/* * arch/powerpc/cpu/ppc4xx/44x_spd_ddr.c * This SPD DDR detection code supports IBM/AMCC PPC44x cpu with a * DDR controller. Those are 440GP/GX/EP/GR. * * (C) Copyright 2001 * Bill Hunter, Wave 7 Optics, williamhunter@attbi.com * * Based on code by: * * Kenneth Johansson ,Ericsson AB. * kenneth.johansson@etx.ericsson.se * * hacked up by bill hunter. fixed so we could run before * serial_init and console_init. previous version avoided this by * running out of cache memory during serial/console init, then running * this code later. * * (C) Copyright 2002 * Jun Gu, Artesyn Technology, jung@artesyncp.com * Support for AMCC 440 based on OpenBIOS draminit.c from IBM. * * (C) Copyright 2005-2007 * Stefan Roese, DENX Software Engineering, sr@denx.de. * * SPDX-License-Identifier: GPL-2.0+ */ /* define DEBUG for debugging output (obviously ;-)) */ #if 0 #define DEBUG #endif #include #include #include #include #include #include "ecc.h" #if defined(CONFIG_SPD_EEPROM) && \ (defined(CONFIG_440GP) || defined(CONFIG_440GX) || \ defined(CONFIG_440EP) || defined(CONFIG_440GR)) /* * Set default values */ #define ONE_BILLION 1000000000 /* * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed */ void __spd_ddr_init_hang (void) { hang (); } void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang"))); /*-----------------------------------------------------------------------------+ | General Definition +-----------------------------------------------------------------------------*/ #define DEFAULT_SPD_ADDR1 0x53 #define DEFAULT_SPD_ADDR2 0x52 #define MAXBANKS 4 /* at most 4 dimm banks */ #define MAX_SPD_BYTES 256 #define NUMHALFCYCLES 4 #define NUMMEMTESTS 8 #define NUMMEMWORDS 8 #define MAXBXCR 4 /* * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory * region. Right now the cache should still be disabled in U-Boot because of the * EMAC driver, that need it's buffer descriptor to be located in non cached * memory. * * If at some time this restriction doesn't apply anymore, just define * CONFIG_4xx_DCACHE in the board config file and this code should setup * everything correctly. */ #ifdef CONFIG_4xx_DCACHE #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */ #else #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */ #endif /* bank_parms is used to sort the bank sizes by descending order */ struct bank_param { unsigned long cr; unsigned long bank_size_bytes; }; typedef struct bank_param BANKPARMS; #ifdef CONFIG_SYS_SIMULATE_SPD_EEPROM extern const unsigned char cfg_simulate_spd_eeprom[128]; #endif static unsigned char spd_read(uchar chip, uint addr); static void get_spd_info(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void check_mem_type(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void check_volt_type(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void program_cfg0(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void program_cfg1(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void program_rtr(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void program_tr0(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void program_tr1(void); static unsigned long program_bxcr(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); /* * This function is reading data from the DIMM module EEPROM over the SPD bus * and uses that to program the sdram controller. * * This works on boards that has the same schematics that the AMCC walnut has. * * BUG: Don't handle ECC memory * BUG: A few values in the TR register is currently hardcoded */ long int spd_sdram(void) { unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS; unsigned long dimm_populated[sizeof(iic0_dimm_addr)]; unsigned long total_size; unsigned long cfg0; unsigned long mcsts; unsigned long num_dimm_banks; /* on board dimm banks */ num_dimm_banks = sizeof(iic0_dimm_addr); /* * Make sure I2C controller is initialized * before continuing. */ i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM); /* * Read the SPD information using I2C interface. Check to see if the * DIMM slots are populated. */ get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks); /* * Check the memory type for the dimms plugged. */ check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); /* * Check the voltage type for the dimms plugged. */ check_volt_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); #if defined(CONFIG_440GX) || defined(CONFIG_440EP) || defined(CONFIG_440GR) /* * Soft-reset SDRAM controller. */ mtsdr(SDR0_SRST, SDR0_SRST_DMC); mtsdr(SDR0_SRST, 0x00000000); #endif /* * program 440GP SDRAM controller options (SDRAM0_CFG0) */ program_cfg0(dimm_populated, iic0_dimm_addr, num_dimm_banks); /* * program 440GP SDRAM controller options (SDRAM0_CFG1) */ program_cfg1(dimm_populated, iic0_dimm_addr, num_dimm_banks); /* * program SDRAM refresh register (SDRAM0_RTR) */ program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks); /* * program SDRAM Timing Register 0 (SDRAM0_TR0) */ program_tr0(dimm_populated, iic0_dimm_addr, num_dimm_banks); /* * program the BxCR registers to find out total sdram installed */ total_size = program_bxcr(dimm_populated, iic0_dimm_addr, num_dimm_banks); #ifdef CONFIG_PROG_SDRAM_TLB /* this define should eventually be removed */ /* and program tlb entries for this size (dynamic) */ program_tlb(0, 0, total_size, MY_TLB_WORD2_I_ENABLE); #endif /* * program SDRAM Clock Timing Register (SDRAM0_CLKTR) */ mtsdram(SDRAM0_CLKTR, 0x40000000); /* * delay to ensure 200 usec has elapsed */ udelay(400); /* * enable the memory controller */ mfsdram(SDRAM0_CFG0, cfg0); mtsdram(SDRAM0_CFG0, cfg0 | SDRAM_CFG0_DCEN); /* * wait for SDRAM_CFG0_DC_EN to complete */ while (1) { mfsdram(SDRAM0_MCSTS, mcsts); if ((mcsts & SDRAM_MCSTS_MRSC) != 0) break; } /* * program SDRAM Timing Register 1, adding some delays */ program_tr1(); #ifdef CONFIG_DDR_ECC /* * If ecc is enabled, initialize the parity bits. */ ecc_init(CONFIG_SYS_SDRAM_BASE, total_size); #endif return total_size; } static unsigned char spd_read(uchar chip, uint addr) { unsigned char data[2]; #ifdef CONFIG_SYS_SIMULATE_SPD_EEPROM if (chip == CONFIG_SYS_SIMULATE_SPD_EEPROM) { /* * Onboard spd eeprom requested -> simulate values */ return cfg_simulate_spd_eeprom[addr]; } #endif /* CONFIG_SYS_SIMULATE_SPD_EEPROM */ if (i2c_probe(chip) == 0) { if (i2c_read(chip, addr, 1, data, 1) == 0) { return data[0]; } } return 0; } static void get_spd_info(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long dimm_found; unsigned char num_of_bytes; unsigned char total_size; dimm_found = false; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { num_of_bytes = 0; total_size = 0; num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0); total_size = spd_read(iic0_dimm_addr[dimm_num], 1); if ((num_of_bytes != 0) && (total_size != 0)) { dimm_populated[dimm_num] = true; dimm_found = true; debug("DIMM slot %lu: populated\n", dimm_num); } else { dimm_populated[dimm_num] = false; debug("DIMM slot %lu: Not populated\n", dimm_num); } } if (dimm_found == false) { printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n"); spd_ddr_init_hang (); } } static void check_mem_type(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned char dimm_type; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] == true) { dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2); switch (dimm_type) { case 7: debug("DIMM slot %lu: DDR SDRAM detected\n", dimm_num); break; default: printf("ERROR: Unsupported DIMM detected in slot %lu.\n", dimm_num); printf("Only DDR SDRAM DIMMs are supported.\n"); printf("Replace the DIMM module with a supported DIMM.\n\n"); spd_ddr_init_hang (); break; } } } } static void check_volt_type(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long voltage_type; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] == true) { voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8); if (voltage_type != 0x04) { printf("ERROR: DIMM %lu with unsupported voltage level.\n", dimm_num); spd_ddr_init_hang (); } else { debug("DIMM %lu voltage level supported.\n", dimm_num); } break; } } } static void program_cfg0(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long cfg0; unsigned long ecc_enabled; unsigned char ecc; unsigned char attributes; unsigned long data_width; /* * get Memory Controller Options 0 data */ mfsdram(SDRAM0_CFG0, cfg0); /* * clear bits */ cfg0 &= ~(SDRAM_CFG0_DCEN | SDRAM_CFG0_MCHK_MASK | SDRAM_CFG0_RDEN | SDRAM_CFG0_PMUD | SDRAM_CFG0_DMWD_MASK | SDRAM_CFG0_UIOS_MASK | SDRAM_CFG0_PDP); /* * FIXME: assume the DDR SDRAMs in both banks are the same */ ecc_enabled = true; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] == true) { ecc = spd_read(iic0_dimm_addr[dimm_num], 11); if (ecc != 0x02) { ecc_enabled = false; } /* * program Registered DIMM Enable */ attributes = spd_read(iic0_dimm_addr[dimm_num], 21); if ((attributes & 0x02) != 0x00) { cfg0 |= SDRAM_CFG0_RDEN; } /* * program DDR SDRAM Data Width */ data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num],6) + (((unsigned long)spd_read(iic0_dimm_addr[dimm_num],7)) << 8); if (data_width == 64 || data_width == 72) { cfg0 |= SDRAM_CFG0_DMWD_64; } else if (data_width == 32 || data_width == 40) { cfg0 |= SDRAM_CFG0_DMWD_32; } else { printf("WARNING: DIMM with datawidth of %lu bits.\n", data_width); printf("Only DIMMs with 32 or 64 bit datawidths supported.\n"); spd_ddr_init_hang (); } break; } } /* * program Memory Data Error Checking */ if (ecc_enabled == true) { cfg0 |= SDRAM_CFG0_MCHK_GEN; } else { cfg0 |= SDRAM_CFG0_MCHK_NON; } /* * program Page Management Unit (0 == enabled) */ cfg0 &= ~SDRAM_CFG0_PMUD; /* * program Memory Controller Options 0 * Note: DCEN must be enabled after all DDR SDRAM controller * configuration registers get initialized. */ mtsdram(SDRAM0_CFG0, cfg0); } static void program_cfg1(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long cfg1; mfsdram(SDRAM0_CFG1, cfg1); /* * Self-refresh exit, disable PM */ cfg1 &= ~(SDRAM_CFG1_SRE | SDRAM_CFG1_PMEN); /* * program Memory Controller Options 1 */ mtsdram(SDRAM0_CFG1, cfg1); } static void program_rtr(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long bus_period_x_10; unsigned long refresh_rate = 0; unsigned char refresh_rate_type; unsigned long refresh_interval; unsigned long sdram_rtr; PPC4xx_SYS_INFO sys_info; /* * get the board info */ get_sys_info(&sys_info); bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10); for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] == true) { refresh_rate_type = 0x7F & spd_read(iic0_dimm_addr[dimm_num], 12); switch (refresh_rate_type) { case 0x00: refresh_rate = 15625; break; case 0x01: refresh_rate = 15625/4; break; case 0x02: refresh_rate = 15625/2; break; case 0x03: refresh_rate = 15626*2; break; case 0x04: refresh_rate = 15625*4; break; case 0x05: refresh_rate = 15625*8; break; default: printf("ERROR: DIMM %lu, unsupported refresh rate/type.\n", dimm_num); printf("Replace the DIMM module with a supported DIMM.\n"); break; } break; } } refresh_interval = refresh_rate * 10 / bus_period_x_10; sdram_rtr = (refresh_interval & 0x3ff8) << 16; /* * program Refresh Timer Register (SDRAM0_RTR) */ mtsdram(SDRAM0_RTR, sdram_rtr); } static void program_tr0(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long tr0; unsigned char wcsbc; unsigned char t_rp_ns; unsigned char t_rcd_ns; unsigned char t_ras_ns; unsigned long t_rp_clk; unsigned long t_ras_rcd_clk; unsigned long t_rcd_clk; unsigned long t_rfc_clk; unsigned long plb_check; unsigned char cas_bit; unsigned long cas_index; unsigned char cas_2_0_available; unsigned char cas_2_5_available; unsigned char cas_3_0_available; unsigned long cycle_time_ns_x_10[3]; unsigned long tcyc_3_0_ns_x_10; unsigned long tcyc_2_5_ns_x_10; unsigned long tcyc_2_0_ns_x_10; unsigned long tcyc_reg; unsigned long bus_period_x_10; PPC4xx_SYS_INFO sys_info; unsigned long residue; /* * get the board info */ get_sys_info(&sys_info); bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10); /* * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits */ mfsdram(SDRAM0_TR0, tr0); tr0 &= ~(SDRAM_TR0_SDWR_MASK | SDRAM_TR0_SDWD_MASK | SDRAM_TR0_SDCL_MASK | SDRAM_TR0_SDPA_MASK | SDRAM_TR0_SDCP_MASK | SDRAM_TR0_SDLD_MASK | SDRAM_TR0_SDRA_MASK | SDRAM_TR0_SDRD_MASK); /* * initialization */ wcsbc = 0; t_rp_ns = 0; t_rcd_ns = 0; t_ras_ns = 0; cas_2_0_available = true; cas_2_5_available = true; cas_3_0_available = true; tcyc_2_0_ns_x_10 = 0; tcyc_2_5_ns_x_10 = 0; tcyc_3_0_ns_x_10 = 0; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] == true) { wcsbc = spd_read(iic0_dimm_addr[dimm_num], 15); t_rp_ns = spd_read(iic0_dimm_addr[dimm_num], 27) >> 2; t_rcd_ns = spd_read(iic0_dimm_addr[dimm_num], 29) >> 2; t_ras_ns = spd_read(iic0_dimm_addr[dimm_num], 30); cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18); for (cas_index = 0; cas_index < 3; cas_index++) { switch (cas_index) { case 0: tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9); break; case 1: tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23); break; default: tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25); break; } if ((tcyc_reg & 0x0F) >= 10) { printf("ERROR: Tcyc incorrect for DIMM in slot %lu\n", dimm_num); spd_ddr_init_hang (); } cycle_time_ns_x_10[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 10) + (tcyc_reg & 0x0F); } cas_index = 0; if ((cas_bit & 0x80) != 0) { cas_index += 3; } else if ((cas_bit & 0x40) != 0) { cas_index += 2; } else if ((cas_bit & 0x20) != 0) { cas_index += 1; } if (((cas_bit & 0x10) != 0) && (cas_index < 3)) { tcyc_3_0_ns_x_10 = cycle_time_ns_x_10[cas_index]; cas_index++; } else { if (cas_index != 0) { cas_index++; } cas_3_0_available = false; } if (((cas_bit & 0x08) != 0) || (cas_index < 3)) { tcyc_2_5_ns_x_10 = cycle_time_ns_x_10[cas_index]; cas_index++; } else { if (cas_index != 0) { cas_index++; } cas_2_5_available = false; } if (((cas_bit & 0x04) != 0) || (cas_index < 3)) { tcyc_2_0_ns_x_10 = cycle_time_ns_x_10[cas_index]; cas_index++; } else { if (cas_index != 0) { cas_index++; } cas_2_0_available = false; } break; } } /* * Program SD_WR and SD_WCSBC fields */ tr0 |= SDRAM_TR0_SDWR_2_CLK; /* Write Recovery: 2 CLK */ switch (wcsbc) { case 0: tr0 |= SDRAM_TR0_SDWD_0_CLK; break; default: tr0 |= SDRAM_TR0_SDWD_1_CLK; break; } /* * Program SD_CASL field */ if ((cas_2_0_available == true) && (bus_period_x_10 >= tcyc_2_0_ns_x_10)) { tr0 |= SDRAM_TR0_SDCL_2_0_CLK; } else if ((cas_2_5_available == true) && (bus_period_x_10 >= tcyc_2_5_ns_x_10)) { tr0 |= SDRAM_TR0_SDCL_2_5_CLK; } else if ((cas_3_0_available == true) && (bus_period_x_10 >= tcyc_3_0_ns_x_10)) { tr0 |= SDRAM_TR0_SDCL_3_0_CLK; } else { printf("ERROR: No supported CAS latency with the installed DIMMs.\n"); printf("Only CAS latencies of 2.0, 2.5, and 3.0 are supported.\n"); printf("Make sure the PLB speed is within the supported range.\n"); spd_ddr_init_hang (); } /* * Calculate Trp in clock cycles and round up if necessary * Program SD_PTA field */ t_rp_clk = sys_info.freqPLB * t_rp_ns / ONE_BILLION; plb_check = ONE_BILLION * t_rp_clk / t_rp_ns; if (sys_info.freqPLB != plb_check) { t_rp_clk++; } switch ((unsigned long)t_rp_clk) { case 0: case 1: case 2: tr0 |= SDRAM_TR0_SDPA_2_CLK; break; case 3: tr0 |= SDRAM_TR0_SDPA_3_CLK; break; default: tr0 |= SDRAM_TR0_SDPA_4_CLK; break; } /* * Program SD_CTP field */ t_ras_rcd_clk = sys_info.freqPLB * (t_ras_ns - t_rcd_ns) / ONE_BILLION; plb_check = ONE_BILLION * t_ras_rcd_clk / (t_ras_ns - t_rcd_ns); if (sys_info.freqPLB != plb_check) { t_ras_rcd_clk++; } switch (t_ras_rcd_clk) { case 0: case 1: case 2: tr0 |= SDRAM_TR0_SDCP_2_CLK; break; case 3: tr0 |= SDRAM_TR0_SDCP_3_CLK; break; case 4: tr0 |= SDRAM_TR0_SDCP_4_CLK; break; default: tr0 |= SDRAM_TR0_SDCP_5_CLK; break; } /* * Program SD_LDF field */ tr0 |= SDRAM_TR0_SDLD_2_CLK; /* * Program SD_RFTA field * FIXME tRFC hardcoded as 75 nanoseconds */ t_rfc_clk = sys_info.freqPLB / (ONE_BILLION / 75); residue = sys_info.freqPLB % (ONE_BILLION / 75); if (residue >= (ONE_BILLION / 150)) { t_rfc_clk++; } switch (t_rfc_clk) { case 0: case 1: case 2: case 3: case 4: case 5: case 6: tr0 |= SDRAM_TR0_SDRA_6_CLK; break; case 7: tr0 |= SDRAM_TR0_SDRA_7_CLK; break; case 8: tr0 |= SDRAM_TR0_SDRA_8_CLK; break; case 9: tr0 |= SDRAM_TR0_SDRA_9_CLK; break; case 10: tr0 |= SDRAM_TR0_SDRA_10_CLK; break; case 11: tr0 |= SDRAM_TR0_SDRA_11_CLK; break; case 12: tr0 |= SDRAM_TR0_SDRA_12_CLK; break; default: tr0 |= SDRAM_TR0_SDRA_13_CLK; break; } /* * Program SD_RCD field */ t_rcd_clk = sys_info.freqPLB * t_rcd_ns / ONE_BILLION; plb_check = ONE_BILLION * t_rcd_clk / t_rcd_ns; if (sys_info.freqPLB != plb_check) { t_rcd_clk++; } switch (t_rcd_clk) { case 0: case 1: case 2: tr0 |= SDRAM_TR0_SDRD_2_CLK; break; case 3: tr0 |= SDRAM_TR0_SDRD_3_CLK; break; default: tr0 |= SDRAM_TR0_SDRD_4_CLK; break; } debug("tr0: %lx\n", tr0); mtsdram(SDRAM0_TR0, tr0); } static int short_mem_test(void) { unsigned long i, j; unsigned long bxcr_num; unsigned long *membase; const unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = { {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF}, {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000}, {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555}, {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA}, {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A}, {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5}, {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA}, {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55}}; for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) { mtdcr(SDRAM0_CFGADDR, SDRAM0_B0CR + (bxcr_num << 2)); if ((mfdcr(SDRAM0_CFGDATA) & SDRAM_BXCR_SDBE) == SDRAM_BXCR_SDBE) { /* Bank is enabled */ membase = (unsigned long*) (mfdcr(SDRAM0_CFGDATA) & SDRAM_BXCR_SDBA_MASK); /* * Run the short memory test */ for (i = 0; i < NUMMEMTESTS; i++) { for (j = 0; j < NUMMEMWORDS; j++) { /* printf("bank enabled base:%x\n", &membase[j]); */ membase[j] = test[i][j]; ppcDcbf((unsigned long)&(membase[j])); } for (j = 0; j < NUMMEMWORDS; j++) { if (membase[j] != test[i][j]) { ppcDcbf((unsigned long)&(membase[j])); return 0; } ppcDcbf((unsigned long)&(membase[j])); } if (j < NUMMEMWORDS) return 0; } /* * see if the rdclt value passed */ if (i < NUMMEMTESTS) return 0; } } return 1; } static void program_tr1(void) { unsigned long tr0; unsigned long tr1; unsigned long cfg0; unsigned long ecc_temp; unsigned long dlycal; unsigned long dly_val; unsigned long k; unsigned long max_pass_length; unsigned long current_pass_length; unsigned long current_fail_length; unsigned long current_start; unsigned long rdclt; unsigned long rdclt_offset; long max_start; long max_end; long rdclt_average; unsigned char window_found; unsigned char fail_found; unsigned char pass_found; PPC4xx_SYS_INFO sys_info; /* * get the board info */ get_sys_info(&sys_info); /* * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits */ mfsdram(SDRAM0_TR1, tr1); tr1 &= ~(SDRAM_TR1_RDSS_MASK | SDRAM_TR1_RDSL_MASK | SDRAM_TR1_RDCD_MASK | SDRAM_TR1_RDCT_MASK); mfsdram(SDRAM0_TR0, tr0); if (((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) && (sys_info.freqPLB > 100000000)) { tr1 |= SDRAM_TR1_RDSS_TR2; tr1 |= SDRAM_TR1_RDSL_STAGE3; tr1 |= SDRAM_TR1_RDCD_RCD_1_2; } else { tr1 |= SDRAM_TR1_RDSS_TR1; tr1 |= SDRAM_TR1_RDSL_STAGE2; tr1 |= SDRAM_TR1_RDCD_RCD_0_0; } /* * save CFG0 ECC setting to a temporary variable and turn ECC off */ mfsdram(SDRAM0_CFG0, cfg0); ecc_temp = cfg0 & SDRAM_CFG0_MCHK_MASK; mtsdram(SDRAM0_CFG0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_NON); /* * get the delay line calibration register value */ mfsdram(SDRAM0_DLYCAL, dlycal); dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2; max_pass_length = 0; max_start = 0; max_end = 0; current_pass_length = 0; current_fail_length = 0; current_start = 0; rdclt_offset = 0; window_found = false; fail_found = false; pass_found = false; debug("Starting memory test "); for (k = 0; k < NUMHALFCYCLES; k++) { for (rdclt = 0; rdclt < dly_val; rdclt++) { /* * Set the timing reg for the test. */ mtsdram(SDRAM0_TR1, (tr1 | SDRAM_TR1_RDCT_ENCODE(rdclt))); if (short_mem_test()) { if (fail_found == true) { pass_found = true; if (current_pass_length == 0) { current_start = rdclt_offset + rdclt; } current_fail_length = 0; current_pass_length++; if (current_pass_length > max_pass_length) { max_pass_length = current_pass_length; max_start = current_start; max_end = rdclt_offset + rdclt; } } } else { current_pass_length = 0; current_fail_length++; if (current_fail_length >= (dly_val>>2)) { if (fail_found == false) { fail_found = true; } else if (pass_found == true) { window_found = true; break; } } } } debug("."); if (window_found == true) break; tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK; rdclt_offset += dly_val; } debug("\n"); /* * make sure we find the window */ if (window_found == false) { printf("ERROR: Cannot determine a common read delay.\n"); spd_ddr_init_hang (); } /* * restore the orignal ECC setting */ mtsdram(SDRAM0_CFG0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | ecc_temp); /* * set the SDRAM TR1 RDCD value */ tr1 &= ~SDRAM_TR1_RDCD_MASK; if ((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) { tr1 |= SDRAM_TR1_RDCD_RCD_1_2; } else { tr1 |= SDRAM_TR1_RDCD_RCD_0_0; } /* * set the SDRAM TR1 RDCLT value */ tr1 &= ~SDRAM_TR1_RDCT_MASK; while (max_end >= (dly_val << 1)) { max_end -= (dly_val << 1); max_start -= (dly_val << 1); } rdclt_average = ((max_start + max_end) >> 1); if (rdclt_average < 0) { rdclt_average = 0; } if (rdclt_average >= dly_val) { rdclt_average -= dly_val; tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK; } tr1 |= SDRAM_TR1_RDCT_ENCODE(rdclt_average); debug("tr1: %lx\n", tr1); /* * program SDRAM Timing Register 1 TR1 */ mtsdram(SDRAM0_TR1, tr1); } static unsigned long program_bxcr(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long bank_base_addr; unsigned long cr; unsigned long i; unsigned long j; unsigned long temp; unsigned char num_row_addr; unsigned char num_col_addr; unsigned char num_banks; unsigned char bank_size_id; unsigned long ctrl_bank_num[MAXBANKS]; unsigned long bx_cr_num; unsigned long largest_size_index; unsigned long largest_size; unsigned long current_size_index; BANKPARMS bank_parms[MAXBXCR]; unsigned long sorted_bank_num[MAXBXCR]; /* DDR Controller bank number table (sorted by size) */ unsigned long sorted_bank_size[MAXBXCR]; /* DDR Controller bank size table (sorted by size)*/ /* * Set the BxCR regs. First, wipe out the bank config registers. */ for (bx_cr_num = 0; bx_cr_num < MAXBXCR; bx_cr_num++) { mtdcr(SDRAM0_CFGADDR, SDRAM0_B0CR + (bx_cr_num << 2)); mtdcr(SDRAM0_CFGDATA, 0x00000000); bank_parms[bx_cr_num].bank_size_bytes = 0; } #ifdef CONFIG_BAMBOO /* * This next section is hardware dependent and must be programmed * to match the hardware. For bamboo, the following holds... * 1. SDRAM0_B0CR: Bank 0 of dimm 0 ctrl_bank_num : 0 (soldered onboard) * 2. SDRAM0_B1CR: Bank 0 of dimm 1 ctrl_bank_num : 1 * 3. SDRAM0_B2CR: Bank 1 of dimm 1 ctrl_bank_num : 1 * 4. SDRAM0_B3CR: Bank 0 of dimm 2 ctrl_bank_num : 3 * ctrl_bank_num corresponds to the first usable DDR controller bank number by DIMM */ ctrl_bank_num[0] = 0; ctrl_bank_num[1] = 1; ctrl_bank_num[2] = 3; #else /* * Ocotea, Ebony and the other IBM/AMCC eval boards have * 2 DIMM slots with each max 2 banks */ ctrl_bank_num[0] = 0; ctrl_bank_num[1] = 2; #endif /* * reset the bank_base address */ bank_base_addr = CONFIG_SYS_SDRAM_BASE; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] == true) { num_row_addr = spd_read(iic0_dimm_addr[dimm_num], 3); num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4); num_banks = spd_read(iic0_dimm_addr[dimm_num], 5); bank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31); debug("DIMM%ld: row=%d col=%d banks=%d\n", dimm_num, num_row_addr, num_col_addr, num_banks); /* * Set the SDRAM0_BxCR regs */ cr = 0; switch (bank_size_id) { case 0x02: cr |= SDRAM_BXCR_SDSZ_8; break; case 0x04: cr |= SDRAM_BXCR_SDSZ_16; break; case 0x08: cr |= SDRAM_BXCR_SDSZ_32; break; case 0x10: cr |= SDRAM_BXCR_SDSZ_64; break; case 0x20: cr |= SDRAM_BXCR_SDSZ_128; break; case 0x40: cr |= SDRAM_BXCR_SDSZ_256; break; case 0x80: cr |= SDRAM_BXCR_SDSZ_512; break; default: printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n", dimm_num); printf("ERROR: Unsupported value for the banksize: %d.\n", bank_size_id); printf("Replace the DIMM module with a supported DIMM.\n\n"); spd_ddr_init_hang (); } switch (num_col_addr) { case 0x08: cr |= SDRAM_BXCR_SDAM_1; break; case 0x09: cr |= SDRAM_BXCR_SDAM_2; break; case 0x0A: cr |= SDRAM_BXCR_SDAM_3; break; case 0x0B: cr |= SDRAM_BXCR_SDAM_4; break; default: printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n", dimm_num); printf("ERROR: Unsupported value for number of " "column addresses: %d.\n", num_col_addr); printf("Replace the DIMM module with a supported DIMM.\n\n"); spd_ddr_init_hang (); } /* * enable the bank */ cr |= SDRAM_BXCR_SDBE; for (i = 0; i < num_banks; i++) { bank_parms[ctrl_bank_num[dimm_num]+i].bank_size_bytes = (4 << 20) * bank_size_id; bank_parms[ctrl_bank_num[dimm_num]+i].cr = cr; debug("DIMM%ld-bank %ld (SDRAM0_B%ldCR): " "bank_size_bytes=%ld\n", dimm_num, i, ctrl_bank_num[dimm_num] + i, bank_parms[ctrl_bank_num[dimm_num] + i].bank_size_bytes); } } } /* Initialize sort tables */ for (i = 0; i < MAXBXCR; i++) { sorted_bank_num[i] = i; sorted_bank_size[i] = bank_parms[i].bank_size_bytes; } for (i = 0; i < MAXBXCR-1; i++) { largest_size = sorted_bank_size[i]; largest_size_index = 255; /* Find the largest remaining value */ for (j = i + 1; j < MAXBXCR; j++) { if (sorted_bank_size[j] > largest_size) { /* Save largest remaining value and its index */ largest_size = sorted_bank_size[j]; largest_size_index = j; } } if (largest_size_index != 255) { /* Swap the current and largest values */ current_size_index = sorted_bank_num[largest_size_index]; sorted_bank_size[largest_size_index] = sorted_bank_size[i]; sorted_bank_size[i] = largest_size; sorted_bank_num[largest_size_index] = sorted_bank_num[i]; sorted_bank_num[i] = current_size_index; } } /* Set the SDRAM0_BxCR regs thanks to sort tables */ for (bx_cr_num = 0, bank_base_addr = 0; bx_cr_num < MAXBXCR; bx_cr_num++) { if (bank_parms[sorted_bank_num[bx_cr_num]].bank_size_bytes) { mtdcr(SDRAM0_CFGADDR, SDRAM0_B0CR + (sorted_bank_num[bx_cr_num] << 2)); temp = mfdcr(SDRAM0_CFGDATA) & ~(SDRAM_BXCR_SDBA_MASK | SDRAM_BXCR_SDSZ_MASK | SDRAM_BXCR_SDAM_MASK | SDRAM_BXCR_SDBE); temp = temp | (bank_base_addr & SDRAM_BXCR_SDBA_MASK) | bank_parms[sorted_bank_num[bx_cr_num]].cr; mtdcr(SDRAM0_CFGDATA, temp); bank_base_addr += bank_parms[sorted_bank_num[bx_cr_num]].bank_size_bytes; debug("SDRAM0_B%ldCR=0x%08lx\n", sorted_bank_num[bx_cr_num], temp); } } return(bank_base_addr); } #endif /* CONFIG_SPD_EEPROM */