/* * (C) Copyright 2001 * Josh Huber , Mission Critical Linux, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ /************************************************************************* * adaption for the Marvell DB64360 Board * Ingo Assmus (ingo.assmus@keymile.com) * * adaption for the cpci750 Board * Reinhard Arlt (reinhard.arlt@esd-electronics.com) *************************************************************************/ /* sdram_init.c - automatic memory sizing */ #include #include <74xx_7xx.h> #include "../../Marvell/include/memory.h" #include "../../Marvell/include/pci.h" #include "../../Marvell/include/mv_gen_reg.h" #include #include "eth.h" #include "mpsc.h" #include "../../Marvell/common/i2c.h" #include "64360.h" #include "mv_regs.h" DECLARE_GLOBAL_DATA_PTR; int set_dfcdlInit(void); /* setup delay line of Mv64360 */ /* ------------------------------------------------------------------------- */ int memory_map_bank(unsigned int bankNo, unsigned int bankBase, unsigned int bankLength) { #ifdef MAP_PCI PCI_HOST host; #endif #ifdef DEBUG if (bankLength > 0) { printf("mapping bank %d at %08x - %08x\n", bankNo, bankBase, bankBase + bankLength - 1); } else { printf("unmapping bank %d\n", bankNo); } #endif memoryMapBank(bankNo, bankBase, bankLength); #ifdef MAP_PCI for (host=PCI_HOST0;host<=PCI_HOST1;host++) { const int features= PREFETCH_ENABLE | DELAYED_READ_ENABLE | AGGRESSIVE_PREFETCH | READ_LINE_AGGRESSIVE_PREFETCH | READ_MULTI_AGGRESSIVE_PREFETCH | MAX_BURST_4 | PCI_NO_SWAP; pciMapMemoryBank(host, bankNo, bankBase, bankLength); pciSetRegionSnoopMode(host, bankNo, PCI_SNOOP_WB, bankBase, bankLength); pciSetRegionFeatures(host, bankNo, features, bankBase, bankLength); } #endif return 0; } #define GB (1 << 30) /* much of this code is based on (or is) the code in the pip405 port */ /* thanks go to the authors of said port - Josh */ /* structure to store the relevant information about an sdram bank */ typedef struct sdram_info { uchar drb_size; uchar registered, ecc; uchar tpar; uchar tras_clocks; uchar burst_len; uchar banks, slot; } sdram_info_t; /* Typedefs for 'gtAuxilGetDIMMinfo' function */ typedef enum _memoryType {SDRAM, DDR} MEMORY_TYPE; typedef enum _voltageInterface {TTL_5V_TOLERANT, LVTTL, HSTL_1_5V, SSTL_3_3V, SSTL_2_5V, VOLTAGE_UNKNOWN, } VOLTAGE_INTERFACE; typedef enum _max_CL_supported_DDR {DDR_CL_1=1, DDR_CL_1_5=2, DDR_CL_2=4, DDR_CL_2_5=8, DDR_CL_3=16, DDR_CL_3_5=32, DDR_CL_FAULT} MAX_CL_SUPPORTED_DDR; typedef enum _max_CL_supported_SD {SD_CL_1=1, SD_CL_2, SD_CL_3, SD_CL_4, SD_CL_5, SD_CL_6, SD_CL_7, SD_FAULT} MAX_CL_SUPPORTED_SD; /* SDRAM/DDR information struct */ typedef struct _gtMemoryDimmInfo { MEMORY_TYPE memoryType; unsigned int numOfRowAddresses; unsigned int numOfColAddresses; unsigned int numOfModuleBanks; unsigned int dataWidth; VOLTAGE_INTERFACE voltageInterface; unsigned int errorCheckType; /* ECC , PARITY.. */ unsigned int sdramWidth; /* 4,8,16 or 32 */ ; unsigned int errorCheckDataWidth; /* 0 - no, 1 - Yes */ unsigned int minClkDelay; unsigned int burstLengthSupported; unsigned int numOfBanksOnEachDevice; unsigned int suportedCasLatencies; unsigned int RefreshInterval; unsigned int maxCASlatencySupported_LoP; /* LoP left of point (measured in ns) */ unsigned int maxCASlatencySupported_RoP; /* RoP right of point (measured in ns) */ MAX_CL_SUPPORTED_DDR maxClSupported_DDR; MAX_CL_SUPPORTED_SD maxClSupported_SD; unsigned int moduleBankDensity; /* module attributes (true for yes) */ bool bufferedAddrAndControlInputs; bool registeredAddrAndControlInputs; bool onCardPLL; bool bufferedDQMBinputs; bool registeredDQMBinputs; bool differentialClockInput; bool redundantRowAddressing; /* module general attributes */ bool suportedAutoPreCharge; bool suportedPreChargeAll; bool suportedEarlyRasPreCharge; bool suportedWrite1ReadBurst; bool suported5PercentLowVCC; bool suported5PercentUpperVCC; /* module timing parameters */ unsigned int minRasToCasDelay; unsigned int minRowActiveRowActiveDelay; unsigned int minRasPulseWidth; unsigned int minRowPrechargeTime; /* measured in ns */ int addrAndCommandHoldTime; /* LoP left of point (measured in ns) */ int addrAndCommandSetupTime; /* (measured in ns/100) */ int dataInputSetupTime; /* LoP left of point (measured in ns) */ int dataInputHoldTime; /* LoP left of point (measured in ns) */ /* tAC times for highest 2nd and 3rd highest CAS Latency values */ unsigned int clockToDataOut_LoP; /* LoP left of point (measured in ns) */ unsigned int clockToDataOut_RoP; /* RoP right of point (measured in ns) */ unsigned int clockToDataOutMinus1_LoP; /* LoP left of point (measured in ns) */ unsigned int clockToDataOutMinus1_RoP; /* RoP right of point (measured in ns) */ unsigned int clockToDataOutMinus2_LoP; /* LoP left of point (measured in ns) */ unsigned int clockToDataOutMinus2_RoP; /* RoP right of point (measured in ns) */ unsigned int minimumCycleTimeAtMaxCasLatancy_LoP; /* LoP left of point (measured in ns) */ unsigned int minimumCycleTimeAtMaxCasLatancy_RoP; /* RoP right of point (measured in ns) */ unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_LoP; /* LoP left of point (measured in ns) */ unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_RoP; /* RoP right of point (measured in ns) */ unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_LoP; /* LoP left of point (measured in ns) */ unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_RoP; /* RoP right of point (measured in ns) */ /* Parameters calculated from the extracted DIMM information */ unsigned int size; unsigned int deviceDensity; /* 16,64,128,256 or 512 Mbit */ unsigned int numberOfDevices; uchar drb_size; /* DRAM size in n*64Mbit */ uchar slot; /* Slot Number this module is inserted in */ uchar spd_raw_data[128]; /* Content of SPD-EEPROM copied 1:1 */ #ifdef DEBUG uchar manufactura[8]; /* Content of SPD-EEPROM Byte 64-71 */ uchar modul_id[18]; /* Content of SPD-EEPROM Byte 73-90 */ uchar vendor_data[27]; /* Content of SPD-EEPROM Byte 99-125 */ unsigned long modul_serial_no; /* Content of SPD-EEPROM Byte 95-98 */ unsigned int manufac_date; /* Content of SPD-EEPROM Byte 93-94 */ unsigned int modul_revision; /* Content of SPD-EEPROM Byte 91-92 */ uchar manufac_place; /* Content of SPD-EEPROM Byte 72 */ #endif } AUX_MEM_DIMM_INFO; /* * translate ns.ns/10 coding of SPD timing values * into 10 ps unit values */ static inline unsigned short NS10to10PS(unsigned char spd_byte) { unsigned short ns, ns10; /* isolate upper nibble */ ns = (spd_byte >> 4) & 0x0F; /* isolate lower nibble */ ns10 = (spd_byte & 0x0F); return(ns*100 + ns10*10); } /* * translate ns coding of SPD timing values * into 10 ps unit values */ static inline unsigned short NSto10PS(unsigned char spd_byte) { return(spd_byte*100); } /* This code reads the SPD chip on the sdram and populates * the array which is passed in with the relevant information */ /* static int check_dimm(uchar slot, AUX_MEM_DIMM_INFO *info) */ static int check_dimm (uchar slot, AUX_MEM_DIMM_INFO * dimmInfo) { uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR; int ret; unsigned int i, j, density = 1, devicesForErrCheck = 0; #ifdef DEBUG unsigned int k; #endif unsigned int rightOfPoint = 0, leftOfPoint = 0, mult, div, time_tmp; int sign = 1, shift, maskLeftOfPoint, maskRightOfPoint; uchar supp_cal, cal_val; ulong memclk, tmemclk; ulong tmp; uchar trp_clocks = 0, tras_clocks; uchar data[128]; memclk = gd->bus_clk; tmemclk = 1000000000 / (memclk / 100); /* in 10 ps units */ memset (data, 0, sizeof (data)); ret = 0; debug("before i2c read\n"); ret = i2c_read (addr, 0, 2, data, 128); debug("after i2c read\n"); if ((data[64] != 'e') || (data[65] != 's') || (data[66] != 'd') || (data[67] != '-') || (data[68] != 'g') || (data[69] != 'm') || (data[70] != 'b') || (data[71] != 'h')) { ret = -1; } if ((ret != 0) && (slot == 0)) { memset (data, 0, sizeof (data)); data[0] = 0x80; data[1] = 0x08; data[2] = 0x07; data[3] = 0x0c; data[4] = 0x09; data[5] = 0x01; data[6] = 0x48; data[7] = 0x00; data[8] = 0x04; data[9] = 0x75; data[10] = 0x80; data[11] = 0x02; data[12] = 0x80; data[13] = 0x10; data[14] = 0x08; data[15] = 0x01; data[16] = 0x0e; data[17] = 0x04; data[18] = 0x0c; data[19] = 0x01; data[20] = 0x02; data[21] = 0x20; data[22] = 0x00; data[23] = 0xa0; data[24] = 0x80; data[25] = 0x00; data[26] = 0x00; data[27] = 0x50; data[28] = 0x3c; data[29] = 0x50; data[30] = 0x32; data[31] = 0x10; data[32] = 0xb0; data[33] = 0xb0; data[34] = 0x60; data[35] = 0x60; data[64] = 'e'; data[65] = 's'; data[66] = 'd'; data[67] = '-'; data[68] = 'g'; data[69] = 'm'; data[70] = 'b'; data[71] = 'h'; ret = 0; } /* zero all the values */ memset (dimmInfo, 0, sizeof (*dimmInfo)); /* copy the SPD content 1:1 into the dimmInfo structure */ for (i = 0; i <= 127; i++) { dimmInfo->spd_raw_data[i] = data[i]; } if (ret) { debug("No DIMM in slot %d [err = %x]\n", slot, ret); return 0; } else dimmInfo->slot = slot; /* start to fill up dimminfo for this "slot" */ #ifdef CONFIG_SYS_DISPLAY_DIMM_SPD_CONTENT for (i = 0; i <= 127; i++) { printf ("SPD-EEPROM Byte %3d = %3x (%3d)\n", i, data[i], data[i]); } #endif #ifdef DEBUG /* find Manufacturer of Dimm Module */ for (i = 0; i < sizeof (dimmInfo->manufactura); i++) { dimmInfo->manufactura[i] = data[64 + i]; } printf ("\nThis RAM-Module is produced by: %s\n", dimmInfo->manufactura); /* find Manul-ID of Dimm Module */ for (i = 0; i < sizeof (dimmInfo->modul_id); i++) { dimmInfo->modul_id[i] = data[73 + i]; } printf ("The Module-ID of this RAM-Module is: %s\n", dimmInfo->modul_id); /* find Vendor-Data of Dimm Module */ for (i = 0; i < sizeof (dimmInfo->vendor_data); i++) { dimmInfo->vendor_data[i] = data[99 + i]; } printf ("Vendor Data of this RAM-Module is: %s\n", dimmInfo->vendor_data); /* find modul_serial_no of Dimm Module */ dimmInfo->modul_serial_no = (*((unsigned long *) (&data[95]))); printf ("Serial No. of this RAM-Module is: %ld (%lx)\n", dimmInfo->modul_serial_no, dimmInfo->modul_serial_no); /* find Manufac-Data of Dimm Module */ dimmInfo->manufac_date = (*((unsigned int *) (&data[93]))); printf ("Manufactoring Date of this RAM-Module is: %d.%d\n", data[93], data[94]); /*dimmInfo->manufac_date */ /* find modul_revision of Dimm Module */ dimmInfo->modul_revision = (*((unsigned int *) (&data[91]))); printf ("Module Revision of this RAM-Module is: %d.%d\n", data[91], data[92]); /* dimmInfo->modul_revision */ /* find manufac_place of Dimm Module */ dimmInfo->manufac_place = (*((unsigned char *) (&data[72]))); printf ("manufac_place of this RAM-Module is: %d\n", dimmInfo->manufac_place); #endif /*------------------------------------------------------------------------------------------------------------------------------*/ /* calculate SPD checksum */ /*------------------------------------------------------------------------------------------------------------------------------*/ #if 0 /* test-only */ spd_checksum = 0; for (i = 0; i <= 62; i++) { spd_checksum += data[i]; } if ((spd_checksum & 0xff) != data[63]) { printf ("### Error in SPD Checksum !!! Is_value: %2x should value %2x\n", (unsigned int) (spd_checksum & 0xff), data[63]); hang (); } else printf ("SPD Checksum ok!\n"); #endif /* test-only */ /*------------------------------------------------------------------------------------------------------------------------------*/ for (i = 2; i <= 35; i++) { switch (i) { case 2: /* Memory type (DDR / SDRAM) */ dimmInfo->memoryType = (data[i] == 0x7) ? DDR : SDRAM; #ifdef DEBUG if (dimmInfo->memoryType == 0) debug("Dram_type in slot %d is: SDRAM\n", dimmInfo->slot); if (dimmInfo->memoryType == 1) debug("Dram_type in slot %d is: DDRAM\n", dimmInfo->slot); #endif break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 3: /* Number Of Row Addresses */ dimmInfo->numOfRowAddresses = data[i]; debug("Module Number of row addresses: %d\n", dimmInfo->numOfRowAddresses); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 4: /* Number Of Column Addresses */ dimmInfo->numOfColAddresses = data[i]; debug("Module Number of col addresses: %d\n", dimmInfo->numOfColAddresses); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 5: /* Number Of Module Banks */ dimmInfo->numOfModuleBanks = data[i]; debug("Number of Banks on Mod. : %d\n", dimmInfo->numOfModuleBanks); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 6: /* Data Width */ dimmInfo->dataWidth = data[i]; debug("Module Data Width: %d\n", dimmInfo->dataWidth); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 8: /* Voltage Interface */ switch (data[i]) { case 0x0: dimmInfo->voltageInterface = TTL_5V_TOLERANT; debug("Module is TTL_5V_TOLERANT\n"); break; case 0x1: dimmInfo->voltageInterface = LVTTL; debug("Module is LVTTL\n"); break; case 0x2: dimmInfo->voltageInterface = HSTL_1_5V; debug("Module is TTL_5V_TOLERANT\n"); break; case 0x3: dimmInfo->voltageInterface = SSTL_3_3V; debug("Module is HSTL_1_5V\n"); break; case 0x4: dimmInfo->voltageInterface = SSTL_2_5V; debug("Module is SSTL_2_5V\n"); break; default: dimmInfo->voltageInterface = VOLTAGE_UNKNOWN; debug("Module is VOLTAGE_UNKNOWN\n"); break; } break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 9: /* Minimum Cycle Time At Max CasLatancy */ shift = (dimmInfo->memoryType == DDR) ? 4 : 2; mult = (dimmInfo->memoryType == DDR) ? 10 : 25; maskLeftOfPoint = (dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc; maskRightOfPoint = (dimmInfo->memoryType == DDR) ? 0xf : 0x03; leftOfPoint = (data[i] & maskLeftOfPoint) >> shift; rightOfPoint = (data[i] & maskRightOfPoint) * mult; dimmInfo->minimumCycleTimeAtMaxCasLatancy_LoP = leftOfPoint; dimmInfo->minimumCycleTimeAtMaxCasLatancy_RoP = rightOfPoint; debug("Minimum Cycle Time At Max CasLatancy: %d.%d [ns]\n", leftOfPoint, rightOfPoint); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 10: /* Clock To Data Out */ div = (dimmInfo->memoryType == DDR) ? 100 : 10; time_tmp = (((data[i] & 0xf0) >> 4) * 10) + ((data[i] & 0x0f)); leftOfPoint = time_tmp / div; rightOfPoint = time_tmp % div; dimmInfo->clockToDataOut_LoP = leftOfPoint; dimmInfo->clockToDataOut_RoP = rightOfPoint; debug("Clock To Data Out: %d.%2d [ns]\n", leftOfPoint, rightOfPoint); /*dimmInfo->clockToDataOut */ break; /*------------------------------------------------------------------------------------------------------------------------------*/ #ifdef CONFIG_MV64360_ECC case 11: /* Error Check Type */ dimmInfo->errorCheckType = data[i]; debug("Error Check Type (0=NONE): %d\n", dimmInfo->errorCheckType); break; #endif /* of ifdef CONFIG_MV64360_ECC */ /*------------------------------------------------------------------------------------------------------------------------------*/ case 12: /* Refresh Interval */ dimmInfo->RefreshInterval = data[i]; debug("RefreshInterval (80= Self refresh Normal, 15.625us) : %x\n", dimmInfo->RefreshInterval); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 13: /* Sdram Width */ dimmInfo->sdramWidth = data[i]; debug("Sdram Width: %d\n", dimmInfo->sdramWidth); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 14: /* Error Check Data Width */ dimmInfo->errorCheckDataWidth = data[i]; debug("Error Check Data Width: %d\n", dimmInfo->errorCheckDataWidth); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 15: /* Minimum Clock Delay */ dimmInfo->minClkDelay = data[i]; debug("Minimum Clock Delay: %d\n", dimmInfo->minClkDelay); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 16: /* Burst Length Supported */ /******-******-******-******* * bit3 | bit2 | bit1 | bit0 * *******-******-******-******* burst length = * 8 | 4 | 2 | 1 * ***************************** If for example bit0 and bit2 are set, the burst length supported are 1 and 4. */ dimmInfo->burstLengthSupported = data[i]; #ifdef DEBUG debug("Burst Length Supported: "); if (dimmInfo->burstLengthSupported & 0x01) debug("1, "); if (dimmInfo->burstLengthSupported & 0x02) debug("2, "); if (dimmInfo->burstLengthSupported & 0x04) debug("4, "); if (dimmInfo->burstLengthSupported & 0x08) debug("8, "); debug(" Bit \n"); #endif break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 17: /* Number Of Banks On Each Device */ dimmInfo->numOfBanksOnEachDevice = data[i]; debug("Number Of Banks On Each Chip: %d\n", dimmInfo->numOfBanksOnEachDevice); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 18: /* Suported Cas Latencies */ /* DDR: *******-******-******-******-******-******-******-******* * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * *******-******-******-******-******-******-******-******* CAS = * TBD | TBD | 3.5 | 3 | 2.5 | 2 | 1.5 | 1 * ********************************************************* SDRAM: *******-******-******-******-******-******-******-******* * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * *******-******-******-******-******-******-******-******* CAS = * TBD | 7 | 6 | 5 | 4 | 3 | 2 | 1 * ********************************************************/ dimmInfo->suportedCasLatencies = data[i]; #ifdef DEBUG debug("Suported Cas Latencies: (CL) "); if (dimmInfo->memoryType == 0) { /* SDRAM */ for (k = 0; k <= 7; k++) { if (dimmInfo-> suportedCasLatencies & (1 << k)) debug("%d, ", k + 1); } } else { /* DDR-RAM */ if (dimmInfo->suportedCasLatencies & 1) debug("1, "); if (dimmInfo->suportedCasLatencies & 2) debug("1.5, "); if (dimmInfo->suportedCasLatencies & 4) debug("2, "); if (dimmInfo->suportedCasLatencies & 8) debug("2.5, "); if (dimmInfo->suportedCasLatencies & 16) debug("3, "); if (dimmInfo->suportedCasLatencies & 32) debug("3.5, "); } debug("\n"); #endif /* Calculating MAX CAS latency */ for (j = 7; j > 0; j--) { if (((dimmInfo-> suportedCasLatencies >> j) & 0x1) == 1) { switch (dimmInfo->memoryType) { case DDR: /* CAS latency 1, 1.5, 2, 2.5, 3, 3.5 */ switch (j) { case 7: debug("Max. Cas Latencies (DDR): ERROR !!!\n"); dimmInfo-> maxClSupported_DDR = DDR_CL_FAULT; hang (); break; case 6: debug("Max. Cas Latencies (DDR): ERROR !!!\n"); dimmInfo-> maxClSupported_DDR = DDR_CL_FAULT; hang (); break; case 5: debug("Max. Cas Latencies (DDR): 3.5 clk's\n"); dimmInfo-> maxClSupported_DDR = DDR_CL_3_5; break; case 4: debug("Max. Cas Latencies (DDR): 3 clk's \n"); dimmInfo-> maxClSupported_DDR = DDR_CL_3; break; case 3: debug("Max. Cas Latencies (DDR): 2.5 clk's \n"); dimmInfo-> maxClSupported_DDR = DDR_CL_2_5; break; case 2: debug("Max. Cas Latencies (DDR): 2 clk's \n"); dimmInfo-> maxClSupported_DDR = DDR_CL_2; break; case 1: debug("Max. Cas Latencies (DDR): 1.5 clk's \n"); dimmInfo-> maxClSupported_DDR = DDR_CL_1_5; break; } dimmInfo-> maxCASlatencySupported_LoP = 1 + (int) (5 * j / 10); if (((5 * j) % 10) != 0) dimmInfo-> maxCASlatencySupported_RoP = 5; else dimmInfo-> maxCASlatencySupported_RoP = 0; debug("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n", dimmInfo-> maxCASlatencySupported_LoP, dimmInfo-> maxCASlatencySupported_RoP); break; case SDRAM: /* CAS latency 1, 2, 3, 4, 5, 6, 7 */ dimmInfo->maxClSupported_SD = j; /* Cas Latency DDR-RAM Coded */ debug("Max. Cas Latencies (SD): %d\n", dimmInfo-> maxClSupported_SD); dimmInfo-> maxCASlatencySupported_LoP = j; dimmInfo-> maxCASlatencySupported_RoP = 0; debug("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n", dimmInfo-> maxCASlatencySupported_LoP, dimmInfo-> maxCASlatencySupported_RoP); break; } break; } } break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 21: /* Buffered Address And Control Inputs */ debug("\nModul Attributes (SPD Byte 21): \n"); dimmInfo->bufferedAddrAndControlInputs = data[i] & BIT0; dimmInfo->registeredAddrAndControlInputs = (data[i] & BIT1) >> 1; dimmInfo->onCardPLL = (data[i] & BIT2) >> 2; dimmInfo->bufferedDQMBinputs = (data[i] & BIT3) >> 3; dimmInfo->registeredDQMBinputs = (data[i] & BIT4) >> 4; dimmInfo->differentialClockInput = (data[i] & BIT5) >> 5; dimmInfo->redundantRowAddressing = (data[i] & BIT6) >> 6; if (dimmInfo->bufferedAddrAndControlInputs == 1) debug(" - Buffered Address/Control Input: Yes \n"); else debug(" - Buffered Address/Control Input: No \n"); if (dimmInfo->registeredAddrAndControlInputs == 1) debug(" - Registered Address/Control Input: Yes \n"); else debug(" - Registered Address/Control Input: No \n"); if (dimmInfo->onCardPLL == 1) debug(" - On-Card PLL (clock): Yes \n"); else debug(" - On-Card PLL (clock): No \n"); if (dimmInfo->bufferedDQMBinputs == 1) debug(" - Bufferd DQMB Inputs: Yes \n"); else debug(" - Bufferd DQMB Inputs: No \n"); if (dimmInfo->registeredDQMBinputs == 1) debug(" - Registered DQMB Inputs: Yes \n"); else debug(" - Registered DQMB Inputs: No \n"); if (dimmInfo->differentialClockInput == 1) debug(" - Differential Clock Input: Yes \n"); else debug(" - Differential Clock Input: No \n"); if (dimmInfo->redundantRowAddressing == 1) debug(" - redundant Row Addressing: Yes \n"); else debug(" - redundant Row Addressing: No \n"); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 22: /* Suported AutoPreCharge */ debug("\nModul Attributes (SPD Byte 22): \n"); dimmInfo->suportedEarlyRasPreCharge = data[i] & BIT0; dimmInfo->suportedAutoPreCharge = (data[i] & BIT1) >> 1; dimmInfo->suportedPreChargeAll = (data[i] & BIT2) >> 2; dimmInfo->suportedWrite1ReadBurst = (data[i] & BIT3) >> 3; dimmInfo->suported5PercentLowVCC = (data[i] & BIT4) >> 4; dimmInfo->suported5PercentUpperVCC = (data[i] & BIT5) >> 5; if (dimmInfo->suportedEarlyRasPreCharge == 1) debug(" - Early Ras Precharge: Yes \n"); else debug(" - Early Ras Precharge: No \n"); if (dimmInfo->suportedAutoPreCharge == 1) debug(" - AutoPreCharge: Yes \n"); else debug(" - AutoPreCharge: No \n"); if (dimmInfo->suportedPreChargeAll == 1) debug(" - Precharge All: Yes \n"); else debug(" - Precharge All: No \n"); if (dimmInfo->suportedWrite1ReadBurst == 1) debug(" - Write 1/ReadBurst: Yes \n"); else debug(" - Write 1/ReadBurst: No \n"); if (dimmInfo->suported5PercentLowVCC == 1) debug(" - lower VCC tolerance: 5 Percent \n"); else debug(" - lower VCC tolerance: 10 Percent \n"); if (dimmInfo->suported5PercentUpperVCC == 1) debug(" - upper VCC tolerance: 5 Percent \n"); else debug(" - upper VCC tolerance: 10 Percent \n"); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 23: /* Minimum Cycle Time At Maximum Cas Latancy Minus 1 (2nd highest CL) */ shift = (dimmInfo->memoryType == DDR) ? 4 : 2; mult = (dimmInfo->memoryType == DDR) ? 10 : 25; maskLeftOfPoint = (dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc; maskRightOfPoint = (dimmInfo->memoryType == DDR) ? 0xf : 0x03; leftOfPoint = (data[i] & maskLeftOfPoint) >> shift; rightOfPoint = (data[i] & maskRightOfPoint) * mult; dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_LoP = leftOfPoint; dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_RoP = rightOfPoint; debug("Minimum Cycle Time At 2nd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", leftOfPoint, rightOfPoint); /*dimmInfo->minimumCycleTimeAtMaxCasLatancy */ break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 24: /* Clock To Data Out 2nd highest Cas Latency Value */ div = (dimmInfo->memoryType == DDR) ? 100 : 10; time_tmp = (((data[i] & 0xf0) >> 4) * 10) + ((data[i] & 0x0f)); leftOfPoint = time_tmp / div; rightOfPoint = time_tmp % div; dimmInfo->clockToDataOutMinus1_LoP = leftOfPoint; dimmInfo->clockToDataOutMinus1_RoP = rightOfPoint; debug("Clock To Data Out (2nd CL value): %d.%2d [ns]\n", leftOfPoint, rightOfPoint); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 25: /* Minimum Cycle Time At Maximum Cas Latancy Minus 2 (3rd highest CL) */ shift = (dimmInfo->memoryType == DDR) ? 4 : 2; mult = (dimmInfo->memoryType == DDR) ? 10 : 25; maskLeftOfPoint = (dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc; maskRightOfPoint = (dimmInfo->memoryType == DDR) ? 0xf : 0x03; leftOfPoint = (data[i] & maskLeftOfPoint) >> shift; rightOfPoint = (data[i] & maskRightOfPoint) * mult; dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_LoP = leftOfPoint; dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_RoP = rightOfPoint; debug("Minimum Cycle Time At 3rd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", leftOfPoint, rightOfPoint); /*dimmInfo->minimumCycleTimeAtMaxCasLatancy */ break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 26: /* Clock To Data Out 3rd highest Cas Latency Value */ div = (dimmInfo->memoryType == DDR) ? 100 : 10; time_tmp = (((data[i] & 0xf0) >> 4) * 10) + ((data[i] & 0x0f)); leftOfPoint = time_tmp / div; rightOfPoint = time_tmp % div; dimmInfo->clockToDataOutMinus2_LoP = leftOfPoint; dimmInfo->clockToDataOutMinus2_RoP = rightOfPoint; debug("Clock To Data Out (3rd CL value): %d.%2d [ns]\n", leftOfPoint, rightOfPoint); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 27: /* Minimum Row Precharge Time */ shift = (dimmInfo->memoryType == DDR) ? 2 : 0; maskLeftOfPoint = (dimmInfo->memoryType == DDR) ? 0xfc : 0xff; maskRightOfPoint = (dimmInfo->memoryType == DDR) ? 0x03 : 0x00; leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift); rightOfPoint = (data[i] & maskRightOfPoint) * 25; dimmInfo->minRowPrechargeTime = ((leftOfPoint * 100) + rightOfPoint); /* measured in n times 10ps Intervals */ trp_clocks = (dimmInfo->minRowPrechargeTime + (tmemclk - 1)) / tmemclk; debug("*** 1 clock cycle = %ld 10ps intervalls = %ld.%ld ns****\n", tmemclk, tmemclk / 100, tmemclk % 100); debug("Minimum Row Precharge Time [ns]: %d.%2d = in Clk cycles %d\n", leftOfPoint, rightOfPoint, trp_clocks); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 28: /* Minimum Row Active to Row Active Time */ shift = (dimmInfo->memoryType == DDR) ? 2 : 0; maskLeftOfPoint = (dimmInfo->memoryType == DDR) ? 0xfc : 0xff; maskRightOfPoint = (dimmInfo->memoryType == DDR) ? 0x03 : 0x00; leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift); rightOfPoint = (data[i] & maskRightOfPoint) * 25; dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */ debug("Minimum Row Active -To- Row Active Delay [ns]: %d.%2d = in Clk cycles %d\n", leftOfPoint, rightOfPoint, trp_clocks); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 29: /* Minimum Ras-To-Cas Delay */ shift = (dimmInfo->memoryType == DDR) ? 2 : 0; maskLeftOfPoint = (dimmInfo->memoryType == DDR) ? 0xfc : 0xff; maskRightOfPoint = (dimmInfo->memoryType == DDR) ? 0x03 : 0x00; leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift); rightOfPoint = (data[i] & maskRightOfPoint) * 25; dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */ debug("Minimum Ras-To-Cas Delay [ns]: %d.%2d = in Clk cycles %d\n", leftOfPoint, rightOfPoint, trp_clocks); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 30: /* Minimum Ras Pulse Width */ dimmInfo->minRasPulseWidth = data[i]; tras_clocks = (NSto10PS (data[i]) + (tmemclk - 1)) / tmemclk; debug("Minimum Ras Pulse Width [ns]: %d = in Clk cycles %d\n", dimmInfo->minRasPulseWidth, tras_clocks); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 31: /* Module Bank Density */ dimmInfo->moduleBankDensity = data[i]; debug("Module Bank Density: %d\n", dimmInfo->moduleBankDensity); #ifdef DEBUG debug("*** Offered Densities (more than 1 = Multisize-Module): "); { if (dimmInfo->moduleBankDensity & 1) debug("4MB, "); if (dimmInfo->moduleBankDensity & 2) debug("8MB, "); if (dimmInfo->moduleBankDensity & 4) debug("16MB, "); if (dimmInfo->moduleBankDensity & 8) debug("32MB, "); if (dimmInfo->moduleBankDensity & 16) debug("64MB, "); if (dimmInfo->moduleBankDensity & 32) debug("128MB, "); if ((dimmInfo->moduleBankDensity & 64) || (dimmInfo->moduleBankDensity & 128)) { debug("ERROR, "); hang (); } } debug("\n"); #endif break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 32: /* Address And Command Setup Time (measured in ns/1000) */ sign = 1; switch (dimmInfo->memoryType) { case DDR: time_tmp = (((data[i] & 0xf0) >> 4) * 10) + ((data[i] & 0x0f)); leftOfPoint = time_tmp / 100; rightOfPoint = time_tmp % 100; break; case SDRAM: leftOfPoint = (data[i] & 0xf0) >> 4; if (leftOfPoint > 7) { leftOfPoint = data[i] & 0x70 >> 4; sign = -1; } rightOfPoint = (data[i] & 0x0f); break; } dimmInfo->addrAndCommandSetupTime = (leftOfPoint * 100 + rightOfPoint) * sign; debug("Address And Command Setup Time [ns]: %d.%d\n", sign * leftOfPoint, rightOfPoint); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 33: /* Address And Command Hold Time */ sign = 1; switch (dimmInfo->memoryType) { case DDR: time_tmp = (((data[i] & 0xf0) >> 4) * 10) + ((data[i] & 0x0f)); leftOfPoint = time_tmp / 100; rightOfPoint = time_tmp % 100; break; case SDRAM: leftOfPoint = (data[i] & 0xf0) >> 4; if (leftOfPoint > 7) { leftOfPoint = data[i] & 0x70 >> 4; sign = -1; } rightOfPoint = (data[i] & 0x0f); break; } dimmInfo->addrAndCommandHoldTime = (leftOfPoint * 100 + rightOfPoint) * sign; debug("Address And Command Hold Time [ns]: %d.%d\n", sign * leftOfPoint, rightOfPoint); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 34: /* Data Input Setup Time */ sign = 1; switch (dimmInfo->memoryType) { case DDR: time_tmp = (((data[i] & 0xf0) >> 4) * 10) + ((data[i] & 0x0f)); leftOfPoint = time_tmp / 100; rightOfPoint = time_tmp % 100; break; case SDRAM: leftOfPoint = (data[i] & 0xf0) >> 4; if (leftOfPoint > 7) { leftOfPoint = data[i] & 0x70 >> 4; sign = -1; } rightOfPoint = (data[i] & 0x0f); break; } dimmInfo->dataInputSetupTime = (leftOfPoint * 100 + rightOfPoint) * sign; debug("Data Input Setup Time [ns]: %d.%d\n", sign * leftOfPoint, rightOfPoint); break; /*------------------------------------------------------------------------------------------------------------------------------*/ case 35: /* Data Input Hold Time */ sign = 1; switch (dimmInfo->memoryType) { case DDR: time_tmp = (((data[i] & 0xf0) >> 4) * 10) + ((data[i] & 0x0f)); leftOfPoint = time_tmp / 100; rightOfPoint = time_tmp % 100; break; case SDRAM: leftOfPoint = (data[i] & 0xf0) >> 4; if (leftOfPoint > 7) { leftOfPoint = data[i] & 0x70 >> 4; sign = -1; } rightOfPoint = (data[i] & 0x0f); break; } dimmInfo->dataInputHoldTime = (leftOfPoint * 100 + rightOfPoint) * sign; debug("Data Input Hold Time [ns]: %d.%d\n\n", sign * leftOfPoint, rightOfPoint); break; /*------------------------------------------------------------------------------------------------------------------------------*/ } } /* calculating the sdram density */ for (i = 0; i < dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses; i++) { density = density * 2; } dimmInfo->deviceDensity = density * dimmInfo->numOfBanksOnEachDevice * dimmInfo->sdramWidth; dimmInfo->numberOfDevices = (dimmInfo->dataWidth / dimmInfo->sdramWidth) * dimmInfo->numOfModuleBanks; devicesForErrCheck = (dimmInfo->dataWidth - 64) / dimmInfo->sdramWidth; if ((dimmInfo->errorCheckType == 0x1) || (dimmInfo->errorCheckType == 0x2) || (dimmInfo->errorCheckType == 0x3)) { dimmInfo->size = (dimmInfo->deviceDensity / 8) * (dimmInfo->numberOfDevices - devicesForErrCheck); } else { dimmInfo->size = (dimmInfo->deviceDensity / 8) * dimmInfo->numberOfDevices; } /* compute the module DRB size */ tmp = (1 << (dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses)); tmp *= dimmInfo->numOfModuleBanks; tmp *= dimmInfo->sdramWidth; tmp = tmp >> 24; /* div by 0x4000000 (64M) */ dimmInfo->drb_size = (uchar) tmp; debug("Module DRB size (n*64Mbit): %d\n", dimmInfo->drb_size); /* try a CAS latency of 3 first... */ /* bit 1 is CL2, bit 2 is CL3 */ supp_cal = (dimmInfo->suportedCasLatencies & 0x1c) >> 1; cal_val = 0; if (supp_cal & 8) { if (NS10to10PS (data[9]) <= tmemclk) cal_val = 6; } if (supp_cal & 4) { if (NS10to10PS (data[9]) <= tmemclk) cal_val = 5; } /* then 2... */ if (supp_cal & 2) { if (NS10to10PS (data[23]) <= tmemclk) cal_val = 4; } debug("cal_val = %d\n", cal_val * 5); /* bummer, did't work... */ if (cal_val == 0) { debug("Couldn't find a good CAS latency\n"); hang (); return 0; } return true; } /* sets up the GT properly with information passed in */ int setup_sdram (AUX_MEM_DIMM_INFO * info) { ulong tmp; ulong tmp_sdram_mode = 0; /* 0x141c */ ulong tmp_dunit_control_low = 0; /* 0x1404 */ uint sdram_config_reg = CONFIG_SYS_SDRAM_CONFIG; int i; /* sanity checking */ if (!info->numOfModuleBanks) { printf ("setup_sdram called with 0 banks\n"); return 1; } /* delay line */ /* Program the GT with the discovered data */ if (info->registeredAddrAndControlInputs == true) debug("Module is registered, but we do not support registered Modules !!!\n"); /* delay line */ set_dfcdlInit (); /* may be its not needed */ debug("Delay line set done\n"); /* set SDRAM mode NOP */ /* To_do check it */ GT_REG_WRITE (SDRAM_OPERATION, 0x5); while (GTREGREAD (SDRAM_OPERATION) != 0) { debug("\n*** SDRAM_OPERATION 1418: Module still busy ... please wait... ***\n"); } #ifdef CONFIG_MV64360_ECC if ((info->errorCheckType == 0x2) && (CPCI750_ECC_TEST)) { /* DRAM has ECC, so turn it on */ sdram_config_reg |= BIT18; debug("Enabling ECC\n"); } #endif /* of ifdef CONFIG_MV64360_ECC */ /* SDRAM configuration */ GT_REG_WRITE(SDRAM_CONFIG, sdram_config_reg); debug("sdram_conf 0x1400: %08x\n", GTREGREAD (SDRAM_CONFIG)); /* SDRAM open pages controll keep open as much as I can */ GT_REG_WRITE (SDRAM_OPEN_PAGES_CONTROL, 0x0); debug("sdram_open_pages_controll 0x1414: %08x\n", GTREGREAD (SDRAM_OPEN_PAGES_CONTROL)); /* SDRAM D_UNIT_CONTROL_LOW 0x1404 */ tmp = (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x01); /* Clock Domain Sync from power on reset */ if (tmp == 0) debug("Core Signals are sync (by HW-Setting)!!!\n"); else debug("Core Signals syncs. are bypassed (by HW-Setting)!!!\n"); /* SDRAM set CAS Lentency according to SPD information */ switch (info->memoryType) { case SDRAM: debug("### SD-RAM not supported yet !!!\n"); hang (); /* ToDo fill SD-RAM if needed !!!!! */ break; case DDR: debug("### SET-CL for DDR-RAM\n"); switch (info->maxClSupported_DDR) { case DDR_CL_3: tmp_dunit_control_low = 0x3c000000; /* Read-Data sampled on falling edge of Clk */ tmp_sdram_mode = 0x32; /* CL=3 Burstlength = 4 */ debug("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", tmp_sdram_mode, tmp_dunit_control_low); break; case DDR_CL_2_5: if (tmp == 1) { /* clocks sync */ tmp_dunit_control_low = 0x24000000; /* Read-Data sampled on falling edge of Clk */ tmp_sdram_mode = 0x62; /* CL=2,5 Burstlength = 4 */ debug("Max. CL is 2,5s CLKs 0x141c= %08lx, 0x1404 = %08lx\n", tmp_sdram_mode, tmp_dunit_control_low); } else { /* clk sync. bypassed */ tmp_dunit_control_low = 0x03000000; /* Read-Data sampled on rising edge of Clk */ tmp_sdram_mode = 0x62; /* CL=2,5 Burstlength = 4 */ debug("Max. CL is 2,5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", tmp_sdram_mode, tmp_dunit_control_low); } break; case DDR_CL_2: if (tmp == 1) { /* Sync */ tmp_dunit_control_low = 0x03000000; /* Read-Data sampled on rising edge of Clk */ tmp_sdram_mode = 0x22; /* CL=2 Burstlength = 4 */ debug("Max. CL is 2s CLKs 0x141c= %08lx, 0x1404 = %08lx\n", tmp_sdram_mode, tmp_dunit_control_low); } else { /* Not sync. */ tmp_dunit_control_low = 0x3b000000; /* Read-Data sampled on rising edge of Clk */ tmp_sdram_mode = 0x22; /* CL=2 Burstlength = 4 */ debug("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", tmp_sdram_mode, tmp_dunit_control_low); } break; case DDR_CL_1_5: if (tmp == 1) { /* Sync */ tmp_dunit_control_low = 0x23000000; /* Read-Data sampled on falling edge of Clk */ tmp_sdram_mode = 0x52; /* CL=1,5 Burstlength = 4 */ debug("Max. CL is 1,5s CLKs 0x141c= %08lx, 0x1404 = %08lx\n", tmp_sdram_mode, tmp_dunit_control_low); } else { /* not sync */ tmp_dunit_control_low = 0x1a000000; /* Read-Data sampled on rising edge of Clk */ tmp_sdram_mode = 0x52; /* CL=1,5 Burstlength = 4 */ debug("Max. CL is 1,5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", tmp_sdram_mode, tmp_dunit_control_low); } break; default: printf ("Max. CL is out of range %d\n", info->maxClSupported_DDR); hang (); break; } break; } /* Write results of CL detection procedure */ GT_REG_WRITE (SDRAM_MODE, tmp_sdram_mode); /* set SDRAM mode SetCommand 0x1418 */ GT_REG_WRITE (SDRAM_OPERATION, 0x3); while (GTREGREAD (SDRAM_OPERATION) != 0) { debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n"); } /* SDRAM D_UNIT_CONTROL_LOW 0x1404 */ tmp = (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x01); /* Clock Domain Sync from power on reset */ if (tmp != 1) { /*clocks are not sync */ /* asyncmode */ GT_REG_WRITE (D_UNIT_CONTROL_LOW, (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x7F) | 0x18110780 | tmp_dunit_control_low); } else { /* syncmode */ GT_REG_WRITE (D_UNIT_CONTROL_LOW, (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x7F) | 0x00110000 | tmp_dunit_control_low); } /* set SDRAM mode SetCommand 0x1418 */ GT_REG_WRITE (SDRAM_OPERATION, 0x3); while (GTREGREAD (SDRAM_OPERATION) != 0) { debug("\n*** SDRAM_OPERATION 1418 after D_UNIT_CONTROL_LOW: Module still busy ... please wait... ***\n"); } /*------------------------------------------------------------------------------ */ /* bank parameters */ /* SDRAM address decode register */ /* program this with the default value */ tmp = 0x02; debug("drb_size (n*64Mbit): %d\n", info->drb_size); switch (info->drb_size) { case 1: /* 64 Mbit */ case 2: /* 128 Mbit */ debug("RAM-Device_size 64Mbit or 128Mbit)\n"); tmp |= (0x00 << 4); break; case 4: /* 256 Mbit */ case 8: /* 512 Mbit */ debug("RAM-Device_size 256Mbit or 512Mbit)\n"); tmp |= (0x01 << 4); break; case 16: /* 1 Gbit */ case 32: /* 2 Gbit */ debug("RAM-Device_size 1Gbit or 2Gbit)\n"); tmp |= (0x02 << 4); break; default: printf ("Error in dram size calculation\n"); debug("Assume: RAM-Device_size 1Gbit or 2Gbit)\n"); tmp |= (0x02 << 4); return 1; } /* SDRAM bank parameters */ /* the param registers for slot 1 (banks 2+3) are offset by 0x8 */ debug("setting up slot %d config with: %08lx \n", info->slot, tmp); GT_REG_WRITE (SDRAM_ADDR_CONTROL, tmp); /* ------------------------------------------------------------------------------ */ debug("setting up sdram_timing_control_low with: %08x \n", 0x11511220); GT_REG_WRITE (SDRAM_TIMING_CONTROL_LOW, 0x11511220); /* ------------------------------------------------------------------------------ */ /* SDRAM configuration */ tmp = GTREGREAD (SDRAM_CONFIG); if (info->registeredAddrAndControlInputs || info->registeredDQMBinputs) { tmp |= (1 << 17); debug("SPD says: registered Addr. and Cont.: %d; registered DQMBinputs: %d\n", info->registeredAddrAndControlInputs, info->registeredDQMBinputs); } /* Use buffer 1 to return read data to the CPU * Page 426 MV64360 */ tmp |= (1 << 26); debug("Before Buffer assignment - sdram_conf: %08x\n", GTREGREAD (SDRAM_CONFIG)); debug("After Buffer assignment - sdram_conf: %08x\n", GTREGREAD (SDRAM_CONFIG)); /* SDRAM timing To_do: */ tmp = GTREGREAD (SDRAM_TIMING_CONTROL_HIGH); debug("# sdram_timing_control_high is : %08lx \n", tmp); /* SDRAM address decode register */ /* program this with the default value */ tmp = GTREGREAD (SDRAM_ADDR_CONTROL); debug("SDRAM address control (before: decode): %08x ", GTREGREAD (SDRAM_ADDR_CONTROL)); GT_REG_WRITE (SDRAM_ADDR_CONTROL, (tmp | 0x2)); debug("SDRAM address control (after: decode): %08x\n", GTREGREAD (SDRAM_ADDR_CONTROL)); /* set the SDRAM configuration for each bank */ /* for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) */ { int l, l1; i = info->slot; debug("\n*** Running a MRS cycle for bank %d ***\n", i); /* map the bank */ memory_map_bank (i, 0, GB / 4); #if 1 /* test only */ tmp = GTREGREAD (SDRAM_MODE); GT_REG_WRITE (EXTENDED_DRAM_MODE, 0x0); GT_REG_WRITE (SDRAM_OPERATION, 0x4); while (GTREGREAD (SDRAM_OPERATION) != 0) { debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n"); } GT_REG_WRITE (SDRAM_MODE, tmp | 0x80); GT_REG_WRITE (SDRAM_OPERATION, 0x3); while (GTREGREAD (SDRAM_OPERATION) != 0) { debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n"); } l1 = 0; for (l=0;l<200;l++) l1 += GTREGREAD (SDRAM_OPERATION); GT_REG_WRITE (SDRAM_MODE, tmp); GT_REG_WRITE (SDRAM_OPERATION, 0x3); while (GTREGREAD (SDRAM_OPERATION) != 0) { debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n"); } /* switch back to normal operation mode */ GT_REG_WRITE (SDRAM_OPERATION, 0x5); while (GTREGREAD (SDRAM_OPERATION) != 0) { debug("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n"); } #endif /* test only */ /* unmap the bank */ memory_map_bank (i, 0, 0); } return 0; } /* * Check memory range for valid RAM. A simple memory test determines * the actually available RAM size between addresses `base' and * `base + maxsize'. Some (not all) hardware errors are detected: * - short between address lines * - short between data lines */ long int dram_size(long int *base, long int maxsize) { volatile long int *addr, *b=base; long int cnt, val, save1, save2; #define STARTVAL (1<<20) /* start test at 1M */ for (cnt = STARTVAL/sizeof(long); cnt < maxsize/sizeof(long); cnt <<= 1) { addr = base + cnt; /* pointer arith! */ save1 = *addr; /* save contents of addr */ save2 = *b; /* save contents of base */ *addr=cnt; /* write cnt to addr */ *b=0; /* put null at base */ /* check at base address */ if ((*b) != 0) { *addr=save1; /* restore *addr */ *b=save2; /* restore *b */ return (0); } val = *addr; /* read *addr */ val = *addr; /* read *addr */ *addr=save1; *b=save2; if (val != cnt) { debug("Found %08x at Address %08x (failure)\n", (unsigned int)val, (unsigned int) addr); /* fix boundary condition.. STARTVAL means zero */ if(cnt==STARTVAL/sizeof(long)) cnt=0; return (cnt * sizeof(long)); } } return maxsize; } #ifdef CONFIG_MV64360_ECC /* * mv_dma_is_channel_active: * Checks if a engine is busy. */ int mv_dma_is_channel_active(int engine) { ulong data; data = GTREGREAD(MV64360_DMA_CHANNEL0_CONTROL + 4 * engine); if (data & BIT14) /* activity status */ return 1; return 0; } /* * mv_dma_set_memory_space: * Set a DMA memory window for the DMA's address decoding map. */ int mv_dma_set_memory_space(ulong mem_space, ulong mem_space_target, ulong mem_space_attr, ulong base_address, ulong size) { ulong temp; /* The base address must be aligned to the size. */ if (base_address % size != 0) return 0; if (size >= 0x10000) { size &= 0xffff0000; base_address = (base_address & 0xffff0000); /* Set the new attributes */ GT_REG_WRITE(MV64360_DMA_BASE_ADDR_REG0 + mem_space * 8, (base_address | mem_space_target | mem_space_attr)); GT_REG_WRITE((MV64360_DMA_SIZE_REG0 + mem_space * 8), (size - 1) & 0xffff0000); temp = GTREGREAD(MV64360_DMA_BASE_ADDR_ENABLE_REG); GT_REG_WRITE(DMA_BASE_ADDR_ENABLE_REG, (temp & ~(BIT0 << mem_space))); return 1; } return 0; } /* * mv_dma_transfer: * Transfer data from source_addr to dest_addr on one of the 4 DMA channels. */ int mv_dma_transfer(int engine, ulong source_addr, ulong dest_addr, ulong bytes, ulong command) { ulong eng_off_reg; /* Engine Offset Register */ if (bytes > 0xffff) command = command | BIT31; /* DMA_16M_DESCRIPTOR_MODE */ command = command | ((command >> 6) & 0x7); eng_off_reg = engine * 4; GT_REG_WRITE(MV64360_DMA_CHANNEL0_BYTE_COUNT + eng_off_reg, bytes); GT_REG_WRITE(MV64360_DMA_CHANNEL0_SOURCE_ADDR + eng_off_reg, source_addr); GT_REG_WRITE(MV64360_DMA_CHANNEL0_DESTINATION_ADDR + eng_off_reg, dest_addr); command |= BIT12 /* DMA_CHANNEL_ENABLE */ | BIT9; /* DMA_NON_CHAIN_MODE */ /* Activate DMA engine By writting to mv_dma_control_register */ GT_REG_WRITE(MV64360_DMA_CHANNEL0_CONTROL + eng_off_reg, command); return 1; } #endif /* of ifdef CONFIG_MV64360_ECC */ /* ppcboot interface function to SDRAM init - this is where all the * controlling logic happens */ phys_size_t initdram(int board_type) { int checkbank[4] = { [0 ... 3] = 0 }; ulong realsize, total, check; AUX_MEM_DIMM_INFO dimmInfo1; AUX_MEM_DIMM_INFO dimmInfo2; int bank_no, nhr; #ifdef CONFIG_MV64360_ECC ulong dest, mem_space_attr; #endif /* of ifdef CONFIG_MV64360_ECC */ /* first, use the SPD to get info about the SDRAM/ DDRRAM */ /* check the NHR bit and skip mem init if it's already done */ nhr = get_hid0() & (1 << 16); if (nhr) { printf("Skipping SD- DDRRAM setup due to NHR bit being set\n"); } else { /* DIMM0 */ (void)check_dimm(0, &dimmInfo1); /* DIMM1 */ (void)check_dimm(1, &dimmInfo2); memory_map_bank(0, 0, 0); memory_map_bank(1, 0, 0); memory_map_bank(2, 0, 0); memory_map_bank(3, 0, 0); if (dimmInfo1.numOfModuleBanks && setup_sdram(&dimmInfo1)) { printf("Setup for DIMM1 failed.\n"); } if (dimmInfo2.numOfModuleBanks && setup_sdram(&dimmInfo2)) { printf("Setup for DIMM2 failed.\n"); } /* set the NHR bit */ set_hid0(get_hid0() | (1 << 16)); } /* next, size the SDRAM banks */ realsize = total = 0; check = GB/4; if (dimmInfo1.numOfModuleBanks > 0) {checkbank[0] = 1; printf("-- DIMM1 has 1 bank\n");} if (dimmInfo1.numOfModuleBanks > 1) {checkbank[1] = 1; printf("-- DIMM1 has 2 banks\n");} if (dimmInfo1.numOfModuleBanks > 2) printf("Error, SPD claims DIMM1 has >2 banks\n"); if (dimmInfo2.numOfModuleBanks > 0) {checkbank[2] = 1; printf("-- DIMM2 has 1 bank\n");} if (dimmInfo2.numOfModuleBanks > 1) {checkbank[3] = 1; printf("-- DIMM2 has 2 banks\n");} if (dimmInfo2.numOfModuleBanks > 2) printf("Error, SPD claims DIMM2 has >2 banks\n"); for (bank_no = 0; bank_no < CONFIG_SYS_DRAM_BANKS; bank_no++) { /* skip over banks that are not populated */ if (! checkbank[bank_no]) continue; if ((total + check) > CONFIG_SYS_GT_REGS) check = CONFIG_SYS_GT_REGS - total; memory_map_bank(bank_no, total, check); realsize = dram_size((long int *)total, check); memory_map_bank(bank_no, total, realsize); #ifdef CONFIG_MV64360_ECC if (((dimmInfo1.errorCheckType != 0) && ((dimmInfo2.errorCheckType != 0) || (dimmInfo2.numOfModuleBanks == 0))) && (CPCI750_ECC_TEST)) { printf("ECC Initialization of Bank %d:", bank_no); mem_space_attr = ((~(BIT0 << bank_no)) & 0xf) << 8; mv_dma_set_memory_space(0, 0, mem_space_attr, total, realsize); for (dest = total; dest < total + realsize; dest += _8M) { mv_dma_transfer(0, total, dest, _8M, BIT8 | /* DMA_DTL_128BYTES */ BIT3 | /* DMA_HOLD_SOURCE_ADDR */ BIT11); /* DMA_BLOCK_TRANSFER_MODE */ while (mv_dma_is_channel_active(0)) ; } printf(" PASS\n"); } #endif /* of ifdef CONFIG_MV64360_ECC */ total += realsize; } /* Setup Ethernet DMA Adress window to DRAM Area */ return(total); } /* *************************************************************************************** ! * SDRAM INIT * ! * This procedure detect all Sdram types: 64, 128, 256, 512 Mbit, 1Gbit and 2Gb * ! * This procedure fits only the Atlantis * ! * * ! *************************************************************************************** */ /* *************************************************************************************** ! * DFCDL initialize MV643xx Design Considerations * ! * * ! *************************************************************************************** */ int set_dfcdlInit (void) { int i; unsigned int dfcdl_word = 0x0000014f; for (i = 0; i < 64; i++) { GT_REG_WRITE (SRAM_DATA0, dfcdl_word); } GT_REG_WRITE (DFCDL_CONFIG0, 0x00300000); /* enable dynamic delay line updating */ return (0); } int do_show_ecc(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { unsigned int ecc_counter; unsigned int ecc_addr; GT_REG_READ(0x1458, &ecc_counter); GT_REG_READ(0x1450, &ecc_addr); GT_REG_WRITE(0x1450, 0); printf("Error Counter since Reset: %8d\n", ecc_counter); printf("Last error address :0x%08x (" , ecc_addr & 0xfffffff8); if (ecc_addr & 0x01) printf("double"); else printf("single"); printf(" bit) at DDR-RAM CS#%d\n", ((ecc_addr & 0x6) >> 1)); return 0; } U_BOOT_CMD( show_ecc, 1, 1, do_show_ecc, "Show Marvell MV64360 ECC Info", "Show Marvell MV64360 ECC Counter and last error." );