_last); return vdd_last; } static int adjust_vdd(ulong vdd_override) { int re_enable = disable_interrupts(); ccsr_gur_t __iomem *gur = (void __iomem *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); u32 fusesr; u8 vid, vid_current; int vdd_target, vdd_current, vdd_last; int ret; unsigned long vdd_string_override; char *vdd_string; static const uint16_t vdd[32] = { 0, /* unused */ 9875, /* 0.9875V */ 9750, 9625, 9500, 9375, 9250, 9125, 9000, 8875, 8750, 8625, 8500, 8375, 8250, 8125, 10000, /* 1.0000V */ 10125, 10250, 10375, 10500, 10625, 10750, 10875, 11000, 0, /* reserved */ }; struct vdd_drive { u8 vid; unsigned voltage; }; ret = select_i2c_ch_pca9547(I2C_MUX_CH_VOL_MONITOR); if (ret) { debug("VID: I2c failed to switch channel\n"); ret = -1; goto exit; } /* get the voltage ID from fuse status register */ fusesr = in_be32(&gur->dcfg_fusesr); vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_VID_SHIFT) & FSL_CORENET_DCFG_FUSESR_VID_MASK; if (vid == FSL_CORENET_DCFG_FUSESR_VID_MASK) { vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_ALTVID_SHIFT) & FSL_CORENET_DCFG_FUSESR_ALTVID_MASK; } vdd_target = vdd[vid]; /* check override variable for overriding VDD */ vdd_string = getenv("t4240qds_vdd_mv"); if (vdd_override == 0 && vdd_string && !strict_strtoul(vdd_string, 10, &vdd_string_override)) vdd_override = vdd_string_override; if (vdd_override >= 819 && vdd_override <= 1212) { vdd_target = vdd_override * 10; /* convert to 1/10 mV */ debug("VDD override is %lu\n", vdd_override); } else if (vdd_override != 0) { printf("Invalid value.\n"); } if (vdd_target == 0) { debug("VID: VID not used\n"); ret = 0; goto exit; } else { /* round up and divice by 10 to get a value in mV */ vdd_target = DIV_ROUND_UP(vdd_target, 10); debug("VID: vid = %d mV\n", vdd_target); } /* * Check current board VID setting * Voltage regulator support output to 6.250mv step * The highes voltage allowed for this board is (vid=0x40) 1.21250V * the lowest is (vid=0x7f) 0.81875V */ vid_current = QIXIS_READ(brdcfg[6]); vdd_current = 121250 - (vid_current - 0x40) * 625; debug("VID: Current vid setting is (0x%x) %d mV\n", vid_current, vdd_current/100); /* * Read voltage monitor to check real voltage. * Voltage monitor LSB is 4mv. */ vdd_last = read_voltage(); if (vdd_last < 0) { printf("VID: Could not read voltage sensor abort VID adjustment\n"); ret = -1; goto exit; } debug("VID: Core voltage is at %d mV\n", vdd_last); /* * Adjust voltage to at or 8mV above target. * Each step of adjustment is 6.25mV. * Stepping down too fast may cause over current. */ while (vdd_last > 0 && vid_current < 0x80 && vdd_last > (vdd_target + 8)) { vid_current++; vdd_last = set_voltage(vid_current); } /* * Check if we need to step up * This happens when board voltage switch was set too low */ while (vdd_last > 0 && vid_current >= 0x40 && vdd_last < vdd_target + 2) { vid_current--; vdd_last = set_voltage(vid_current); } if (vdd_last > 0) printf("VID: Core voltage %d mV\n", vdd_last); else ret = -1; exit: if (re_enable) enable_interrupts(); return ret; } /* Configure Crossbar switches for Front-Side SerDes Ports */ int config_frontside_crossbar_vsc3316(void) { ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); u32 srds_prtcl_s1, srds_prtcl_s2; int ret; ret = select_i2c_ch_pca9547(I2C_MUX_CH_VSC3316_FS); if (ret) return ret; srds_prtcl_s1 = in_be32(&gur->rcwsr[4]) & FSL_CORENET2_RCWSR4_SRDS1_PRTCL; srds_prtcl_s1 >>= FSL_CORENET2_RCWSR4_SRDS1_PRTCL_SHIFT; switch (srds_prtcl_s1) { case 37: case 38: /* swap first lane and third lane on slot1 */ vsc3316_fsm1_tx[0][1] = 14; vsc3316_fsm1_tx[6][1] = 0; vsc3316_fsm1_rx[1][1] = 2; vsc3316_fsm1_rx[6][1] = 13; case 39: case 40: case 45: case 46: case 47: case 48: /* swap first lane and third lane on slot2 */ vsc3316_fsm1_tx[2][1] = 8; vsc3316_fsm1_tx[4][1] = 6; vsc3316_fsm1_rx[2][1] = 10; vsc3316_fsm1_rx[5][1] = 5; default: ret = vsc3316_config(VSC3316_FSM_TX_ADDR, vsc3316_fsm1_tx, 8); if (ret) return ret; ret = vsc3316_config(VSC3316_FSM_RX_ADDR, vsc3316_fsm1_rx, 8); if (ret) return ret; break; } srds_prtcl_s2 = in_be32(&gur->rcwsr[4]) & FSL_CORENET2_RCWSR4_SRDS2_PRTCL; srds_prtcl_s2 >>= FSL_CORENET2_RCWSR4_SRDS2_PRTCL_SHIFT; switch (srds_prtcl_s2) { case 37: case 38: /* swap first lane and third lane on slot3 */ vsc3316_fsm2_tx[2][1] = 11; vsc3316_fsm2_tx[5][1] = 4; vsc3316_fsm2_rx[2][1] = 9; vsc3316_fsm2_rx[4][1] = 7; case 39: case 40: case 45: case 46: case 47: case 48: case 49: case 50: case 51: case 52: case 53: case 54: /* swap first lane and third lane on slot4 */ vsc3316_fsm2_tx[6][1] = 3; vsc3316_fsm2_tx[1][1] = 12; vsc3316_fsm2_rx[0][1] = 1; vsc3316_fsm2_rx[6][1] = 15; default: ret = vsc3316_config(VSC3316_FSM_TX_ADDR, vsc3316_fsm2_tx, 8); if (ret) return ret; ret = vsc3316_config(VSC3316_FSM_RX_ADDR, vsc3316_fsm2_rx, 8); if (ret) return ret; break; } return 0; } int config_backside_crossbar_mux(void) { ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); u32 srds_prtcl_s3, srds_prtcl_s4; u8 brdcfg; srds_prtcl_s3 = in_be32(&gur->rcwsr[4]) & FSL_CORENET2_RCWSR4_SRDS3_PRTCL; srds_prtcl_s3 >>= FSL_CORENET2_RCWSR4_SRDS3_PRTCL_SHIFT; switch (srds_prtcl_s3) { case 0: /* SerDes3 is not enabled */ break; case 1: case 2: case 9: case 10: /* SD3(0:7) => SLOT5(0:7) */ brdcfg = QIXIS_READ(brdcfg[12]); brdcfg &= ~BRDCFG12_SD3MX_MASK; brdcfg |= BRDCFG12_SD3MX_SLOT5; QIXIS_WRITE(brdcfg[12], brdcfg); break; case 3: case 4: case 5: case 6: case 7: case 8: case 11: case 12: case 13: case 14: case 15: case 16: case 17: case 18: case 19: case 20: /* SD3(4:7) => SLOT6(0:3) */ brdcfg = QIXIS_READ(brdcfg[12]); brdcfg &= ~BRDCFG12_SD3MX_MASK; brdcfg |= BRDCFG12_SD3MX_SLOT6; QIXIS_WRITE(brdcfg[12], brdcfg); break; default: printf("WARNING: unsupported for SerDes3 Protocol %d\n", srds_prtcl_s3); return -1; } srds_prtcl_s4 = in_be32(&gur->rcwsr[4]) & FSL_CORENET2_RCWSR4_SRDS4_PRTCL; srds_prtcl_s4 >>= FSL_CORENET2_RCWSR4_SRDS4_PRTCL_SHIFT; switch (srds_prtcl_s4) { case 0: /* SerDes4 is not enabled */ break; case 1: case 2: /* 10b, SD4(0:7) => SLOT7(0:7) */ brdcfg = QIXIS_READ(brdcfg[12]); brdcfg &= ~BRDCFG12_SD4MX_MASK; brdcfg |= BRDCFG12_SD4MX_SLOT7; QIXIS_WRITE(brdcfg[12], brdcfg); break; case 3: case 4: case 5: case 6: case 7: case 8: /* x1b, SD4(4:7) => SLOT8(0:3) */ brdcfg = QIXIS_READ(brdcfg[12]); brdcfg &= ~BRDCFG12_SD4MX_MASK; brdcfg |= BRDCFG12_SD4MX_SLOT8; QIXIS_WRITE(brdcfg[12], brdcfg); break; case 9: case 10: case 11: case 12: case 13: case 14: case 15: case 16: case 18: /* 00b, SD4(4:5) => AURORA, SD4(6:7) => SATA */ brdcfg = QIXIS_READ(brdcfg[12]); brdcfg &= ~BRDCFG12_SD4MX_MASK; brdcfg |= BRDCFG12_SD4MX_AURO_SATA; QIXIS_WRITE(brdcfg[12], brdcfg); break; default: printf("WARNING: unsupported for SerDes4 Protocol %d\n", srds_prtcl_s4); return -1; } return 0; } int board_early_init_r(void) { const unsigned int flashbase = CONFIG_SYS_FLASH_BASE; int flash_esel = find_tlb_idx((void *)flashbase, 1); /* * Remap Boot flash + PROMJET region to caching-inhibited * so that flash can be erased properly. */ /* Flush d-cache and invalidate i-cache of any FLASH data */ flush_dcache(); invalidate_icache(); if (flash_esel == -1) { /* very unlikely unless something is messed up */ puts("Error: Could not find TLB for FLASH BASE\n"); flash_esel = 2; /* give our best effort to continue */ } else { /* invalidate existing TLB entry for flash + promjet */ disable_tlb(flash_esel); } set_tlb(1, flashbase, CONFIG_SYS_FLASH_BASE_PHYS, MAS3_SX|MAS3_SW|MAS3_SR, MAS2_I|MAS2_G, 0, flash_esel, BOOKE_PAGESZ_256M, 1); set_liodns(); #ifdef CONFIG_SYS_DPAA_QBMAN setup_portals(); #endif /* Disable remote I2C connection to qixis fpga */ QIXIS_WRITE(brdcfg[5], QIXIS_READ(brdcfg[5]) & ~BRDCFG5_IRE); /* * Adjust core voltage according to voltage ID * This function changes I2C mux to channel 2. */ if (adjust_vdd(0)) printf("Warning: Adjusting core voltage failed.\n"); /* Configure board SERDES ports crossbar */ config_frontside_crossbar_vsc3316(); config_backside_crossbar_mux(); select_i2c_ch_pca9547(I2C_MUX_CH_DEFAULT); return 0; } unsigned long get_board_sys_clk(void) { u8 sysclk_conf = QIXIS_READ(brdcfg[1]); #ifdef CONFIG_FSL_QIXIS_CLOCK_MEASUREMENT /* use accurate clock measurement */ int freq = QIXIS_READ(clk_freq[0]) << 8 | QIXIS_READ(clk_freq[1]); int base = QIXIS_READ(clk_base[0]) << 8 | QIXIS_READ(clk_base[1]); u32 val; val = freq * base; if (val) { debug("SYS Clock measurement is: %d\n", val); return val; } else { printf("Warning: SYS clock measurement is invalid, using value from brdcfg1.\n"); } #endif switch (sysclk_conf & 0x0F) { case QIXIS_SYSCLK_83: return 83333333; case QIXIS_SYSCLK_100: return 100000000; case QIXIS_SYSCLK_125: return 125000000; case QIXIS_SYSCLK_133: return 133333333; case QIXIS_SYSCLK_150: return 150000000; case QIXIS_SYSCLK_160: return 160000000; case QIXIS_SYSCLK_166: return 166666666; } return 66666666; } unsigned long get_board_ddr_clk(void) { u8 ddrclk_conf = QIXIS_READ(brdcfg[1]); #ifdef CONFIG_FSL_QIXIS_CLOCK_MEASUREMENT /* use accurate clock measurement */ int freq = QIXIS_READ(clk_freq[2]) << 8 | QIXIS_READ(clk_freq[3]); int base = QIXIS_READ(clk_base[0]) << 8 | QIXIS_READ(clk_base[1]); u32 val; val = freq * base; if (val) { debug("DDR Clock measurement is: %d\n", val); return val; } else { printf("Warning: DDR clock measurement is invalid, using value from brdcfg1.\n"); } #endif switch ((ddrclk_conf & 0x30) >> 4) { case QIXIS_DDRCLK_100: return 100000000; case QIXIS_DDRCLK_125: return 125000000; case QIXIS_DDRCLK_133: return 133333333; } return 66666666; } int misc_init_r(void) { u8 sw; void *srds_base = (void *)CONFIG_SYS_FSL_CORENET_SERDES_ADDR; serdes_corenet_t *srds_regs; u32 actual[MAX_SERDES]; u32 pllcr0, expected; unsigned int i; sw = QIXIS_READ(brdcfg[2]); for (i = 0; i < MAX_SERDES; i++) { unsigned int clock = (sw >> (6 - 2 * i)) & 3; switch (clock) { case 0: actual[i] = SRDS_PLLCR0_RFCK_SEL_100; break; case 1: actual[i] = SRDS_PLLCR0_RFCK_SEL_125; break; case 2: actual[i] = SRDS_PLLCR0_RFCK_SEL_156_25; break; case 3: actual[i] = SRDS_PLLCR0_RFCK_SEL_161_13; break; } } for (i = 0; i < MAX_SERDES; i++) { srds_regs = srds_base + i * 0x1000; pllcr0 = srds_regs->bank[0].pllcr0; expected = pllcr0 & SRDS_PLLCR0_RFCK_SEL_MASK; if (expected != actual[i]) { printf("Warning: SERDES%u expects reference clock %sMHz, but actual is %sMHz\n", i + 1, serdes_clock_to_string(expected), serdes_clock_to_string(actual[i])); } } return 0; } void ft_board_setup(void *blob, bd_t *bd) { phys_addr_t base; phys_size_t size; ft_cpu_setup(blob, bd); base = getenv_bootm_low(); size = getenv_bootm_size(); fdt_fixup_memory(blob, (u64)base, (u64)size); #ifdef CONFIG_PCI pci_of_setup(blob, bd); #endif fdt_fixup_liodn(blob); fdt_fixup_dr_usb(blob, bd); #ifdef CONFIG_SYS_DPAA_FMAN fdt_fixup_fman_ethernet(blob); fdt_fixup_board_enet(blob); #endif } /* * This function is called by bdinfo to print detail board information. * As an exmaple for future board, we organize the messages into * several sections. If applicable, the message is in the format of * = * It should aligned with normal output of bdinfo command. * * Voltage: Core, DDR and another configurable voltages * Clock : Critical clocks which are not printed already * RCW : RCW source if not printed already * Misc : Other important information not in above catagories */ void board_detail(void) { int i; u8 brdcfg[16], dutcfg[16], rst_ctl; int vdd, rcwsrc; static const char * const clk[] = {"66.67", "100", "125", "133.33"}; for (i = 0; i < 16; i++) { brdcfg[i] = qixis_read(offsetof(struct qixis, brdcfg[0]) + i); dutcfg[i] = qixis_read(offsetof(struct qixis, dutcfg[0]) + i); } /* Voltage secion */ if (!select_i2c_ch_pca9547(I2C_MUX_CH_VOL_MONITOR)) { vdd = read_voltage(); if (vdd > 0) printf("Core voltage= %d mV\n", vdd); select_i2c_ch_pca9547(I2C_MUX_CH_DEFAULT); } printf("XVDD = 1.%d V\n", ((brdcfg[8] & 0xf) - 4) * 5 + 25); /* clock section */ printf("SYSCLK = %s MHz\nDDRCLK = %s MHz\n", clk[(brdcfg[11] >> 2) & 0x3], clk[brdcfg[11] & 3]); /* RCW section */ rcwsrc = (dutcfg[0] << 1) + (dutcfg[1] & 1); puts("RCW source = "); switch (rcwsrc) { case 0x017: case 0x01f: puts("8-bit NOR\n"); break; case 0x027: case 0x02F: puts("16-bit NOR\n"); break; case 0x040: puts("SDHC/eMMC\n"); break; case 0x044: puts("SPI 16-bit addressing\n"); break; case 0x045: puts("SPI 24-bit addressing\n"); break; case 0x048: puts("I2C normal addressing\n"); break; case 0x049: puts("I2C extended addressing\n"); break; case 0x108: case 0x109: case 0x10a: case 0x10b: puts("8-bit NAND, 2KB\n"); break; default: if ((rcwsrc >= 0x080) && (rcwsrc <= 0x09f)) puts("Hard-coded RCW\n"); else if ((rcwsrc >= 0x110) && (rcwsrc <= 0x11f)) puts("8-bit NAND, 4KB\n"); else puts("unknown\n"); break; } /* Misc section */ rst_ctl = QIXIS_READ(rst_ctl); puts("HRESET_REQ = "); switch (rst_ctl & 0x30) { case 0x00: puts("Ignored\n"); break; case 0x10: puts("Assert HRESET\n"); break; case 0x30: puts("Reset system\n"); break; default: puts("N/A\n"); break; } } /* * Reverse engineering switch settings. * Some bits cannot be figured out. They will be displayed as * underscore in binary format. mask[] has those bits. * Some bits are calculated differently than the actual switches * if booting with overriding by FPGA. */ void qixis_dump_switch(void) { int i; u8 sw[9]; /* * Any bit with 1 means that bit cannot be reverse engineered. * It will be displayed as _ in binary format. */ static const u8 mask[] = {0, 0, 0, 0, 0, 0x1, 0xcf, 0x3f, 0x1f}; char buf[10]; u8 brdcfg[16], dutcfg[16]; for (i = 0; i < 16; i++) { brdcfg[i] = qixis_read(offsetof(struct qixis, brdcfg[0]) + i); dutcfg[i] = qixis_read(offsetof(struct qixis, dutcfg[0]) + i); } sw[0] = dutcfg[0]; sw[1] = (dutcfg[1] << 0x07) | ((dutcfg[12] & 0xC0) >> 1) | ((dutcfg[11] & 0xE0) >> 3) | ((dutcfg[6] & 0x80) >> 6) | ((dutcfg[1] & 0x80) >> 7); sw[2] = ((brdcfg[1] & 0x0f) << 4) | ((brdcfg[1] & 0x30) >> 2) | ((brdcfg[1] & 0x40) >> 5) | ((brdcfg[1] & 0x80) >> 7); sw[3] = brdcfg[2]; sw[4] = ((dutcfg[2] & 0x01) << 7) | ((dutcfg[2] & 0x06) << 4) | ((~QIXIS_READ(present)) & 0x10) | ((brdcfg[3] & 0x80) >> 4) | ((brdcfg[3] & 0x01) << 2) | ((brdcfg[6] == 0x62) ? 3 : ((brdcfg[6] == 0x5a) ? 2 : ((brdcfg[6] == 0x5e) ? 1 : 0))); sw[5] = ((brdcfg[0] & 0x0f) << 4) | ((QIXIS_READ(rst_ctl) & 0x30) >> 2) | ((brdcfg[0] & 0x40) >> 5); sw[6] = (brdcfg[11] & 0x20) | ((brdcfg[5] & 0x02) << 3); sw[7] = (((~QIXIS_READ(rst_ctl)) & 0x40) << 1) | ((brdcfg[5] & 0x10) << 2); sw[8] = ((brdcfg[12] & 0x08) << 4) | ((brdcfg[12] & 0x03) << 5); puts("DIP switch (reverse-engineering)\n"); for (i = 0; i < 9; i++) { printf("SW%d = 0b%s (0x%02x)\n", i + 1, byte_to_binary_mask(sw[i], mask[i], buf), sw[i]); } } static int do_vdd_adjust(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { ulong override; if (argc < 2) return CMD_RET_USAGE; if (!strict_strtoul(argv[1], 10, &override)) adjust_vdd(override); /* the value is checked by callee */ else return CMD_RET_USAGE; return 0; } U_BOOT_CMD( vdd_override, 2, 0, do_vdd_adjust, "Override VDD", "- override with the voltage specified in mV, eg. 1050" );