/* * (C) Copyright 2000 * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it * * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH * Marius Groeger * * SPDX-License-Identifier: GPL-2.0+ */ #include #if defined(CONFIG_HARD_I2C) #include #include DECLARE_GLOBAL_DATA_PTR; #if defined(CONFIG_I2C_MULTI_BUS) static unsigned int i2c_bus_num __attribute__ ((section(".data"))) = 0; #endif /* CONFIG_I2C_MULTI_BUS */ /* uSec to wait between polls of the i2c */ #define DELAY_US 100 /* uSec to wait for the CPM to start processing the buffer */ #define START_DELAY_US 1000 /* * tx/rx per-byte timeout: we delay DELAY_US uSec between polls so the * timeout will be (tx_length + rx_length) * DELAY_US * TOUT_LOOP */ #define TOUT_LOOP 5 /* * Set default values */ #ifndef CONFIG_SYS_I2C_SPEED #define CONFIG_SYS_I2C_SPEED 50000 #endif typedef void (*i2c_ecb_t) (int, int, void *); /* error callback function */ /* This structure keeps track of the bd and buffer space usage. */ typedef struct i2c_state { int rx_idx; /* index to next free Rx BD */ int tx_idx; /* index to next free Tx BD */ void *rxbd; /* pointer to next free Rx BD */ void *txbd; /* pointer to next free Tx BD */ int tx_space; /* number of Tx bytes left */ unsigned char *tx_buf; /* pointer to free Tx area */ i2c_ecb_t err_cb; /* error callback function */ void *cb_data; /* private data to be passed */ } i2c_state_t; /* flags for i2c_send() and i2c_receive() */ #define I2CF_ENABLE_SECONDARY 0x01 /* secondary_address is valid */ #define I2CF_START_COND 0x02 /* tx: generate start condition */ #define I2CF_STOP_COND 0x04 /* tx: generate stop condition */ /* return codes */ #define I2CERR_NO_BUFFERS 1 /* no more BDs or buffer space */ #define I2CERR_MSG_TOO_LONG 2 /* tried to send/receive to much data */ #define I2CERR_TIMEOUT 3 /* timeout in i2c_doio() */ #define I2CERR_QUEUE_EMPTY 4 /* i2c_doio called without send/rcv */ #define I2CERR_IO_ERROR 5 /* had an error during comms */ /* error callback flags */ #define I2CECB_RX_ERR 0x10 /* this is a receive error */ #define I2CECB_RX_OV 0x02 /* receive overrun error */ #define I2CECB_RX_MASK 0x0f /* mask for error bits */ #define I2CECB_TX_ERR 0x20 /* this is a transmit error */ #define I2CECB_TX_CL 0x01 /* transmit collision error */ #define I2CECB_TX_UN 0x02 /* transmit underflow error */ #define I2CECB_TX_NAK 0x04 /* transmit no ack error */ #define I2CECB_TX_MASK 0x0f /* mask for error bits */ #define I2CECB_TIMEOUT 0x40 /* this is a timeout error */ #define ERROR_I2C_NONE 0 #define ERROR_I2C_LENGTH 1 #define I2C_WRITE_BIT 0x00 #define I2C_READ_BIT 0x01 #define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */ #define NUM_RX_BDS 4 #define NUM_TX_BDS 4 #define MAX_TX_SPACE 256 typedef struct I2C_BD { unsigned short status; unsigned short length; unsigned char *addr; } I2C_BD; #define BD_I2C_TX_START 0x0400 /* special status for i2c: Start condition */ #define BD_I2C_TX_CL 0x0001 /* collision error */ #define BD_I2C_TX_UN 0x0002 /* underflow error */ #define BD_I2C_TX_NAK 0x0004 /* no acknowledge error */ #define BD_I2C_TX_ERR (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL) #define BD_I2C_RX_ERR BD_SC_OV /* * Returns the best value of I2BRG to meet desired clock speed of I2C with * input parameters (clock speed, filter, and predivider value). * It returns computer speed value and the difference between it and desired * speed. */ static inline int i2c_roundrate(int hz, int speed, int filter, int modval, int *brgval, int *totspeed) { int moddiv = 1 << (5 - (modval & 3)), brgdiv, div; debug("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n", hz, speed, filter, modval); div = moddiv * speed; brgdiv = (hz + div - 1) / div; debug("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv); *brgval = ((brgdiv + 1) / 2) - 3 - (2 * filter); if ((*brgval < 0) || (*brgval > 255)) { debug("\t\trejected brgval=%d\n", *brgval); return -1; } brgdiv = 2 * (*brgval + 3 + (2 * filter)); div = moddiv * brgdiv; *totspeed = hz / div; debug("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed); return 0; } /* * Sets the I2C clock predivider and divider to meet required clock speed. */ static int i2c_setrate(int hz, int speed) { immap_t *immap = (immap_t *)CONFIG_SYS_IMMR; volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c; int brgval, modval, /* 0-3 */ bestspeed_diff = speed, bestspeed_brgval = 0, bestspeed_modval = 0, bestspeed_filter = 0, totspeed, filter = 0; /* Use this fixed value */ for (modval = 0; modval < 4; modval++) { if (i2c_roundrate(hz, speed, filter, modval, &brgval, &totspeed) == 0) { int diff = speed - totspeed; if ((diff >= 0) && (diff < bestspeed_diff)) { bestspeed_diff = diff; bestspeed_modval = modval; bestspeed_brgval = brgval; bestspeed_filter = filter; } } } debug("[I2C] Best is:\n"); debug("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n", hz, speed, bestspeed_filter, bestspeed_modval, bestspeed_brgval, bestspeed_diff); i2c->i2c_i2mod |= ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3); i2c->i2c_i2brg = bestspeed_brgval & 0xff; debug("[I2C] i2mod=%08x i2brg=%08x\n", i2c->i2c_i2mod, i2c->i2c_i2brg); return 1; } void i2c_init(int speed, int slaveadd) { volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR; volatile cpm8260_t *cp = (cpm8260_t *)&immap->im_cpm; volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c; volatile iic_t *iip; ulong rbase, tbase; volatile I2C_BD *rxbd, *txbd; uint dpaddr; #ifdef CONFIG_SYS_I2C_INIT_BOARD /* * call board specific i2c bus reset routine before accessing the * environment, which might be in a chip on that bus. For details * about this problem see doc/I2C_Edge_Conditions. */ i2c_init_board(); #endif dpaddr = immap->im_dprambase16[PROFF_I2C_BASE / sizeof(u16)]; if (dpaddr == 0) { /* need to allocate dual port ram */ dpaddr = m8260_cpm_dpalloc(64 + (NUM_RX_BDS * sizeof(I2C_BD)) + (NUM_TX_BDS * sizeof(I2C_BD)) + MAX_TX_SPACE, 64); immap->im_dprambase16[PROFF_I2C_BASE / sizeof(u16)] = dpaddr; } /* * initialise data in dual port ram: * * dpaddr -> parameter ram (64 bytes) * rbase -> rx BD (NUM_RX_BDS * sizeof(I2C_BD) bytes) * tbase -> tx BD (NUM_TX_BDS * sizeof(I2C_BD) bytes) * tx buffer (MAX_TX_SPACE bytes) */ iip = (iic_t *)&immap->im_dprambase[dpaddr]; memset((void *)iip, 0, sizeof(iic_t)); rbase = dpaddr + 64; tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD); /* Disable interrupts */ i2c->i2c_i2mod = 0x00; i2c->i2c_i2cmr = 0x00; i2c->i2c_i2cer = 0xff; i2c->i2c_i2add = slaveadd; /* * Set the I2C BRG Clock division factor from desired i2c rate * and current CPU rate (we assume sccr dfbgr field is 0; * divide BRGCLK by 1) */ debug("[I2C] Setting rate...\n"); i2c_setrate(gd->arch.brg_clk, CONFIG_SYS_I2C_SPEED); /* Set I2C controller in master mode */ i2c->i2c_i2com = 0x01; /* Initialize Tx/Rx parameters */ iip->iic_rbase = rbase; iip->iic_tbase = tbase; rxbd = (I2C_BD *)((unsigned char *) &immap-> im_dprambase[iip->iic_rbase]); txbd = (I2C_BD *)((unsigned char *) &immap-> im_dprambase[iip->iic_tbase]); debug("[I2C] rbase = %04x\n", iip->iic_rbase); debug("[I2C] tbase = %04x\n", iip->iic_tbase); debug("[I2C] rxbd = %08x\n", (int) rxbd); debug("[I2C] txbd = %08x\n", (int) txbd); /* Set big endian byte order */ iip->iic_tfcr = 0x10; iip->iic_rfcr = 0x10; /* Set maximum receive size. */ iip->iic_mrblr = I2C_RXTX_LEN; cp->cp_cpcr = mk_cr_cmd(CPM_CR_I2C_PAGE, CPM_CR_I2C_SBLOCK, 0x00, CPM_CR_INIT_TRX) | CPM_CR_FLG; do { __asm__ __volatile__("eieio"); } while (cp->cp_cpcr & CPM_CR_FLG); /* Clear events and interrupts */ i2c->i2c_i2cer = 0xff; i2c->i2c_i2cmr = 0x00; } static void i2c_newio(i2c_state_t *state) { volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR; volatile iic_t *iip; uint dpaddr; debug("[I2C] i2c_newio\n"); dpaddr = immap->im_dprambase16[PROFF_I2C_BASE / sizeof(u16)]; iip = (iic_t *)&immap->im_dprambase[dpaddr]; state->rx_idx = 0; state->tx_idx = 0; state->rxbd = (void *)&immap->im_dprambase[iip->iic_rbase]; state->txbd = (void *)&immap->im_dprambase[iip->iic_tbase]; state->tx_space = MAX_TX_SPACE; state->tx_buf = (uchar *)state->txbd + NUM_TX_BDS * sizeof(I2C_BD); state->err_cb = NULL; state->cb_data = NULL; debug("[I2C] rxbd = %08x\n", (int)state->rxbd); debug("[I2C] txbd = %08x\n", (int)state->txbd); debug("[I2C] tx_buf = %08x\n", (int)state->tx_buf); /* clear the buffer memory */ memset((char *) state->tx_buf, 0, MAX_TX_SPACE); } static int i2c_send(i2c_state_t *state, unsigned char address, unsigned char secondary_address, unsigned int flags, unsigned short size, unsigned char *dataout) { volatile I2C_BD *txbd; int i, j; debug("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n", address, secondary_address, flags, size); /* trying to send message larger than BD */ if (size > I2C_RXTX_LEN) return I2CERR_MSG_TOO_LONG; /* no more free bds */ if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size)) return I2CERR_NO_BUFFERS; txbd = (I2C_BD *)state->txbd; txbd->addr = state->tx_buf; debug("[I2C] txbd = %08x\n", (int) txbd); if (flags & I2CF_START_COND) { debug("[I2C] Formatting addresses...\n"); if (flags & I2CF_ENABLE_SECONDARY) { /* Length of message plus dest addresses */ txbd->length = size + 2; txbd->addr[0] = address << 1; txbd->addr[1] = secondary_address; i = 2; } else { /* Length of message plus dest address */ txbd->length = size + 1; /* Write destination address to BD */ txbd->addr[0] = address << 1; i = 1; } } else { txbd->length = size; /* Length of message */ i = 0; } /* set up txbd */ txbd->status = BD_SC_READY; if (flags & I2CF_START_COND) txbd->status |= BD_I2C_TX_START; if (flags & I2CF_STOP_COND) txbd->status |= BD_SC_LAST | BD_SC_WRAP; /* Copy data to send into buffer */ debug("[I2C] copy data...\n"); for (j = 0; j < size; i++, j++) txbd->addr[i] = dataout[j]; debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n", txbd->length, txbd->status, txbd->addr[0], txbd->addr[1]); /* advance state */ state->tx_buf += txbd->length; state->tx_space -= txbd->length; state->tx_idx++; state->txbd = (void *) (txbd + 1); return 0; } static int i2c_receive(i2c_state_t *state, unsigned char address, unsigned char secondary_address, unsigned int flags, unsigned short size_to_expect, unsigned char *datain) { volatile I2C_BD *rxbd, *txbd; debug("[I2C] i2c_receive %02d %02d %02d\n", address, secondary_address, flags); /* Expected to receive too much */ if (size_to_expect > I2C_RXTX_LEN) return I2CERR_MSG_TOO_LONG; /* no more free bds */ if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS || state->tx_space < 2) return I2CERR_NO_BUFFERS; rxbd = (I2C_BD *) state->rxbd; txbd = (I2C_BD *) state->txbd; debug("[I2C] rxbd = %08x\n", (int) rxbd); debug("[I2C] txbd = %08x\n", (int) txbd); txbd->addr = state->tx_buf; /* set up TXBD for destination address */ if (flags & I2CF_ENABLE_SECONDARY) { txbd->length = 2; txbd->addr[0] = address << 1; /* Write data */ txbd->addr[1] = secondary_address; /* Internal address */ txbd->status = BD_SC_READY; } else { txbd->length = 1 + size_to_expect; txbd->addr[0] = (address << 1) | 0x01; txbd->status = BD_SC_READY; memset(&txbd->addr[1], 0, txbd->length); } /* set up rxbd for reception */ rxbd->status = BD_SC_EMPTY; rxbd->length = size_to_expect; rxbd->addr = datain; txbd->status |= BD_I2C_TX_START; if (flags & I2CF_STOP_COND) { txbd->status |= BD_SC_LAST | BD_SC_WRAP; rxbd->status |= BD_SC_WRAP; } debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n", txbd->length, txbd->status, txbd->addr[0], txbd->addr[1]); debug("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n", rxbd->length, rxbd->status, rxbd->addr[0], rxbd->addr[1]); /* advance state */ state->tx_buf += txbd->length; state->tx_space -= txbd->length; state->tx_idx++; state->txbd = (void *) (txbd + 1); state->rx_idx++; state->rxbd = (void *) (rxbd + 1); return 0; } static int i2c_doio(i2c_state_t *state) { volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR; volatile iic_t *iip; volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c; volatile I2C_BD *txbd, *rxbd; int n, i, b, rxcnt = 0, rxtimeo = 0, txcnt = 0, txtimeo = 0, rc = 0; uint dpaddr; debug("[I2C] i2c_doio\n"); if (state->tx_idx <= 0 && state->rx_idx <= 0) { debug("[I2C] No I/O is queued\n"); return I2CERR_QUEUE_EMPTY; } dpaddr = immap->im_dprambase16[PROFF_I2C_BASE / sizeof(u16)]; iip = (iic_t *)&immap->im_dprambase[dpaddr]; iip->iic_rbptr = iip->iic_rbase; iip->iic_tbptr = iip->iic_tbase; /* Enable I2C */ debug("[I2C] Enabling I2C...\n"); i2c->i2c_i2mod |= 0x01; /* Begin transmission */ i2c->i2c_i2com |= 0x80; /* Loop until transmit & receive completed */ n = state->tx_idx; if (n > 0) { txbd = ((I2C_BD *) state->txbd) - n; for (i = 0; i < n; i++) { txtimeo += TOUT_LOOP * txbd->length; txbd++; } txbd--; /* wait until last in list is done */ debug("[I2C] Transmitting...(txbd=0x%08lx)\n", (ulong) txbd); udelay(START_DELAY_US); /* give it time to start */ while ((txbd->status & BD_SC_READY) && (++txcnt < txtimeo)) { udelay(DELAY_US); if (ctrlc()) return -1; __asm__ __volatile__("eieio"); } } n = state->rx_idx; if (txcnt < txtimeo && n > 0) { rxbd = ((I2C_BD *) state->rxbd) - n; for (i = 0; i < n; i++) { rxtimeo += TOUT_LOOP * rxbd->length; rxbd++; } rxbd--; /* wait until last in list is done */ debug("[I2C] Receiving...(rxbd=0x%08lx)\n", (ulong) rxbd); udelay(START_DELAY_US); /* give it time to start */ while ((rxbd->status & BD_SC_EMPTY) && (++rxcnt < rxtimeo)) { udelay(DELAY_US); if (ctrlc()) return -1; __asm__ __volatile__("eieio"); } } /* Turn off I2C */ i2c->i2c_i2mod &= ~0x01; n = state->tx_idx; if (n > 0) { for (i = 0; i < n; i++) { txbd = ((I2C_BD *) state->txbd) - (n - i); b = txbd->status & BD_I2C_TX_ERR; if (b != 0) { if (state->err_cb != NULL) (*state->err_cb) (I2CECB_TX_ERR | b, i, state->cb_data); if (rc == 0) rc = I2CERR_IO_ERROR; } } } n = state->rx_idx; if (n > 0) { for (i = 0; i < n; i++) { rxbd = ((I2C_BD *) state->rxbd) - (n - i); b = rxbd->status & BD_I2C_RX_ERR; if (b != 0) { if (state->err_cb != NULL) (*state->err_cb) (I2CECB_RX_ERR | b, i, state->cb_data); if (rc == 0) rc = I2CERR_IO_ERROR; } } } if ((txtimeo > 0 && txcnt >= txtimeo) || (rxtimeo > 0 && rxcnt >= rxtimeo)) { if (state->err_cb != NULL) (*state->err_cb) (I2CECB_TIMEOUT, -1, state->cb_data); if (rc == 0) rc = I2CERR_TIMEOUT; } return rc; } static void i2c_probe_callback(int flags, int xnum, void *data) { /* * the only acceptable errors are a transmit NAK or a receive * overrun - tx NAK means the device does not exist, rx OV * means the device must have responded to the slave address * even though the transfer failed */ if (flags == (I2CECB_TX_ERR | I2CECB_TX_NAK)) *(int *) data |= 1; if (flags == (I2CECB_RX_ERR | I2CECB_RX_OV)) *(int *) data |= 2; } int i2c_probe(uchar chip) { i2c_state_t state; int rc, err_flag; uchar buf[1]; i2c_newio(&state); state.err_cb = i2c_probe_callback; state.cb_data = (void *) &err_flag; err_flag = 0; rc = i2c_receive(&state, chip, 0, I2CF_START_COND | I2CF_STOP_COND, 1, buf); if (rc != 0) return rc; /* probe failed */ rc = i2c_doio(&state); if (rc == 0) return 0; /* device exists - read succeeded */ if (rc == I2CERR_TIMEOUT) return -1; /* device does not exist - timeout */ if (rc != I2CERR_IO_ERROR || err_flag == 0) return rc; /* probe failed */ if (err_flag & 1) return -1; /* device does not exist - had transmit NAK */ return 0; /* device exists - had receive overrun */ } int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len) { i2c_state_t state; uchar xaddr[4]; int rc; xaddr[0] = (addr >> 24) & 0xFF; xaddr[1] = (addr >> 16) & 0xFF; xaddr[2] = (addr >> 8) & 0xFF; xaddr[3] = addr & 0xFF; #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW /* * EEPROM chips that implement "address overflow" are ones * like Catalyst 24WC04/08/16 which has 9/10/11 bits of address * and the extra bits end up in the "chip address" bit slots. * This makes a 24WC08 (1Kbyte) chip look like four 256 byte * chips. * * Note that we consider the length of the address field to still * be one byte because the extra address bits are hidden in the * chip address. */ chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW); #endif i2c_newio(&state); rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4 - alen]); if (rc != 0) { printf("i2c_read: i2c_send failed (%d)\n", rc); return 1; } rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer); if (rc != 0) { printf("i2c_read: i2c_receive failed (%d)\n", rc); return 1; } rc = i2c_doio(&state); if (rc != 0) { printf("i2c_read: i2c_doio failed (%d)\n", rc); return 1; } return 0; } int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len) { i2c_state_t state; uchar xaddr[4]; int rc; xaddr[0] = (addr >> 24) & 0xFF; xaddr[1] = (addr >> 16) & 0xFF; xaddr[2] = (addr >> 8) & 0xFF; xaddr[3] = addr & 0xFF; #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW /* * EEPROM chips that implement "address overflow" are ones * like Catalyst 24WC04/08/16 which has 9/10/11 bits of address * and the extra bits end up in the "chip address" bit slots. * This makes a 24WC08 (1Kbyte) chip look like four 256 byte * chips. * * Note that we consider the length of the address field to still * be one byte because the extra address bits are hidden in the * chip address. */ chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW); #endif i2c_newio(&state); rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4 - alen]); if (rc != 0) { printf("i2c_write: first i2c_send failed (%d)\n", rc); return 1; } rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer); if (rc != 0) { printf("i2c_write: second i2c_send failed (%d)\n", rc); return 1; } rc = i2c_doio(&state); if (rc != 0) { printf("i2c_write: i2c_doio failed (%d)\n", rc); return 1; } return 0; } #if defined(CONFIG_I2C_MULTI_BUS) /* * Functions for multiple I2C bus handling */ unsigned int i2c_get_bus_num(void) { return i2c_bus_num; } int i2c_set_bus_num(unsigned int bus) { if (bus >= CONFIG_SYS_MAX_I2C_BUS) return -1; i2c_bus_num = bus; return 0; } #endif /* CONFIG_I2C_MULTI_BUS */ #endif /* CONFIG_HARD_I2C */