/* * (C) Copyright 2011 * Heiko Schocher, DENX Software Engineering, hs@denx.de. * * Based on: * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/ * * Based on da830evm.c. Original Copyrights follow: * * Copyright (C) 2009 Nick Thompson, GE Fanuc, Ltd. * Copyright (C) 2007 Sergey Kubushyn * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; const struct lpsc_resource lpsc[] = { { DAVINCI_LPSC_AEMIF }, { DAVINCI_LPSC_SPI1 }, { DAVINCI_LPSC_ARM_RAM_ROM }, { DAVINCI_LPSC_UART0 }, { DAVINCI_LPSC_EMAC }, { DAVINCI_LPSC_UART0 }, { DAVINCI_LPSC_GPIO }, { DAVINCI_LPSC_DDR_EMIF }, { DAVINCI_LPSC_UART1 }, { DAVINCI_LPSC_UART2 }, { DAVINCI_LPSC_MMC_SD1 }, { DAVINCI_LPSC_USB20 }, { DAVINCI_LPSC_USB11 }, }; const int lpsc_size = ARRAY_SIZE(lpsc); static const struct pinmux_config enbw_pins[] = { { pinmux(0), 8, 0 }, { pinmux(0), 8, 1 }, { pinmux(0), 8, 2 }, { pinmux(0), 8, 3 }, { pinmux(0), 8, 4 }, { pinmux(0), 8, 5 }, { pinmux(1), 4, 0 }, { pinmux(1), 8, 1 }, { pinmux(1), 8, 2 }, { pinmux(1), 8, 3 }, { pinmux(1), 8, 4 }, { pinmux(1), 8, 5 }, { pinmux(1), 8, 6 }, { pinmux(1), 4, 7 }, { pinmux(2), 8, 0 }, { pinmux(5), 1, 0 }, { pinmux(5), 1, 3 }, { pinmux(5), 1, 7 }, { pinmux(5), 1, 5 }, { pinmux(5), 1, 4 }, { pinmux(5), 1, 3 }, { pinmux(5), 1, 2 }, { pinmux(5), 1, 1 }, { pinmux(5), 1, 0 }, { pinmux(6), 8, 0 }, { pinmux(6), 8, 1 }, { pinmux(6), 8, 2 }, { pinmux(6), 8, 3 }, { pinmux(6), 8, 4 }, { pinmux(6), 8, 5 }, { pinmux(6), 1, 7 }, { pinmux(7), 8, 2 }, { pinmux(7), 1, 3 }, { pinmux(7), 8, 6 }, { pinmux(7), 1, 7 }, { pinmux(13), 8, 2 }, { pinmux(13), 8, 3 }, { pinmux(13), 8, 4 }, { pinmux(13), 8, 5 }, { pinmux(13), 8, 6 }, { pinmux(13), 8, 7 }, { pinmux(14), 8, 0 }, { pinmux(14), 8, 1 }, { pinmux(16), 8, 1 }, { pinmux(16), 8, 2 }, { pinmux(16), 8, 3 }, { pinmux(16), 8, 4 }, { pinmux(16), 8, 5 }, { pinmux(16), 8, 6 }, { pinmux(16), 8, 7 }, { pinmux(17), 1, 0 }, { pinmux(17), 1, 1 }, { pinmux(17), 1, 2 }, { pinmux(17), 8, 3 }, { pinmux(17), 8, 4 }, { pinmux(17), 8, 5 }, { pinmux(17), 8, 6 }, { pinmux(17), 8, 7 }, { pinmux(18), 8, 0 }, { pinmux(18), 8, 1 }, { pinmux(18), 2, 2 }, { pinmux(18), 2, 3 }, { pinmux(18), 2, 4 }, { pinmux(18), 8, 6 }, { pinmux(18), 8, 7 }, { pinmux(19), 8, 0 }, { pinmux(19), 2, 1 }, { pinmux(19), 2, 2 }, { pinmux(19), 2, 3 }, { pinmux(19), 2, 4 }, { pinmux(19), 8, 5 }, { pinmux(19), 8, 6 }, }; const struct pinmux_resource pinmuxes[] = { PINMUX_ITEM(emac_pins_mii), PINMUX_ITEM(emac_pins_mdio), PINMUX_ITEM(i2c0_pins), PINMUX_ITEM(emifa_pins_cs2), PINMUX_ITEM(emifa_pins_cs3), PINMUX_ITEM(emifa_pins_cs4), PINMUX_ITEM(emifa_pins_nand), PINMUX_ITEM(emifa_pins_nor), PINMUX_ITEM(spi1_pins_base), PINMUX_ITEM(spi1_pins_scs0), PINMUX_ITEM(uart1_pins_txrx), PINMUX_ITEM(uart2_pins_txrx), PINMUX_ITEM(uart2_pins_rtscts), PINMUX_ITEM(enbw_pins), }; const int pinmuxes_size = ARRAY_SIZE(pinmuxes); struct gpio_config { char name[GPIO_NAME_SIZE]; unsigned char bank; unsigned char gpio; unsigned char out; unsigned char value; }; static const struct gpio_config enbw_gpio_config_hut[] = { { "RS485 enable", 8, 11, 1, 0 }, { "RS485 iso", 8, 10, 1, 1 }, { "W2HUT RS485 Rx ena", 8, 9, 1, 0 }, { "W2HUT RS485 iso", 8, 8, 1, 1 }, }; static const struct gpio_config enbw_gpio_config_w[] = { { "RS485 enable", 8, 11, 1, 0 }, { "RS485 iso", 8, 10, 1, 0 }, { "W2HUT RS485 Rx ena", 8, 9, 1, 0 }, { "W2HUT RS485 iso", 8, 8, 1, 0 }, }; static const struct gpio_config enbw_gpio_config[] = { { "LAN reset", 7, 15, 1, 1 }, { "ena 11V PLC", 7, 14, 1, 0 }, { "ena 1.5V PLC", 7, 13, 1, 0 }, { "disable VBUS", 7, 12, 1, 1 }, { "PLC reset", 6, 13, 1, 0 }, { "LCM RS", 6, 12, 1, 0 }, { "LCM R/W", 6, 11, 1, 0 }, { "PLC pairing", 6, 10, 1, 1 }, { "PLC MDIO CLK", 6, 9, 1, 0 }, { "HK218", 6, 8, 1, 0 }, { "HK218 Rx", 6, 1, 1, 1 }, { "TPM reset", 6, 0, 1, 0 }, { "Board-Type", 3, 9, 0, 0 }, { "HW-ID0", 2, 7, 0, 0 }, { "HW-ID1", 2, 6, 0, 0 }, { "HW-ID2", 2, 3, 0, 0 }, { "PV-IF RxD ena", 0, 15, 1, 1 }, { "LED1", 1, 15, 1, 1 }, { "LED2", 0, 1, 1, 1 }, { "LED3", 0, 2, 1, 1 }, { "LED4", 0, 3, 1, 1 }, { "LED5", 0, 4, 1, 1 }, { "LED6", 0, 5, 1, 0 }, { "LED7", 0, 6, 1, 0 }, { "LED8", 0, 14, 1, 0 }, { "USER1", 0, 12, 0, 0 }, { "USER2", 0, 13, 0, 0 }, }; #define PHY_POWER 0x0800 static void enbw_cmc_switch(int port, int on) { const char *devname; unsigned char phyaddr = 3; unsigned char reg = 0; unsigned short data; if (port == 1) phyaddr = 2; devname = miiphy_get_current_dev(); if (!devname) { printf("Error: no mii device\n"); return; } if (miiphy_read(devname, phyaddr, reg, &data) != 0) { printf("Error reading from the PHY addr=%02x reg=%02x\n", phyaddr, reg); return; } if (on) data &= ~PHY_POWER; else data |= PHY_POWER; if (miiphy_write(devname, phyaddr, reg, data) != 0) { printf("Error writing to the PHY addr=%02x reg=%02x\n", phyaddr, reg); return; } } static int enbw_cmc_init_gpio(const struct gpio_config *conf, int sz) { int i, ret; for (i = 0; i < sz; i++) { int gpio = conf[i].bank * 16 + conf[i].gpio; ret = gpio_request(gpio, conf[i].name); if (ret) { printf("%s: Could not get %s gpio\n", __func__, conf[i].name); return ret; } if (conf[i].out) gpio_direction_output(gpio, conf[i].value); else gpio_direction_input(gpio); } return 0; } int board_init(void) { int board_type, hw_id; #ifndef CONFIG_USE_IRQ irq_init(); #endif /* address of boot parameters, not used as booting with DTT */ gd->bd->bi_boot_params = 0; enbw_cmc_init_gpio(enbw_gpio_config, ARRAY_SIZE(enbw_gpio_config)); /* detect HW version */ board_type = gpio_get_value(CONFIG_ENBW_CMC_BOARD_TYPE); hw_id = gpio_get_value(CONFIG_ENBW_CMC_HW_ID_BIT0) + (gpio_get_value(CONFIG_ENBW_CMC_HW_ID_BIT1) << 1) + (gpio_get_value(CONFIG_ENBW_CMC_HW_ID_BIT2) << 2); printf("BOARD: CMC-%s hw id: %d\n", (board_type ? "w2" : "hut"), hw_id); if (board_type) enbw_cmc_init_gpio(enbw_gpio_config_w, ARRAY_SIZE(enbw_gpio_config_w)); else enbw_cmc_init_gpio(enbw_gpio_config_hut, ARRAY_SIZE(enbw_gpio_config_hut)); /* setup the SUSPSRC for ARM to control emulation suspend */ clrbits_le32(&davinci_syscfg_regs->suspsrc, (DAVINCI_SYSCFG_SUSPSRC_EMAC | DAVINCI_SYSCFG_SUSPSRC_I2C | DAVINCI_SYSCFG_SUSPSRC_SPI1 | DAVINCI_SYSCFG_SUSPSRC_TIMER0 | DAVINCI_SYSCFG_SUSPSRC_UART2)); return 0; } #ifdef CONFIG_DRIVER_TI_EMAC #define KSZ_CMD_READ 0x03 #define KSZ_CMD_WRITE 0x02 #define KSZ_ID 0x95 static int enbw_cmc_switch_read(struct spi_slave *spi, u8 reg, u8 *val) { unsigned long flags = SPI_XFER_BEGIN; int ret; int cmd_len; u8 cmd[2]; cmd[0] = KSZ_CMD_READ; cmd[1] = reg; cmd_len = 2; ret = spi_xfer(spi, cmd_len * 8, cmd, NULL, flags); if (ret) { debug("Failed to send command (%zu bytes): %d\n", cmd_len, ret); return -EINVAL; } flags |= SPI_XFER_END; *val = 0; cmd_len = 1; ret = spi_xfer(spi, cmd_len * 8, NULL, val, flags); if (ret) { debug("Failed to read (%zu bytes): %d\n", cmd_len, ret); return -EINVAL; } return 0; } static int enbw_cmc_switch_read_ident(struct spi_slave *spi) { int ret; u8 val; ret = enbw_cmc_switch_read(spi, 0, &val); if (ret) { debug("Failed to read\n"); return -EINVAL; } if (val != KSZ_ID) return -EINVAL; return 0; } static int enbw_cmc_switch_write(struct spi_slave *spi, unsigned long reg, unsigned long val) { unsigned long flags = SPI_XFER_BEGIN; int ret; int cmd_len; u8 cmd[3]; cmd[0] = KSZ_CMD_WRITE; cmd[1] = reg; cmd[2] = val; cmd_len = 3; flags |= SPI_XFER_END; ret = spi_xfer(spi, cmd_len * 8, cmd, NULL, flags); if (ret) { debug("Failed to send command (%zu bytes): %d\n", cmd_len, ret); return -EINVAL; } udelay(1000); ret = enbw_cmc_switch_read(spi, reg, &cmd[0]); if (ret) { debug("Failed to read\n"); return -EINVAL; } if (val != cmd[0]) debug("warning: reg: %lx va: %x soll: %lx\n", reg, cmd[0], val); return 0; } static int enbw_cmc_eof(unsigned char *ptr) { if (*ptr == 0xff) return 1; return 0; } static char *enbw_cmc_getnewline(char *ptr) { while (*ptr != 0x0a) { ptr++; if (enbw_cmc_eof((unsigned char *)ptr)) return NULL; } ptr++; return ptr; } static char *enbw_cmc_getvalue(char *ptr, int *value) { int end = 0; *value = -EINVAL; if (!isxdigit(*ptr)) end = 1; while (end) { if ((*ptr == '#') || (*ptr == ';')) { ptr = enbw_cmc_getnewline(ptr); return ptr; } if (ptr != NULL) { if (isxdigit(*ptr)) { end = 0; } else if (*ptr == 0x0a) { ptr++; return ptr; } else { ptr++; if (enbw_cmc_eof((unsigned char *)ptr)) return NULL; } } else { return NULL; } } *value = (int)simple_strtoul((const char *)ptr, &ptr, 16); ptr++; return ptr; } static struct spi_slave *enbw_cmc_init_spi(void) { struct spi_slave *spi; int ret; spi = spi_setup_slave(0, 0, 1000000, 0); if (!spi) { printf("Failed to set up slave\n"); return NULL; } ret = spi_claim_bus(spi); if (ret) { debug("Failed to claim SPI bus: %d\n", ret); goto err_claim_bus; } ret = enbw_cmc_switch_read_ident(spi); if (ret) goto err_read; return spi; err_read: spi_release_bus(spi); err_claim_bus: spi_free_slave(spi); return NULL; } static int enbw_cmc_config_switch(unsigned long addr) { struct spi_slave *spi; char *ptr = (char *)addr; int value, reg; int ret = 0; debug("configure switch with file on addr: 0x%lx\n", addr); spi = enbw_cmc_init_spi(); if (!spi) return -EINVAL; while (ptr != NULL) { ptr = enbw_cmc_getvalue(ptr, ®); if (ptr != NULL) { ptr = enbw_cmc_getvalue(ptr, &value); if ((ptr != NULL) && (value >= 0)) if (enbw_cmc_switch_write(spi, reg, value)) { /* error writing to switch */ ptr = NULL; ret = -EINVAL; } } } spi_release_bus(spi); spi_free_slave(spi); return ret; } static int do_switch(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) { unsigned long addr; if (argc < 2) return cmd_usage(cmdtp); addr = simple_strtoul(argv[1], NULL, 16); enbw_cmc_config_switch(addr); return 0; } U_BOOT_CMD(switch, 3, 1, do_switch, "switch addr", "[addr]" ); /* * Initializes on-board ethernet controllers. */ int board_eth_init(bd_t *bis) { struct spi_slave *spi; const char *s; size_t len = 0; int config = 1; davinci_emac_mii_mode_sel(0); /* send a config file to the switch */ s = hwconfig_subarg("switch", "config", &len); if (len) { unsigned long addr = simple_strtoul(s, NULL, 16); config = enbw_cmc_config_switch(addr); } if (config) { /* * no valid config file -> do we have some args in * hwconfig ? */ if ((hwconfig_subarg("switch", "lan", &len)) || (hwconfig_subarg("switch", "lmn", &len))) { /* If so start switch */ spi = enbw_cmc_init_spi(); if (spi) { if (enbw_cmc_switch_write(spi, 1, 0)) config = 0; udelay(10000); if (enbw_cmc_switch_write(spi, 1, 1)) config = 0; spi_release_bus(spi); spi_free_slave(spi); } } else { config = 0; } } if (!davinci_emac_initialize()) { printf("Error: Ethernet init failed!\n"); return -1; } if (config) { if (hwconfig_subarg_cmp("switch", "lan", "on")) /* Switch port lan on */ enbw_cmc_switch(1, 1); else enbw_cmc_switch(1, 0); if (hwconfig_subarg_cmp("switch", "lmn", "on")) /* Switch port pwl on */ enbw_cmc_switch(2, 1); else enbw_cmc_switch(2, 0); } return 0; } #endif /* CONFIG_DRIVER_TI_EMAC */ #ifdef CONFIG_PREBOOT static uchar kbd_magic_prefix[] = "key_magic_"; static uchar kbd_command_prefix[] = "key_cmd_"; struct kbd_data_t { char s1; }; struct kbd_data_t *get_keys(struct kbd_data_t *kbd_data) { /* read SW1 + SW2 */ kbd_data->s1 = gpio_get_value(12) + (gpio_get_value(13) << 1); return kbd_data; } static int compare_magic(const struct kbd_data_t *kbd_data, char *str) { char s1 = str[0]; if (s1 >= '0' && s1 <= '9') s1 -= '0'; else if (s1 >= 'a' && s1 <= 'f') s1 = s1 - 'a' + 10; else if (s1 >= 'A' && s1 <= 'F') s1 = s1 - 'A' + 10; else return -1; if (s1 != kbd_data->s1) return -1; return 0; } static char *key_match(const struct kbd_data_t *kbd_data) { char magic[sizeof(kbd_magic_prefix) + 1]; char *suffix; char *kbd_magic_keys; /* * The following string defines the characters that can be appended * to "key_magic" to form the names of environment variables that * hold "magic" key codes, i. e. such key codes that can cause * pre-boot actions. If the string is empty (""), then only * "key_magic" is checked (old behaviour); the string "125" causes * checks for "key_magic1", "key_magic2" and "key_magic5", etc. */ kbd_magic_keys = getenv("magic_keys"); if (kbd_magic_keys == NULL) kbd_magic_keys = ""; /* * loop over all magic keys; * use '\0' suffix in case of empty string */ for (suffix = kbd_magic_keys; *suffix || suffix == kbd_magic_keys; ++suffix) { sprintf(magic, "%s%c", kbd_magic_prefix, *suffix); if (compare_magic(kbd_data, getenv(magic)) == 0) { char cmd_name[sizeof(kbd_command_prefix) + 1]; char *cmd; sprintf(cmd_name, "%s%c", kbd_command_prefix, *suffix); cmd = getenv(cmd_name); return cmd; } } return NULL; } #endif /* CONFIG_PREBOOT */ int misc_init_r(void) { char *s, buf[32]; #ifdef CONFIG_PREBOOT struct kbd_data_t kbd_data; /* Decode keys */ char *str = strdup(key_match(get_keys(&kbd_data))); /* Set or delete definition */ setenv("preboot", str); free(str); #endif /* CONFIG_PREBOOT */ /* count all restarts, and save this in an environment var */ s = getenv("restartcount"); if (s) sprintf(buf, "%ld", simple_strtoul(s, NULL, 10) + 1); else strcpy(buf, "1"); setenv("restartcount", buf); saveenv(); #ifdef CONFIG_HW_WATCHDOG davinci_hw_watchdog_enable(); #endif return 0; } struct cmc_led { char name[20]; unsigned char bank; unsigned char gpio; }; struct cmc_led led_table[] = { {"led1", 1, 15}, {"led2", 0, 1}, {"led3", 0, 2}, {"led4", 0, 3}, {"led5", 0, 4}, {"led6", 0, 5}, {"led7", 0, 6}, {"led8", 0, 14}, }; static int cmc_get_led_state(struct cmc_led *led) { int value; int gpio = led->bank * 16 + led->gpio; value = gpio_get_value(gpio); return value; } static int cmc_set_led_state(struct cmc_led *led, int state) { int gpio = led->bank * 16 + led->gpio; gpio_set_value(gpio, state); return 0; } static int do_led(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) { struct cmc_led *led; int found = 0; int i = 0; int only_print = 0; int len = ARRAY_SIZE(led_table); if (argc < 2) return cmd_usage(cmdtp); if (argc < 3) only_print = 1; led = led_table; while ((!found) && (i < len)) { if (strcmp(argv[1], led->name) == 0) { found = 1; } else { led++; i++; } } if (!found) return cmd_usage(cmdtp); if (only_print) { if (cmc_get_led_state(led)) printf("on\n"); else printf("off\n"); return 0; } if (strcmp(argv[2], "on") == 0) cmc_set_led_state(led, 1); else cmc_set_led_state(led, 0); return 0; } U_BOOT_CMD(led, 3, 1, do_led, "switch on/off board led", "[name] [on/off]" ); #ifdef CONFIG_HW_WATCHDOG void hw_watchdog_reset(void) { davinci_hw_watchdog_reset(); } #endif #if defined(CONFIG_POST) void arch_memory_failure_handle(void) { struct davinci_gpio *gpio = davinci_gpio_bank01; int state = 1; /* * if memor< failure blink with the LED 1,2 and 3 * as we running from flash, we cannot use the gpio * api here, so access the gpio pin direct through * the gpio register. */ while (1) { if (state) { clrbits_le32(&gpio->out_data, 0x80000006); state = 0; } else { setbits_le32(&gpio->out_data, 0x80000006); state = 1; } udelay(500); } } #endif ulong post_word_load(void) { struct davinci_rtc *reg = (struct davinci_rtc *)CONFIG_SYS_POST_WORD_ADDR; return in_be32(®->scratch2); } void post_word_store(ulong value) { struct davinci_rtc *reg = (struct davinci_rtc *)CONFIG_SYS_POST_WORD_ADDR; /* * write RTC kick register to enable write * for RTC Scratch registers. Cratch0 and 1 are * used for bootcount values. */ writel(RTC_KICK0R_WE, ®->kick0r); writel(RTC_KICK1R_WE, ®->kick1r); out_be32(®->scratch2, value); } void board_gpio_init(void) { struct davinci_gpio *gpio = davinci_gpio_bank01; /* * set LED (gpio Interface not usable here) * set LED pins to output and state 0 */ clrbits_le32(&gpio->dir, 0x8000407e); clrbits_le32(&gpio->out_data, 0x8000407e); /* set LED 1 - 5 to state on */ setbits_le32(&gpio->out_data, 0x8000001e); /* * set some gpio pins to low, this is needed early, * so we have no gpio Interface here * gpios: * 8[8] Mode PV select low * 8[9] Debug Rx Enable low * 8[10] Mode Select PV low * 8[11] Counter Interface RS485 Rx-Enable low */ gpio = davinci_gpio_bank8; clrbits_le32(&gpio->dir, 0x00000f00); clrbits_le32(&gpio->out_data, 0x0f00); } int board_late_init(void) { cmc_set_led_state(&led_table[4], 0); return 0; } void show_boot_progress(int val) { switch (val) { case 1: cmc_set_led_state(&led_table[4], 1); break; case 4: cmc_set_led_state(&led_table[4], 0); break; case 15: cmc_set_led_state(&led_table[4], 1); break; } } #ifdef CONFIG_DAVINCI_MMC static struct davinci_mmc mmc_sd1 = { .reg_base = (struct davinci_mmc_regs *)DAVINCI_MMC_SD1_BASE, .input_clk = 228000000, .host_caps = MMC_MODE_4BIT, .voltages = MMC_VDD_32_33 | MMC_VDD_33_34, .version = MMC_CTLR_VERSION_2, }; int board_mmc_init(bd_t *bis) { mmc_sd1.input_clk = clk_get(DAVINCI_MMC_CLKID); /* Add slot-0 to mmc subsystem */ return davinci_mmc_init(bis, &mmc_sd1); } #endif