/* * (C) Copyright 2010 - 2011 * NVIDIA Corporation * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #ifndef CONFIG_TEGRA_CLOCK_SCALING #error "You must enable CONFIG_TEGRA_CLOCK_SCALING to use CONFIG_TEGRA20_LP0" #endif /* * This is the place in SRAM where the SDRAM parameters are stored. There * are 4 blocks, one for each RAM code */ #define SDRAM_PARAMS_BASE (AP20_BASE_PA_SRAM + 0x188) /* TODO: If we later add support for the Misc GP controller, refactor this */ union xm2cfga_reg { struct { u32 reserved0:2; u32 hsm_en:1; u32 reserved1:2; u32 preemp_en:1; u32 vref_en:1; u32 reserved2:5; u32 cal_drvdn:5; u32 reserved3:3; u32 cal_drvup:5; u32 reserved4:3; u32 cal_drvdn_slwr:2; u32 cal_drvup_slwf:2; }; u32 word; }; union xm2cfgd_reg { struct { u32 reserved0:2; u32 hsm_en:1; u32 schmt_en:1; u32 lpmd:2; u32 vref_en:1; u32 reserved1:5; u32 cal_drvdn:5; u32 reserved2:3; u32 cal_drvup:5; u32 reserved3:3; u32 cal_drvdn_slwr:2; u32 cal_drvup_slwf:2; }; u32 word; }; /* * TODO: This register is not documented in the TRM yet. We could move this * into the EMC and give it a proper interface, but not while it is * undocumented. */ union fbio_spare_reg { struct { u32 reserved:24; u32 cfg_wb0:8; }; u32 word; }; /* We pack the resume information into these unions for later */ union scratch2_reg { struct { u32 pllm_base_divm:5; u32 pllm_base_divn:10; u32 pllm_base_divp:3; u32 pllm_misc_lfcon:4; u32 pllm_misc_cpcon:4; u32 gp_xm2cfga_padctrl_preemp:1; u32 gp_xm2cfgd_padctrl_schmt:1; u32 osc_ctrl_xobp:1; u32 memory_type:3; }; u32 word; }; union scratch4_reg { struct { u32 emc_clock_divider:8; u32 pllm_stable_time:8; u32 pllx_stable_time:8; u32 emc_fbio_spare_cfg_wb0:8; }; u32 word; }; union scratch24_reg { struct { u32 emc_auto_cal_wait:8; u32 emc_pin_program_wait:8; u32 warmboot_wait:8; u32 reserved:8; }; u32 word; }; int warmboot_save_sdram_params(void) { u32 ram_code; struct sdram_params sdram; struct pmux_tri_ctlr *pmt = (struct pmux_tri_ctlr *)NV_PA_APB_MISC_BASE; struct pmc_ctlr *pmc = (struct pmc_ctlr *)TEGRA20_PMC_BASE; struct apb_misc_gp_ctlr *gp = (struct apb_misc_gp_ctlr *)TEGRA20_APB_MISC_GP_BASE; struct emc_ctlr *emc = emc_get_controller(gd->fdt_blob); union scratch2_reg scratch2; union scratch4_reg scratch4; union scratch24_reg scratch24; union xm2cfga_reg xm2cfga; union xm2cfgd_reg xm2cfgd; union fbio_spare_reg fbio_spare; /* get ram code that is used as index to array sdram_params in BCT */ ram_code = (readl(&pmt->pmt_strap_opt_a) >> STRAP_OPT_A_RAM_CODE_SHIFT) & 3; memcpy(&sdram, (char *)((struct sdram_params *)SDRAM_PARAMS_BASE + ram_code), sizeof(sdram)); xm2cfga.word = readl(&gp->xm2cfga); xm2cfgd.word = readl(&gp->xm2cfgd); scratch2.word = 0; scratch2.osc_ctrl_xobp = clock_get_osc_bypass(); /* Get the memory PLL settings */ { u32 divm, divn, divp, cpcon, lfcon; if (clock_ll_read_pll(CLOCK_ID_MEMORY, &divm, &divn, &divp, &cpcon, &lfcon)) return -1; scratch2.pllm_base_divm = divm; scratch2.pllm_base_divn = divn; scratch2.pllm_base_divp = divp; scratch2.pllm_misc_cpcon = cpcon; scratch2.pllm_misc_lfcon = lfcon; } scratch2.gp_xm2cfga_padctrl_preemp = xm2cfga.preemp_en; scratch2.gp_xm2cfgd_padctrl_schmt = xm2cfgd.schmt_en; scratch2.memory_type = sdram.memory_type; writel(scratch2.word, &pmc->pmc_scratch2); /* collect data from various sources for pmc_scratch4 */ fbio_spare.word = readl(&emc->fbio_spare); scratch4.word = 0; scratch4.emc_fbio_spare_cfg_wb0 = fbio_spare.cfg_wb0; scratch4.emc_clock_divider = sdram.emc_clock_divider; scratch4.pllm_stable_time = -1; scratch4.pllx_stable_time = -1; writel(scratch4.word, &pmc->pmc_scratch4); /* collect various data from sdram for pmc_scratch24 */ scratch24.word = 0; scratch24.emc_pin_program_wait = sdram.emc_pin_program_wait; scratch24.emc_auto_cal_wait = sdram.emc_auto_cal_wait; scratch24.warmboot_wait = sdram.warm_boot_wait; writel(scratch24.word, &pmc->pmc_scratch24); return 0; } static u32 get_major_version(void) { u32 major_id; struct apb_misc_gp_ctlr *gp = (struct apb_misc_gp_ctlr *)TEGRA20_APB_MISC_GP_BASE; major_id = (readl(&gp->hidrev) & HIDREV_MAJORPREV_MASK) >> HIDREV_MAJORPREV_SHIFT; return major_id; } static int is_production_mode_fuse_set(struct fuse_regs *fuse) { return readl(&fuse->production_mode); } static int is_odm_production_mode_fuse_set(struct fuse_regs *fuse) { return readl(&fuse->security_mode); } static int is_failure_analysis_mode(struct fuse_regs *fuse) { return readl(&fuse->fa); } static int ap20_is_odm_production_mode(void) { struct fuse_regs *fuse = (struct fuse_regs *)TEGRA20_FUSE_BASE; if (!is_failure_analysis_mode(fuse) && is_odm_production_mode_fuse_set(fuse)) return 1; else return 0; } static int ap20_is_production_mode(void) { struct fuse_regs *fuse = (struct fuse_regs *)TEGRA20_FUSE_BASE; if (get_major_version() == 0) return 1; if (!is_failure_analysis_mode(fuse) && is_production_mode_fuse_set(fuse) && !is_odm_production_mode_fuse_set(fuse)) return 1; else return 0; } static enum fuse_operating_mode fuse_get_operation_mode(void) { u32 chip_id; struct apb_misc_gp_ctlr *gp = (struct apb_misc_gp_ctlr *)TEGRA20_APB_MISC_GP_BASE; chip_id = (readl(&gp->hidrev) & HIDREV_CHIPID_MASK) >> HIDREV_CHIPID_SHIFT; if (chip_id == CHIPID_TEGRA20) { if (ap20_is_odm_production_mode()) { printf("!! odm_production_mode is not supported !!\n"); return MODE_UNDEFINED; } else if (ap20_is_production_mode()) return MODE_PRODUCTION; else return MODE_UNDEFINED; } return MODE_UNDEFINED; } static void determine_crypto_options(int *is_encrypted, int *is_signed, int *use_zero_key) { switch (fuse_get_operation_mode()) { case MODE_PRODUCTION: *is_encrypted = 0; *is_signed = 1; *use_zero_key = 1; break; case MODE_UNDEFINED: default: *is_encrypted = 0; *is_signed = 0; *use_zero_key = 0; break; } } static int sign_wb_code(u32 start, u32 length, int use_zero_key) { int err; u8 *source; /* Pointer to source */ u8 *hash; /* Calculate AES block parameters. */ source = (u8 *)(start + offsetof(struct wb_header, random_aes_block)); length -= offsetof(struct wb_header, random_aes_block); hash = (u8 *)(start + offsetof(struct wb_header, hash)); err = sign_data_block(source, length, hash); return err; } int warmboot_prepare_code(u32 seg_address, u32 seg_length) { int err = 0; u32 length; /* length of the signed/encrypt code */ struct wb_header *dst_header; /* Pointer to dest WB header */ int is_encrypted; /* Segment is encrypted */ int is_signed; /* Segment is signed */ int use_zero_key; /* Use key of all zeros */ /* Determine crypto options. */ determine_crypto_options(&is_encrypted, &is_signed, &use_zero_key); /* Get the actual code limits. */ length = roundup(((u32)wb_end - (u32)wb_start), 16); /* * The region specified by seg_address must be in SDRAM and must be * nonzero in length. */ if (seg_length == 0 || seg_address < NV_PA_SDRAM_BASE || seg_address + seg_length >= NV_PA_SDRAM_BASE + gd->ram_size) { err = -EFAULT; goto fail; } /* Things must be 16-byte aligned. */ if ((seg_length & 0xF) || (seg_address & 0xF)) { err = -EINVAL; goto fail; } /* Will the code fit? (destination includes wb_header + wb code) */ if (seg_length < (length + sizeof(struct wb_header))) { err = -EINVAL; goto fail; } dst_header = (struct wb_header *)seg_address; memset((char *)dst_header, 0, sizeof(struct wb_header)); /* Populate the random_aes_block as requested. */ { u32 *aes_block = (u32 *)&(dst_header->random_aes_block); u32 *end = (u32 *)(((u32)aes_block) + sizeof(dst_header->random_aes_block)); do { *aes_block++ = 0; } while (aes_block < end); } /* Populate the header. */ dst_header->length_insecure = length + sizeof(struct wb_header); dst_header->length_secure = length + sizeof(struct wb_header); dst_header->destination = AP20_WB_RUN_ADDRESS; dst_header->entry_point = AP20_WB_RUN_ADDRESS; dst_header->code_length = length; if (is_encrypted) { printf("!!!! Encryption is not supported !!!!\n"); dst_header->length_insecure = 0; err = -EACCES; goto fail; } else /* copy the wb code directly following dst_header. */ memcpy((char *)(dst_header+1), (char *)wb_start, length); if (is_signed) err = sign_wb_code(seg_address, dst_header->length_insecure, use_zero_key); fail: if (err) printf("Warning: warmboot code copy failed (error=%d)\n", err); return err; }