/* * Copyright (c) 2011 The Chromium OS Authors. * (C) Copyright 2010,2011 * Graeme Russ, * * Portions from Coreboot mainboard/google/link/romstage.c * Copyright (C) 2007-2010 coresystems GmbH * Copyright (C) 2011 Google Inc. * * SPDX-License-Identifier: GPL-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #define CMOS_OFFSET_MRC_SEED 152 #define CMOS_OFFSET_MRC_SEED_S3 156 #define CMOS_OFFSET_MRC_SEED_CHK 160 /* * This function looks for the highest region of memory lower than 4GB which * has enough space for U-Boot where U-Boot is aligned on a page boundary. * It overrides the default implementation found elsewhere which simply * picks the end of ram, wherever that may be. The location of the stack, * the relocation address, and how far U-Boot is moved by relocation are * set in the global data structure. */ ulong board_get_usable_ram_top(ulong total_size) { struct memory_info *info = &gd->arch.meminfo; uintptr_t dest_addr = 0; struct memory_area *largest = NULL; int i; /* Find largest area of memory below 4GB */ for (i = 0; i < info->num_areas; i++) { struct memory_area *area = &info->area[i]; if (area->start >= 1ULL << 32) continue; if (!largest || area->size > largest->size) largest = area; } /* If no suitable area was found, return an error. */ assert(largest); if (!largest || largest->size < (2 << 20)) panic("No available memory found for relocation"); dest_addr = largest->start + largest->size; return (ulong)dest_addr; } void dram_init_banksize(void) { struct memory_info *info = &gd->arch.meminfo; int num_banks; int i; for (i = 0, num_banks = 0; i < info->num_areas; i++) { struct memory_area *area = &info->area[i]; if (area->start >= 1ULL << 32) continue; gd->bd->bi_dram[num_banks].start = area->start; gd->bd->bi_dram[num_banks].size = area->size; num_banks++; } } static int get_mrc_entry(struct spi_flash **sfp, struct fmap_entry *entry) { const void *blob = gd->fdt_blob; int node, spi_node, mrc_node; int upto; /* Find the flash chip within the SPI controller node */ upto = 0; spi_node = fdtdec_next_alias(blob, "spi", COMPAT_INTEL_ICH_SPI, &upto); if (spi_node < 0) return -ENOENT; node = fdt_first_subnode(blob, spi_node); if (node < 0) return -ECHILD; /* Find the place where we put the MRC cache */ mrc_node = fdt_subnode_offset(blob, node, "rw-mrc-cache"); if (mrc_node < 0) return -EPERM; if (fdtdec_read_fmap_entry(blob, mrc_node, "rm-mrc-cache", entry)) return -EINVAL; if (sfp) { *sfp = spi_flash_probe_fdt(blob, node, spi_node); if (!*sfp) return -EBADF; } return 0; } static int read_seed_from_cmos(struct pei_data *pei_data) { u16 c1, c2, checksum, seed_checksum; /* * Read scrambler seeds from CMOS RAM. We don't want to store them in * SPI flash since they change on every boot and that would wear down * the flash too much. So we store these in CMOS and the large MRC * data in SPI flash. */ pei_data->scrambler_seed = rtc_read32(CMOS_OFFSET_MRC_SEED); debug("Read scrambler seed 0x%08x from CMOS 0x%02x\n", pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED); pei_data->scrambler_seed_s3 = rtc_read32(CMOS_OFFSET_MRC_SEED_S3); debug("Read S3 scrambler seed 0x%08x from CMOS 0x%02x\n", pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3); /* Compute seed checksum and compare */ c1 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed, sizeof(u32)); c2 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed_s3, sizeof(u32)); checksum = add_ip_checksums(sizeof(u32), c1, c2); seed_checksum = rtc_read8(CMOS_OFFSET_MRC_SEED_CHK); seed_checksum |= rtc_read8(CMOS_OFFSET_MRC_SEED_CHK + 1) << 8; if (checksum != seed_checksum) { debug("%s: invalid seed checksum\n", __func__); pei_data->scrambler_seed = 0; pei_data->scrambler_seed_s3 = 0; return -EINVAL; } return 0; } static int prepare_mrc_cache(struct pei_data *pei_data) { struct mrc_data_container *mrc_cache; struct fmap_entry entry; int ret; ret = read_seed_from_cmos(pei_data); if (ret) return ret; ret = get_mrc_entry(NULL, &entry); if (ret) return ret; mrc_cache = mrccache_find_current(&entry); if (!mrc_cache) return -ENOENT; /* * TODO(sjg@chromium.org): Skip this for now as it causes boot * problems */ if (0) { pei_data->mrc_input = mrc_cache->data; pei_data->mrc_input_len = mrc_cache->data_size; } debug("%s: at %p, size %x checksum %04x\n", __func__, pei_data->mrc_input, pei_data->mrc_input_len, mrc_cache->checksum); return 0; } static int build_mrc_data(struct mrc_data_container **datap) { struct mrc_data_container *data; int orig_len; int output_len; orig_len = gd->arch.mrc_output_len; output_len = ALIGN(orig_len, 16); data = malloc(output_len + sizeof(*data)); if (!data) return -ENOMEM; data->signature = MRC_DATA_SIGNATURE; data->data_size = output_len; data->reserved = 0; memcpy(data->data, gd->arch.mrc_output, orig_len); /* Zero the unused space in aligned buffer. */ if (output_len > orig_len) memset(data->data + orig_len, 0, output_len - orig_len); data->checksum = compute_ip_checksum(data->data, output_len); *datap = data; return 0; } static int write_seeds_to_cmos(struct pei_data *pei_data) { u16 c1, c2, checksum; /* Save the MRC seed values to CMOS */ rtc_write32(CMOS_OFFSET_MRC_SEED, pei_data->scrambler_seed); debug("Save scrambler seed 0x%08x to CMOS 0x%02x\n", pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED); rtc_write32(CMOS_OFFSET_MRC_SEED_S3, pei_data->scrambler_seed_s3); debug("Save s3 scrambler seed 0x%08x to CMOS 0x%02x\n", pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3); /* Save a simple checksum of the seed values */ c1 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed, sizeof(u32)); c2 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed_s3, sizeof(u32)); checksum = add_ip_checksums(sizeof(u32), c1, c2); rtc_write8(CMOS_OFFSET_MRC_SEED_CHK, checksum & 0xff); rtc_write8(CMOS_OFFSET_MRC_SEED_CHK + 1, (checksum >> 8) & 0xff); return 0; } static int sdram_save_mrc_data(void) { struct mrc_data_container *data; struct fmap_entry entry; struct spi_flash *sf; int ret; if (!gd->arch.mrc_output_len) return 0; debug("Saving %d bytes of MRC output data to SPI flash\n", gd->arch.mrc_output_len); ret = get_mrc_entry(&sf, &entry); if (ret) goto err_entry; ret = build_mrc_data(&data); if (ret) goto err_data; ret = mrccache_update(sf, &entry, data); if (!ret) debug("Saved MRC data with checksum %04x\n", data->checksum); free(data); err_data: spi_flash_free(sf); err_entry: if (ret) debug("%s: Failed: %d\n", __func__, ret); return ret; } /* Use this hook to save our SDRAM parameters */ int misc_init_r(void) { int ret; ret = sdram_save_mrc_data(); if (ret) printf("Unable to save MRC data: %d\n", ret); return 0; } static const char *const ecc_decoder[] = { "inactive", "active on IO", "disabled on IO", "active" }; /* * Dump in the log memory controller configuration as read from the memory * controller registers. */ static void report_memory_config(void) { u32 addr_decoder_common, addr_decode_ch[2]; int i; addr_decoder_common = readl(MCHBAR_REG(0x5000)); addr_decode_ch[0] = readl(MCHBAR_REG(0x5004)); addr_decode_ch[1] = readl(MCHBAR_REG(0x5008)); debug("memcfg DDR3 clock %d MHz\n", (readl(MCHBAR_REG(0x5e04)) * 13333 * 2 + 50) / 100); debug("memcfg channel assignment: A: %d, B % d, C % d\n", addr_decoder_common & 3, (addr_decoder_common >> 2) & 3, (addr_decoder_common >> 4) & 3); for (i = 0; i < ARRAY_SIZE(addr_decode_ch); i++) { u32 ch_conf = addr_decode_ch[i]; debug("memcfg channel[%d] config (%8.8x):\n", i, ch_conf); debug(" ECC %s\n", ecc_decoder[(ch_conf >> 24) & 3]); debug(" enhanced interleave mode %s\n", ((ch_conf >> 22) & 1) ? "on" : "off"); debug(" rank interleave %s\n", ((ch_conf >> 21) & 1) ? "on" : "off"); debug(" DIMMA %d MB width x%d %s rank%s\n", ((ch_conf >> 0) & 0xff) * 256, ((ch_conf >> 19) & 1) ? 16 : 8, ((ch_conf >> 17) & 1) ? "dual" : "single", ((ch_conf >> 16) & 1) ? "" : ", selected"); debug(" DIMMB %d MB width x%d %s rank%s\n", ((ch_conf >> 8) & 0xff) * 256, ((ch_conf >> 20) & 1) ? 16 : 8, ((ch_conf >> 18) & 1) ? "dual" : "single", ((ch_conf >> 16) & 1) ? ", selected" : ""); } } static void post_system_agent_init(struct pei_data *pei_data) { /* If PCIe init is skipped, set the PEG clock gating */ if (!pei_data->pcie_init) setbits_le32(MCHBAR_REG(0x7010), 1); } static asmlinkage void console_tx_byte(unsigned char byte) { #ifdef DEBUG putc(byte); #endif } static int recovery_mode_enabled(void) { return false; } /** * Find the PEI executable in the ROM and execute it. * * @param pei_data: configuration data for UEFI PEI reference code */ int sdram_initialise(struct pei_data *pei_data) { unsigned version; const char *data; uint16_t done; int ret; report_platform_info(); /* Wait for ME to be ready */ ret = intel_early_me_init(); if (ret) return ret; ret = intel_early_me_uma_size(); if (ret < 0) return ret; debug("Starting UEFI PEI System Agent\n"); /* * Do not pass MRC data in for recovery mode boot, * Always pass it in for S3 resume. */ if (!recovery_mode_enabled() || pei_data->boot_mode == PEI_BOOT_RESUME) { ret = prepare_mrc_cache(pei_data); if (ret) debug("prepare_mrc_cache failed: %d\n", ret); } /* If MRC data is not found we cannot continue S3 resume. */ if (pei_data->boot_mode == PEI_BOOT_RESUME && !pei_data->mrc_input) { debug("Giving up in sdram_initialize: No MRC data\n"); outb(0x6, PORT_RESET); cpu_hlt(); } /* Pass console handler in pei_data */ pei_data->tx_byte = console_tx_byte; debug("PEI data at %p, size %x:\n", pei_data, sizeof(*pei_data)); data = (char *)CONFIG_X86_MRC_ADDR; if (data) { int rv; int (*func)(struct pei_data *); debug("Calling MRC at %p\n", data); post_code(POST_PRE_MRC); func = (int (*)(struct pei_data *))data; rv = func(pei_data); post_code(POST_MRC); if (rv) { switch (rv) { case -1: printf("PEI version mismatch.\n"); break; case -2: printf("Invalid memory frequency.\n"); break; default: printf("MRC returned %x.\n", rv); } printf("Nonzero MRC return value.\n"); return -EFAULT; } } else { printf("UEFI PEI System Agent not found.\n"); return -ENOSYS; } #if CONFIG_USBDEBUG /* mrc.bin reconfigures USB, so reinit it to have debug */ early_usbdebug_init(); #endif version = readl(MCHBAR_REG(0x5034)); debug("System Agent Version %d.%d.%d Build %d\n", version >> 24 , (version >> 16) & 0xff, (version >> 8) & 0xff, version & 0xff); debug("MCR output data length %#x at %p\n", pei_data->mrc_output_len, pei_data->mrc_output); /* * Send ME init done for SandyBridge here. This is done inside the * SystemAgent binary on IvyBridge */ done = pci_read_config32(PCH_DEV, PCI_DEVICE_ID); done &= BASE_REV_MASK; if (BASE_REV_SNB == done) intel_early_me_init_done(ME_INIT_STATUS_SUCCESS); else intel_early_me_status(); post_system_agent_init(pei_data); report_memory_config(); /* S3 resume: don't save scrambler seed or MRC data */ if (pei_data->boot_mode != PEI_BOOT_RESUME) { /* * This will be copied to SDRAM in reserve_arch(), then written * to SPI flash in sdram_save_mrc_data() */ gd->arch.mrc_output = (char *)pei_data->mrc_output; gd->arch.mrc_output_len = pei_data->mrc_output_len; ret = write_seeds_to_cmos(pei_data); if (ret) debug("Failed to write seeds to CMOS: %d\n", ret); } return 0; } int reserve_arch(void) { u16 checksum; checksum = compute_ip_checksum(gd->arch.mrc_output, gd->arch.mrc_output_len); debug("Saving %d bytes for MRC output data, checksum %04x\n", gd->arch.mrc_output_len, checksum); gd->start_addr_sp -= gd->arch.mrc_output_len; memcpy((void *)gd->start_addr_sp, gd->arch.mrc_output, gd->arch.mrc_output_len); gd->arch.mrc_output = (char *)gd->start_addr_sp; gd->start_addr_sp &= ~0xf; return 0; } static int copy_spd(struct pei_data *peid) { const int gpio_vector[] = {41, 42, 43, 10, -1}; int spd_index; const void *blob = gd->fdt_blob; int node, spd_node; int ret, i; for (i = 0; ; i++) { if (gpio_vector[i] == -1) break; ret = gpio_requestf(gpio_vector[i], "spd_id%d", i); if (ret) { debug("%s: Could not request gpio %d\n", __func__, gpio_vector[i]); return ret; } } spd_index = gpio_get_values_as_int(gpio_vector); debug("spd index %d\n", spd_index); node = fdtdec_next_compatible(blob, 0, COMPAT_MEMORY_SPD); if (node < 0) { printf("SPD data not found.\n"); return -ENOENT; } for (spd_node = fdt_first_subnode(blob, node); spd_node > 0; spd_node = fdt_next_subnode(blob, spd_node)) { const char *data; int len; if (fdtdec_get_int(blob, spd_node, "reg", -1) != spd_index) continue; data = fdt_getprop(blob, spd_node, "data", &len); if (len < sizeof(peid->spd_data[0])) { printf("Missing SPD data\n"); return -EINVAL; } debug("Using SDRAM SPD data for '%s'\n", fdt_get_name(blob, spd_node, NULL)); memcpy(peid->spd_data[0], data, sizeof(peid->spd_data[0])); break; } if (spd_node < 0) { printf("No SPD data found for index %d\n", spd_index); return -ENOENT; } return 0; } /** * add_memory_area() - Add a new usable memory area to our list * * Note: @start and @end must not span the first 4GB boundary * * @info: Place to store memory info * @start: Start of this memory area * @end: End of this memory area + 1 */ static int add_memory_area(struct memory_info *info, uint64_t start, uint64_t end) { struct memory_area *ptr; if (info->num_areas == CONFIG_NR_DRAM_BANKS) return -ENOSPC; ptr = &info->area[info->num_areas]; ptr->start = start; ptr->size = end - start; info->total_memory += ptr->size; if (ptr->start < (1ULL << 32)) info->total_32bit_memory += ptr->size; debug("%d: memory %llx size %llx, total now %llx / %llx\n", info->num_areas, ptr->start, ptr->size, info->total_32bit_memory, info->total_memory); info->num_areas++; return 0; } /** * sdram_find() - Find available memory * * This is a bit complicated since on x86 there are system memory holes all * over the place. We create a list of available memory blocks */ static int sdram_find(pci_dev_t dev) { struct memory_info *info = &gd->arch.meminfo; uint32_t tseg_base, uma_size, tolud; uint64_t tom, me_base, touud; uint64_t uma_memory_base = 0; uint64_t uma_memory_size; unsigned long long tomk; uint16_t ggc; /* Total Memory 2GB example: * * 00000000 0000MB-1992MB 1992MB RAM (writeback) * 7c800000 1992MB-2000MB 8MB TSEG (SMRR) * 7d000000 2000MB-2002MB 2MB GFX GTT (uncached) * 7d200000 2002MB-2034MB 32MB GFX UMA (uncached) * 7f200000 2034MB TOLUD * 7f800000 2040MB MEBASE * 7f800000 2040MB-2048MB 8MB ME UMA (uncached) * 80000000 2048MB TOM * 100000000 4096MB-4102MB 6MB RAM (writeback) * * Total Memory 4GB example: * * 00000000 0000MB-2768MB 2768MB RAM (writeback) * ad000000 2768MB-2776MB 8MB TSEG (SMRR) * ad800000 2776MB-2778MB 2MB GFX GTT (uncached) * ada00000 2778MB-2810MB 32MB GFX UMA (uncached) * afa00000 2810MB TOLUD * ff800000 4088MB MEBASE * ff800000 4088MB-4096MB 8MB ME UMA (uncached) * 100000000 4096MB TOM * 100000000 4096MB-5374MB 1278MB RAM (writeback) * 14fe00000 5368MB TOUUD */ /* Top of Upper Usable DRAM, including remap */ touud = pci_read_config32(dev, TOUUD+4); touud <<= 32; touud |= pci_read_config32(dev, TOUUD); /* Top of Lower Usable DRAM */ tolud = pci_read_config32(dev, TOLUD); /* Top of Memory - does not account for any UMA */ tom = pci_read_config32(dev, 0xa4); tom <<= 32; tom |= pci_read_config32(dev, 0xa0); debug("TOUUD %llx TOLUD %08x TOM %llx\n", touud, tolud, tom); /* ME UMA needs excluding if total memory <4GB */ me_base = pci_read_config32(dev, 0x74); me_base <<= 32; me_base |= pci_read_config32(dev, 0x70); debug("MEBASE %llx\n", me_base); /* TODO: Get rid of all this shifting by 10 bits */ tomk = tolud >> 10; if (me_base == tolud) { /* ME is from MEBASE-TOM */ uma_size = (tom - me_base) >> 10; /* Increment TOLUD to account for ME as RAM */ tolud += uma_size << 10; /* UMA starts at old TOLUD */ uma_memory_base = tomk * 1024ULL; uma_memory_size = uma_size * 1024ULL; debug("ME UMA base %llx size %uM\n", me_base, uma_size >> 10); } /* Graphics memory comes next */ ggc = pci_read_config16(dev, GGC); if (!(ggc & 2)) { debug("IGD decoded, subtracting "); /* Graphics memory */ uma_size = ((ggc >> 3) & 0x1f) * 32 * 1024ULL; debug("%uM UMA", uma_size >> 10); tomk -= uma_size; uma_memory_base = tomk * 1024ULL; uma_memory_size += uma_size * 1024ULL; /* GTT Graphics Stolen Memory Size (GGMS) */ uma_size = ((ggc >> 8) & 0x3) * 1024ULL; tomk -= uma_size; uma_memory_base = tomk * 1024ULL; uma_memory_size += uma_size * 1024ULL; debug(" and %uM GTT\n", uma_size >> 10); } /* Calculate TSEG size from its base which must be below GTT */ tseg_base = pci_read_config32(dev, 0xb8); uma_size = (uma_memory_base - tseg_base) >> 10; tomk -= uma_size; uma_memory_base = tomk * 1024ULL; uma_memory_size += uma_size * 1024ULL; debug("TSEG base 0x%08x size %uM\n", tseg_base, uma_size >> 10); debug("Available memory below 4GB: %lluM\n", tomk >> 10); /* Report the memory regions */ add_memory_area(info, 1 << 20, 2 << 28); add_memory_area(info, (2 << 28) + (2 << 20), 4 << 28); add_memory_area(info, (4 << 28) + (2 << 20), tseg_base); add_memory_area(info, 1ULL << 32, touud); /* Add MTRRs for memory */ mtrr_add_request(MTRR_TYPE_WRBACK, 0, 2ULL << 30); mtrr_add_request(MTRR_TYPE_WRBACK, 2ULL << 30, 512 << 20); mtrr_add_request(MTRR_TYPE_WRBACK, 0xaULL << 28, 256 << 20); mtrr_add_request(MTRR_TYPE_UNCACHEABLE, tseg_base, 16 << 20); mtrr_add_request(MTRR_TYPE_UNCACHEABLE, tseg_base + (16 << 20), 32 << 20); /* * If >= 4GB installed then memory from TOLUD to 4GB * is remapped above TOM, TOUUD will account for both */ if (touud > (1ULL << 32ULL)) { debug("Available memory above 4GB: %lluM\n", (touud >> 20) - 4096); } return 0; } static void rcba_config(void) { /* * GFX INTA -> PIRQA (MSI) * D28IP_P3IP WLAN INTA -> PIRQB * D29IP_E1P EHCI1 INTA -> PIRQD * D26IP_E2P EHCI2 INTA -> PIRQF * D31IP_SIP SATA INTA -> PIRQF (MSI) * D31IP_SMIP SMBUS INTB -> PIRQH * D31IP_TTIP THRT INTC -> PIRQA * D27IP_ZIP HDA INTA -> PIRQA (MSI) * * TRACKPAD -> PIRQE (Edge Triggered) * TOUCHSCREEN -> PIRQG (Edge Triggered) */ /* Device interrupt pin register (board specific) */ writel((INTC << D31IP_TTIP) | (NOINT << D31IP_SIP2) | (INTB << D31IP_SMIP) | (INTA << D31IP_SIP), RCB_REG(D31IP)); writel(NOINT << D30IP_PIP, RCB_REG(D30IP)); writel(INTA << D29IP_E1P, RCB_REG(D29IP)); writel(INTA << D28IP_P3IP, RCB_REG(D28IP)); writel(INTA << D27IP_ZIP, RCB_REG(D27IP)); writel(INTA << D26IP_E2P, RCB_REG(D26IP)); writel(NOINT << D25IP_LIP, RCB_REG(D25IP)); writel(NOINT << D22IP_MEI1IP, RCB_REG(D22IP)); /* Device interrupt route registers */ writel(DIR_ROUTE(PIRQB, PIRQH, PIRQA, PIRQC), RCB_REG(D31IR)); writel(DIR_ROUTE(PIRQD, PIRQE, PIRQF, PIRQG), RCB_REG(D29IR)); writel(DIR_ROUTE(PIRQB, PIRQC, PIRQD, PIRQE), RCB_REG(D28IR)); writel(DIR_ROUTE(PIRQA, PIRQH, PIRQA, PIRQB), RCB_REG(D27IR)); writel(DIR_ROUTE(PIRQF, PIRQE, PIRQG, PIRQH), RCB_REG(D26IR)); writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D25IR)); writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D22IR)); /* Enable IOAPIC (generic) */ writew(0x0100, RCB_REG(OIC)); /* PCH BWG says to read back the IOAPIC enable register */ (void)readw(RCB_REG(OIC)); /* Disable unused devices (board specific) */ setbits_le32(RCB_REG(FD), PCH_DISABLE_ALWAYS); } int dram_init(void) { struct pei_data pei_data __aligned(8) = { .pei_version = PEI_VERSION, .mchbar = DEFAULT_MCHBAR, .dmibar = DEFAULT_DMIBAR, .epbar = DEFAULT_EPBAR, .pciexbar = CONFIG_MMCONF_BASE_ADDRESS, .smbusbar = SMBUS_IO_BASE, .wdbbar = 0x4000000, .wdbsize = 0x1000, .hpet_address = CONFIG_HPET_ADDRESS, .rcba = DEFAULT_RCBABASE, .pmbase = DEFAULT_PMBASE, .gpiobase = DEFAULT_GPIOBASE, .thermalbase = 0xfed08000, .system_type = 0, /* 0 Mobile, 1 Desktop/Server */ .tseg_size = CONFIG_SMM_TSEG_SIZE, .ts_addresses = { 0x00, 0x00, 0x00, 0x00 }, .ec_present = 1, .ddr3lv_support = 1, /* * 0 = leave channel enabled * 1 = disable dimm 0 on channel * 2 = disable dimm 1 on channel * 3 = disable dimm 0+1 on channel */ .dimm_channel0_disabled = 2, .dimm_channel1_disabled = 2, .max_ddr3_freq = 1600, .usb_port_config = { /* * Empty and onboard Ports 0-7, set to un-used pin * OC3 */ { 0, 3, 0x0000 }, /* P0= Empty */ { 1, 0, 0x0040 }, /* P1= Left USB 1 (OC0) */ { 1, 1, 0x0040 }, /* P2= Left USB 2 (OC1) */ { 1, 3, 0x0040 }, /* P3= SDCARD (no OC) */ { 0, 3, 0x0000 }, /* P4= Empty */ { 1, 3, 0x0040 }, /* P5= WWAN (no OC) */ { 0, 3, 0x0000 }, /* P6= Empty */ { 0, 3, 0x0000 }, /* P7= Empty */ /* * Empty and onboard Ports 8-13, set to un-used pin * OC4 */ { 1, 4, 0x0040 }, /* P8= Camera (no OC) */ { 1, 4, 0x0040 }, /* P9= Bluetooth (no OC) */ { 0, 4, 0x0000 }, /* P10= Empty */ { 0, 4, 0x0000 }, /* P11= Empty */ { 0, 4, 0x0000 }, /* P12= Empty */ { 0, 4, 0x0000 }, /* P13= Empty */ }, }; pci_dev_t dev = PCI_BDF(0, 0, 0); int ret; debug("Boot mode %d\n", gd->arch.pei_boot_mode); debug("mcr_input %p\n", pei_data.mrc_input); pei_data.boot_mode = gd->arch.pei_boot_mode; ret = copy_spd(&pei_data); if (!ret) ret = sdram_initialise(&pei_data); if (ret) return ret; rcba_config(); quick_ram_check(); writew(0xCAFE, MCHBAR_REG(SSKPD)); post_code(POST_DRAM); ret = sdram_find(dev); if (ret) return ret; gd->ram_size = gd->arch.meminfo.total_32bit_memory; return 0; }