/* * Copyright 2007-2011 Freescale Semiconductor, Inc. * * (C) Copyright 2000 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #ifdef CONFIG_FSL_ESDHC #include #endif #include "../../../../drivers/qe/qe.h" /* For struct qe_firmware */ DECLARE_GLOBAL_DATA_PTR; extern void ft_qe_setup(void *blob); extern void ft_fixup_num_cores(void *blob); extern void ft_srio_setup(void *blob); #ifdef CONFIG_MP #include "mp.h" void ft_fixup_cpu(void *blob, u64 memory_limit) { int off; phys_addr_t spin_tbl_addr = get_spin_phys_addr(); u32 bootpg = determine_mp_bootpg(NULL); u32 id = get_my_id(); const char *enable_method; #if defined(T1040_TDM_QUIRK_CCSR_BASE) int ret; int tdm_hwconfig_enabled = 0; char buffer[HWCONFIG_BUFFER_SIZE] = {0}; #endif off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4); while (off != -FDT_ERR_NOTFOUND) { u32 *reg = (u32 *)fdt_getprop(blob, off, "reg", 0); if (reg) { u32 phys_cpu_id = thread_to_core(*reg); u64 val = phys_cpu_id * SIZE_BOOT_ENTRY + spin_tbl_addr; val = cpu_to_fdt64(val); if (*reg == id) { fdt_setprop_string(blob, off, "status", "okay"); } else { fdt_setprop_string(blob, off, "status", "disabled"); } if (hold_cores_in_reset(0)) { #ifdef CONFIG_FSL_CORENET /* Cores held in reset, use BRR to release */ enable_method = "fsl,brr-holdoff"; #else /* Cores held in reset, use EEBPCR to release */ enable_method = "fsl,eebpcr-holdoff"; #endif } else { /* Cores out of reset and in a spin-loop */ enable_method = "spin-table"; fdt_setprop(blob, off, "cpu-release-addr", &val, sizeof(val)); } fdt_setprop_string(blob, off, "enable-method", enable_method); } else { printf ("cpu NULL\n"); } off = fdt_node_offset_by_prop_value(blob, off, "device_type", "cpu", 4); } #if defined(T1040_TDM_QUIRK_CCSR_BASE) #define CONFIG_MEM_HOLE_16M 0x1000000 /* * Extract hwconfig from environment. * Search for tdm entry in hwconfig. */ ret = getenv_f("hwconfig", buffer, sizeof(buffer)); if (ret > 0) tdm_hwconfig_enabled = hwconfig_f("tdm", buffer); /* Reserve the memory hole created by TDM LAW, so OSes dont use it */ if (tdm_hwconfig_enabled) { off = fdt_add_mem_rsv(blob, T1040_TDM_QUIRK_CCSR_BASE, CONFIG_MEM_HOLE_16M); if (off < 0) printf("Failed to reserve memory for tdm: %s\n", fdt_strerror(off)); } #endif /* Reserve the boot page so OSes dont use it */ if ((u64)bootpg < memory_limit) { off = fdt_add_mem_rsv(blob, bootpg, (u64)4096); if (off < 0) printf("Failed to reserve memory for bootpg: %s\n", fdt_strerror(off)); } #ifndef CONFIG_MPC8xxx_DISABLE_BPTR /* * Reserve the default boot page so OSes dont use it. * The default boot page is always mapped to bootpg above using * boot page translation. */ if (0xfffff000ull < memory_limit) { off = fdt_add_mem_rsv(blob, 0xfffff000ull, (u64)4096); if (off < 0) { printf("Failed to reserve memory for 0xfffff000: %s\n", fdt_strerror(off)); } } #endif /* Reserve spin table page */ if (spin_tbl_addr < memory_limit) { off = fdt_add_mem_rsv(blob, (spin_tbl_addr & ~0xffful), 4096); if (off < 0) printf("Failed to reserve memory for spin table: %s\n", fdt_strerror(off)); } #ifdef CONFIG_DEEP_SLEEP #ifdef CONFIG_SPL_MMC_BOOT off = fdt_add_mem_rsv(blob, CONFIG_SYS_MMC_U_BOOT_START, CONFIG_SYS_MMC_U_BOOT_SIZE); if (off < 0) printf("Failed to reserve memory for SD deep sleep: %s\n", fdt_strerror(off)); #elif defined(CONFIG_SPL_SPI_BOOT) off = fdt_add_mem_rsv(blob, CONFIG_SYS_SPI_FLASH_U_BOOT_START, CONFIG_SYS_SPI_FLASH_U_BOOT_SIZE); if (off < 0) printf("Failed to reserve memory for SPI deep sleep: %s\n", fdt_strerror(off)); #endif #endif } #endif #ifdef CONFIG_SYS_FSL_CPC static inline void ft_fixup_l3cache(void *blob, int off) { u32 line_size, num_ways, size, num_sets; cpc_corenet_t *cpc = (void *)CONFIG_SYS_FSL_CPC_ADDR; u32 cfg0 = in_be32(&cpc->cpccfg0); size = CPC_CFG0_SZ_K(cfg0) * 1024 * CONFIG_SYS_NUM_CPC; num_ways = CPC_CFG0_NUM_WAYS(cfg0); line_size = CPC_CFG0_LINE_SZ(cfg0); num_sets = size / (line_size * num_ways); fdt_setprop(blob, off, "cache-unified", NULL, 0); fdt_setprop_cell(blob, off, "cache-block-size", line_size); fdt_setprop_cell(blob, off, "cache-size", size); fdt_setprop_cell(blob, off, "cache-sets", num_sets); fdt_setprop_cell(blob, off, "cache-level", 3); #ifdef CONFIG_SYS_CACHE_STASHING fdt_setprop_cell(blob, off, "cache-stash-id", 1); #endif } #else #define ft_fixup_l3cache(x, y) #endif #if defined(CONFIG_L2_CACHE) /* return size in kilobytes */ static inline u32 l2cache_size(void) { volatile ccsr_l2cache_t *l2cache = (void *)CONFIG_SYS_MPC85xx_L2_ADDR; volatile u32 l2siz_field = (l2cache->l2ctl >> 28) & 0x3; u32 ver = SVR_SOC_VER(get_svr()); switch (l2siz_field) { case 0x0: break; case 0x1: if (ver == SVR_8540 || ver == SVR_8560 || ver == SVR_8541 || ver == SVR_8555) return 128; else return 256; break; case 0x2: if (ver == SVR_8540 || ver == SVR_8560 || ver == SVR_8541 || ver == SVR_8555) return 256; else return 512; break; case 0x3: return 1024; break; } return 0; } static inline void ft_fixup_l2cache(void *blob) { int len, off; u32 *ph; struct cpu_type *cpu = identify_cpu(SVR_SOC_VER(get_svr())); const u32 line_size = 32; const u32 num_ways = 8; const u32 size = l2cache_size() * 1024; const u32 num_sets = size / (line_size * num_ways); off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4); if (off < 0) { debug("no cpu node fount\n"); return; } ph = (u32 *)fdt_getprop(blob, off, "next-level-cache", 0); if (ph == NULL) { debug("no next-level-cache property\n"); return ; } off = fdt_node_offset_by_phandle(blob, *ph); if (off < 0) { printf("%s: %s\n", __func__, fdt_strerror(off)); return ; } if (cpu) { char buf[40]; if (isdigit(cpu->name[0])) { /* MPCxxxx, where xxxx == 4-digit number */ len = sprintf(buf, "fsl,mpc%s-l2-cache-controller", cpu->name) + 1; } else { /* Pxxxx or Txxxx, where xxxx == 4-digit number */ len = sprintf(buf, "fsl,%c%s-l2-cache-controller", tolower(cpu->name[0]), cpu->name + 1) + 1; } /* * append "cache" after the NULL character that the previous * sprintf wrote. This is how a device tree stores multiple * strings in a property. */ len += sprintf(buf + len, "cache") + 1; fdt_setprop(blob, off, "compatible", buf, len); } fdt_setprop(blob, off, "cache-unified", NULL, 0); fdt_setprop_cell(blob, off, "cache-block-size", line_size); fdt_setprop_cell(blob, off, "cache-size", size); fdt_setprop_cell(blob, off, "cache-sets", num_sets); fdt_setprop_cell(blob, off, "cache-level", 2); /* we dont bother w/L3 since no platform of this type has one */ } #elif defined(CONFIG_BACKSIDE_L2_CACHE) || \ defined(CONFIG_SYS_FSL_QORIQ_CHASSIS2) static inline void ft_fixup_l2cache(void *blob) { int off, l2_off, l3_off = -1; u32 *ph; #ifdef CONFIG_BACKSIDE_L2_CACHE u32 l2cfg0 = mfspr(SPRN_L2CFG0); #else struct ccsr_cluster_l2 *l2cache = (struct ccsr_cluster_l2 __iomem *)(CONFIG_SYS_FSL_CLUSTER_1_L2); u32 l2cfg0 = in_be32(&l2cache->l2cfg0); #endif u32 size, line_size, num_ways, num_sets; int has_l2 = 1; /* P2040/P2040E has no L2, so dont set any L2 props */ if (SVR_SOC_VER(get_svr()) == SVR_P2040) has_l2 = 0; size = (l2cfg0 & 0x3fff) * 64 * 1024; num_ways = ((l2cfg0 >> 14) & 0x1f) + 1; line_size = (((l2cfg0 >> 23) & 0x3) + 1) * 32; num_sets = size / (line_size * num_ways); off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4); while (off != -FDT_ERR_NOTFOUND) { ph = (u32 *)fdt_getprop(blob, off, "next-level-cache", 0); if (ph == NULL) { debug("no next-level-cache property\n"); goto next; } l2_off = fdt_node_offset_by_phandle(blob, *ph); if (l2_off < 0) { printf("%s: %s\n", __func__, fdt_strerror(off)); goto next; } if (has_l2) { #ifdef CONFIG_SYS_CACHE_STASHING u32 *reg = (u32 *)fdt_getprop(blob, off, "reg", 0); #if defined(CONFIG_SYS_FSL_QORIQ_CHASSIS2) && defined(CONFIG_E6500) /* Only initialize every eighth thread */ if (reg && !((*reg) % 8)) { fdt_setprop_cell(blob, l2_off, "cache-stash-id", (*reg / 4) + 32 + 1); } #else if (reg) { fdt_setprop_cell(blob, l2_off, "cache-stash-id", (*reg * 2) + 32 + 1); } #endif #endif fdt_setprop(blob, l2_off, "cache-unified", NULL, 0); fdt_setprop_cell(blob, l2_off, "cache-block-size", line_size); fdt_setprop_cell(blob, l2_off, "cache-size", size); fdt_setprop_cell(blob, l2_off, "cache-sets", num_sets); fdt_setprop_cell(blob, l2_off, "cache-level", 2); fdt_setprop(blob, l2_off, "compatible", "cache", 6); } if (l3_off < 0) { ph = (u32 *)fdt_getprop(blob, l2_off, "next-level-cache", 0); if (ph == NULL) { debug("no next-level-cache property\n"); goto next; } l3_off = *ph; } next: off = fdt_node_offset_by_prop_value(blob, off, "device_type", "cpu", 4); } if (l3_off > 0) { l3_off = fdt_node_offset_by_phandle(blob, l3_off); if (l3_off < 0) { printf("%s: %s\n", __func__, fdt_strerror(off)); return ; } ft_fixup_l3cache(blob, l3_off); } } #else #define ft_fixup_l2cache(x) #endif static inline void ft_fixup_cache(void *blob) { int off; off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4); while (off != -FDT_ERR_NOTFOUND) { u32 l1cfg0 = mfspr(SPRN_L1CFG0); u32 l1cfg1 = mfspr(SPRN_L1CFG1); u32 isize, iline_size, inum_sets, inum_ways; u32 dsize, dline_size, dnum_sets, dnum_ways; /* d-side config */ dsize = (l1cfg0 & 0x7ff) * 1024; dnum_ways = ((l1cfg0 >> 11) & 0xff) + 1; dline_size = (((l1cfg0 >> 23) & 0x3) + 1) * 32; dnum_sets = dsize / (dline_size * dnum_ways); fdt_setprop_cell(blob, off, "d-cache-block-size", dline_size); fdt_setprop_cell(blob, off, "d-cache-size", dsize); fdt_setprop_cell(blob, off, "d-cache-sets", dnum_sets); #ifdef CONFIG_SYS_CACHE_STASHING { u32 *reg = (u32 *)fdt_getprop(blob, off, "reg", 0); if (reg) fdt_setprop_cell(blob, off, "cache-stash-id", (*reg * 2) + 32 + 0); } #endif /* i-side config */ isize = (l1cfg1 & 0x7ff) * 1024; inum_ways = ((l1cfg1 >> 11) & 0xff) + 1; iline_size = (((l1cfg1 >> 23) & 0x3) + 1) * 32; inum_sets = isize / (iline_size * inum_ways); fdt_setprop_cell(blob, off, "i-cache-block-size", iline_size); fdt_setprop_cell(blob, off, "i-cache-size", isize); fdt_setprop_cell(blob, off, "i-cache-sets", inum_sets); off = fdt_node_offset_by_prop_value(blob, off, "device_type", "cpu", 4); } ft_fixup_l2cache(blob); } void fdt_add_enet_stashing(void *fdt) { do_fixup_by_compat(fdt, "gianfar", "bd-stash", NULL, 0, 1); do_fixup_by_compat_u32(fdt, "gianfar", "rx-stash-len", 96, 1); do_fixup_by_compat_u32(fdt, "gianfar", "rx-stash-idx", 0, 1); do_fixup_by_compat(fdt, "fsl,etsec2", "bd-stash", NULL, 0, 1); do_fixup_by_compat_u32(fdt, "fsl,etsec2", "rx-stash-len", 96, 1); do_fixup_by_compat_u32(fdt, "fsl,etsec2", "rx-stash-idx", 0, 1); } #if defined(CONFIG_SYS_DPAA_FMAN) || defined(CONFIG_SYS_DPAA_PME) #ifdef CONFIG_SYS_DPAA_FMAN static void ft_fixup_clks(void *blob, const char *compat, u32 offset, unsigned long freq) { phys_addr_t phys = offset + CONFIG_SYS_CCSRBAR_PHYS; int off = fdt_node_offset_by_compat_reg(blob, compat, phys); if (off >= 0) { off = fdt_setprop_cell(blob, off, "clock-frequency", freq); if (off > 0) printf("WARNING enable to set clock-frequency " "for %s: %s\n", compat, fdt_strerror(off)); } } #endif static void ft_fixup_dpaa_clks(void *blob) { sys_info_t sysinfo; get_sys_info(&sysinfo); #ifdef CONFIG_SYS_DPAA_FMAN ft_fixup_clks(blob, "fsl,fman", CONFIG_SYS_FSL_FM1_OFFSET, sysinfo.freq_fman[0]); #if (CONFIG_SYS_NUM_FMAN == 2) ft_fixup_clks(blob, "fsl,fman", CONFIG_SYS_FSL_FM2_OFFSET, sysinfo.freq_fman[1]); #endif #endif #ifdef CONFIG_SYS_DPAA_QBMAN do_fixup_by_compat_u32(blob, "fsl,qman", "clock-frequency", sysinfo.freq_qman, 1); #endif #ifdef CONFIG_SYS_DPAA_PME do_fixup_by_compat_u32(blob, "fsl,pme", "clock-frequency", sysinfo.freq_pme, 1); #endif } #else #define ft_fixup_dpaa_clks(x) #endif #ifdef CONFIG_QE static void ft_fixup_qe_snum(void *blob) { unsigned int svr; svr = mfspr(SPRN_SVR); if (SVR_SOC_VER(svr) == SVR_8569) { if(IS_SVR_REV(svr, 1, 0)) do_fixup_by_compat_u32(blob, "fsl,qe", "fsl,qe-num-snums", 46, 1); else do_fixup_by_compat_u32(blob, "fsl,qe", "fsl,qe-num-snums", 76, 1); } } #endif /** * fdt_fixup_fman_firmware -- insert the Fman firmware into the device tree * * The binding for an Fman firmware node is documented in * Documentation/powerpc/dts-bindings/fsl/dpaa/fman.txt. This node contains * the actual Fman firmware binary data. The operating system is expected to * be able to parse the binary data to determine any attributes it needs. */ #ifdef CONFIG_SYS_DPAA_FMAN void fdt_fixup_fman_firmware(void *blob) { int rc, fmnode, fwnode = -1; uint32_t phandle; struct qe_firmware *fmanfw; const struct qe_header *hdr; unsigned int length; uint32_t crc; const char *p; /* The first Fman we find will contain the actual firmware. */ fmnode = fdt_node_offset_by_compatible(blob, -1, "fsl,fman"); if (fmnode < 0) /* Exit silently if there are no Fman devices */ return; /* If we already have a firmware node, then also exit silently. */ if (fdt_node_offset_by_compatible(blob, -1, "fsl,fman-firmware") > 0) return; /* If the environment variable is not set, then exit silently */ p = getenv("fman_ucode"); if (!p) return; fmanfw = (struct qe_firmware *) simple_strtoul(p, NULL, 16); if (!fmanfw) return; hdr = &fmanfw->header; length = be32_to_cpu(hdr->length); /* Verify the firmware. */ if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') || (hdr->magic[2] != 'F')) { printf("Data at %p is not an Fman firmware\n", fmanfw); return; } if (length > CONFIG_SYS_QE_FMAN_FW_LENGTH) { printf("Fman firmware at %p is too large (size=%u)\n", fmanfw, length); return; } length -= sizeof(u32); /* Subtract the size of the CRC */ crc = be32_to_cpu(*(u32 *)((void *)fmanfw + length)); if (crc != crc32_no_comp(0, (void *)fmanfw, length)) { printf("Fman firmware at %p has invalid CRC\n", fmanfw); return; } /* Increase the size of the fdt to make room for the node. */ rc = fdt_increase_size(blob, fmanfw->header.length); if (rc < 0) { printf("Unable to make room for Fman firmware: %s\n", fdt_strerror(rc)); return; } /* Create the firmware node. */ fwnode = fdt_add_subnode(blob, fmnode, "fman-firmware"); if (fwnode < 0) { char s[64]; fdt_get_path(blob, fmnode, s, sizeof(s)); printf("Could not add firmware node to %s: %s\n", s, fdt_strerror(fwnode)); return; } rc = fdt_setprop_string(blob, fwnode, "compatible", "fsl,fman-firmware"); if (rc < 0) { char s[64]; fdt_get_path(blob, fwnode, s, sizeof(s)); printf("Could not add compatible property to node %s: %s\n", s, fdt_strerror(rc)); return; } phandle = fdt_create_phandle(blob, fwnode); if (!phandle) { char s[64]; fdt_get_path(blob, fwnode, s, sizeof(s)); printf("Could not add phandle property to node %s: %s\n", s, fdt_strerror(rc)); return; } rc = fdt_setprop(blob, fwnode, "fsl,firmware", fmanfw, fmanfw->header.length); if (rc < 0) { char s[64]; fdt_get_path(blob, fwnode, s, sizeof(s)); printf("Could not add firmware property to node %s: %s\n", s, fdt_strerror(rc)); return; } /* Find all other Fman nodes and point them to the firmware node. */ while ((fmnode = fdt_node_offset_by_compatible(blob, fmnode, "fsl,fman")) > 0) { rc = fdt_setprop_cell(blob, fmnode, "fsl,firmware-phandle", phandle); if (rc < 0) { char s[64]; fdt_get_path(blob, fmnode, s, sizeof(s)); printf("Could not add pointer property to node %s: %s\n", s, fdt_strerror(rc)); return; } } } #else #define fdt_fixup_fman_firmware(x) #endif #if defined(CONFIG_PPC_P4080) static void fdt_fixup_usb(void *fdt) { ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); u32 rcwsr11 = in_be32(&gur->rcwsr[11]); int off; off = fdt_node_offset_by_compatible(fdt, -1, "fsl,mpc85xx-usb2-mph"); if ((rcwsr11 & FSL_CORENET_RCWSR11_EC1) != FSL_CORENET_RCWSR11_EC1_FM1_USB1) fdt_status_disabled(fdt, off); off = fdt_node_offset_by_compatible(fdt, -1, "fsl,mpc85xx-usb2-dr"); if ((rcwsr11 & FSL_CORENET_RCWSR11_EC2) != FSL_CORENET_RCWSR11_EC2_USB2) fdt_status_disabled(fdt, off); } #else #define fdt_fixup_usb(x) #endif #if defined(CONFIG_PPC_T2080) || defined(CONFIG_PPC_T4240) || \ defined(CONFIG_PPC_T4160) || defined(CONFIG_PPC_T4080) void fdt_fixup_dma3(void *blob) { /* the 3rd DMA is not functional if SRIO2 is chosen */ int nodeoff; ccsr_gur_t __iomem *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); #define CONFIG_SYS_ELO3_DMA3 (0xffe000000 + 0x102300) #if defined(CONFIG_PPC_T2080) u32 srds_prtcl_s2 = in_be32(&gur->rcwsr[4]) & FSL_CORENET2_RCWSR4_SRDS2_PRTCL; srds_prtcl_s2 >>= FSL_CORENET2_RCWSR4_SRDS2_PRTCL_SHIFT; switch (srds_prtcl_s2) { case 0x29: case 0x2d: case 0x2e: #elif defined(CONFIG_PPC_T4240) || defined(CONFIG_PPC_T4160) || \ defined(CONFIG_PPC_T4080) u32 srds_prtcl_s4 = in_be32(&gur->rcwsr[4]) & FSL_CORENET2_RCWSR4_SRDS4_PRTCL; srds_prtcl_s4 >>= FSL_CORENET2_RCWSR4_SRDS4_PRTCL_SHIFT; switch (srds_prtcl_s4) { case 6: case 8: case 14: case 16: #endif nodeoff = fdt_node_offset_by_compat_reg(blob, "fsl,elo3-dma", CONFIG_SYS_ELO3_DMA3); if (nodeoff > 0) fdt_status_disabled(blob, nodeoff); else printf("WARNING: unable to disable dma3\n"); break; default: break; } } #else #define fdt_fixup_dma3(x) #endif #if defined(CONFIG_PPC_T1040) static void fdt_fixup_l2_switch(void *blob) { uchar l2swaddr[6]; int node; /* The l2switch node from device-tree has * compatible string "vitesse-9953" */ node = fdt_node_offset_by_compatible(blob, -1, "vitesse-9953"); if (node == -FDT_ERR_NOTFOUND) /* no l2switch node has been found */ return; /* Get MAC address for the l2switch from "l2switchaddr"*/ if (!eth_getenv_enetaddr("l2switchaddr", l2swaddr)) { printf("Warning: MAC address for l2switch not found\n"); memset(l2swaddr, 0, sizeof(l2swaddr)); } /* Add MAC address to l2switch node */ fdt_setprop(blob, node, "local-mac-address", l2swaddr, sizeof(l2swaddr)); } #else #define fdt_fixup_l2_switch(x) #endif void ft_cpu_setup(void *blob, bd_t *bd) { int off; int val; int len; sys_info_t sysinfo; /* delete crypto node if not on an E-processor */ if (!IS_E_PROCESSOR(get_svr())) fdt_fixup_crypto_node(blob, 0); #if CONFIG_SYS_FSL_SEC_COMPAT >= 4 else { ccsr_sec_t __iomem *sec; sec = (void __iomem *)CONFIG_SYS_FSL_SEC_ADDR; fdt_fixup_crypto_node(blob, sec_in32(&sec->secvid_ms)); } #endif fdt_fixup_ethernet(blob); fdt_add_enet_stashing(blob); #ifndef CONFIG_FSL_TBCLK_EXTRA_DIV #define CONFIG_FSL_TBCLK_EXTRA_DIV 1 #endif do_fixup_by_prop_u32(blob, "device_type", "cpu", 4, "timebase-frequency", get_tbclk() / CONFIG_FSL_TBCLK_EXTRA_DIV, 1); do_fixup_by_prop_u32(blob, "device_type", "cpu", 4, "bus-frequency", bd->bi_busfreq, 1); get_sys_info(&sysinfo); off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4); while (off != -FDT_ERR_NOTFOUND) { u32 *reg = (u32 *)fdt_getprop(blob, off, "reg", &len); val = cpu_to_fdt32(sysinfo.freq_processor[(*reg) / (len / 4)]); fdt_setprop(blob, off, "clock-frequency", &val, 4); off = fdt_node_offset_by_prop_value(blob, off, "device_type", "cpu", 4); } do_fixup_by_prop_u32(blob, "device_type", "soc", 4, "bus-frequency", bd->bi_busfreq, 1); do_fixup_by_compat_u32(blob, "fsl,pq3-localbus", "bus-frequency", gd->arch.lbc_clk, 1); do_fixup_by_compat_u32(blob, "fsl,elbc", "bus-frequency", gd->arch.lbc_clk, 1); #ifdef CONFIG_QE ft_qe_setup(blob); ft_fixup_qe_snum(blob); #endif fdt_fixup_fman_firmware(blob); #ifdef CONFIG_SYS_NS16550 do_fixup_by_compat_u32(blob, "ns16550", "clock-frequency", CONFIG_SYS_NS16550_CLK, 1); #endif #ifdef CONFIG_CPM2 do_fixup_by_compat_u32(blob, "fsl,cpm2-scc-uart", "current-speed", gd->baudrate, 1); do_fixup_by_compat_u32(blob, "fsl,cpm2-brg", "clock-frequency", bd->bi_brgfreq, 1); #endif #ifdef CONFIG_FSL_CORENET do_fixup_by_compat_u32(blob, "fsl,qoriq-clockgen-1.0", "clock-frequency", CONFIG_SYS_CLK_FREQ, 1); do_fixup_by_compat_u32(blob, "fsl,qoriq-clockgen-2.0", "clock-frequency", CONFIG_SYS_CLK_FREQ, 1); do_fixup_by_compat_u32(blob, "fsl,mpic", "clock-frequency", get_bus_freq(0)/2, 1); #else do_fixup_by_compat_u32(blob, "fsl,mpic", "clock-frequency", get_bus_freq(0), 1); #endif fdt_fixup_memory(blob, (u64)bd->bi_memstart, (u64)bd->bi_memsize); #ifdef CONFIG_MP ft_fixup_cpu(blob, (u64)bd->bi_memstart + (u64)bd->bi_memsize); ft_fixup_num_cores(blob); #endif ft_fixup_cache(blob); #if defined(CONFIG_FSL_ESDHC) fdt_fixup_esdhc(blob, bd); #endif ft_fixup_dpaa_clks(blob); #if defined(CONFIG_SYS_BMAN_MEM_PHYS) fdt_portal(blob, "fsl,bman-portal", "bman-portals", (u64)CONFIG_SYS_BMAN_MEM_PHYS, CONFIG_SYS_BMAN_MEM_SIZE); fdt_fixup_bportals(blob); #endif #if defined(CONFIG_SYS_QMAN_MEM_PHYS) fdt_portal(blob, "fsl,qman-portal", "qman-portals", (u64)CONFIG_SYS_QMAN_MEM_PHYS, CONFIG_SYS_QMAN_MEM_SIZE); fdt_fixup_qportals(blob); #endif #ifdef CONFIG_SYS_SRIO ft_srio_setup(blob); #endif /* * system-clock = CCB clock/2 * Here gd->bus_clk = CCB clock * We are using the system clock as 1588 Timer reference * clock source select */ do_fixup_by_compat_u32(blob, "fsl,gianfar-ptp-timer", "timer-frequency", gd->bus_clk/2, 1); /* * clock-freq should change to clock-frequency and * flexcan-v1.0 should change to p1010-flexcan respectively * in the future. */ do_fixup_by_compat_u32(blob, "fsl,flexcan-v1.0", "clock_freq", gd->bus_clk/2, 1); do_fixup_by_compat_u32(blob, "fsl,flexcan-v1.0", "clock-frequency", gd->bus_clk/2, 1); do_fixup_by_compat_u32(blob, "fsl,p1010-flexcan", "clock-frequency", gd->bus_clk/2, 1); fdt_fixup_usb(blob); fdt_fixup_l2_switch(blob); fdt_fixup_dma3(blob); } /* * For some CCSR devices, we only have the virtual address, not the physical * address. This is because we map CCSR as a whole, so we typically don't need * a macro for the physical address of any device within CCSR. In this case, * we calculate the physical address of that device using it's the difference * between the virtual address of the device and the virtual address of the * beginning of CCSR. */ #define CCSR_VIRT_TO_PHYS(x) \ (CONFIG_SYS_CCSRBAR_PHYS + ((x) - CONFIG_SYS_CCSRBAR)) static void msg(const char *name, uint64_t uaddr, uint64_t daddr) { printf("Warning: U-Boot configured %s at address %llx,\n" "but the device tree has it at %llx\n", name, uaddr, daddr); } /* * Verify the device tree * * This function compares several CONFIG_xxx macros that contain physical * addresses with the corresponding nodes in the device tree, to see if * the physical addresses are all correct. For example, if * CONFIG_SYS_NS16550_COM1 is defined, then it contains the virtual address * of the first UART. We convert this to a physical address and compare * that with the physical address of the first ns16550-compatible node * in the device tree. If they don't match, then we display a warning. * * Returns 1 on success, 0 on failure */ int ft_verify_fdt(void *fdt) { uint64_t addr = 0; int aliases; int off; /* First check the CCSR base address */ off = fdt_node_offset_by_prop_value(fdt, -1, "device_type", "soc", 4); if (off > 0) addr = fdt_get_base_address(fdt, off); if (!addr) { printf("Warning: could not determine base CCSR address in " "device tree\n"); /* No point in checking anything else */ return 0; } if (addr != CONFIG_SYS_CCSRBAR_PHYS) { msg("CCSR", CONFIG_SYS_CCSRBAR_PHYS, addr); /* No point in checking anything else */ return 0; } /* * Check some nodes via aliases. We assume that U-Boot and the device * tree enumerate the devices equally. E.g. the first serial port in * U-Boot is the same as "serial0" in the device tree. */ aliases = fdt_path_offset(fdt, "/aliases"); if (aliases > 0) { #ifdef CONFIG_SYS_NS16550_COM1 if (!fdt_verify_alias_address(fdt, aliases, "serial0", CCSR_VIRT_TO_PHYS(CONFIG_SYS_NS16550_COM1))) return 0; #endif #ifdef CONFIG_SYS_NS16550_COM2 if (!fdt_verify_alias_address(fdt, aliases, "serial1", CCSR_VIRT_TO_PHYS(CONFIG_SYS_NS16550_COM2))) return 0; #endif } /* * The localbus node is typically a root node, even though the lbc * controller is part of CCSR. If we were to put the lbc node under * the SOC node, then the 'ranges' property in the lbc node would * translate through the 'ranges' property of the parent SOC node, and * we don't want that. Since it's a separate node, it's possible for * the 'reg' property to be wrong, so check it here. For now, we * only check for "fsl,elbc" nodes. */ #ifdef CONFIG_SYS_LBC_ADDR off = fdt_node_offset_by_compatible(fdt, -1, "fsl,elbc"); if (off > 0) { const fdt32_t *reg = fdt_getprop(fdt, off, "reg", NULL); if (reg) { uint64_t uaddr = CCSR_VIRT_TO_PHYS(CONFIG_SYS_LBC_ADDR); addr = fdt_translate_address(fdt, off, reg); if (uaddr != addr) { msg("the localbus", uaddr, addr); return 0; } } } #endif return 1; }