/* * Copyright (c) 2011 The Chromium OS Authors. * (C) Copyright 2010 - 2011 NVIDIA Corporation * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include "crypto.h" #include "aes.h" static u8 zero_key[16]; #define AES_CMAC_CONST_RB 0x87 /* from RFC 4493, Figure 2.2 */ enum security_op { SECURITY_SIGN = 1 << 0, /* Sign the data */ SECURITY_ENCRYPT = 1 << 1, /* Encrypt the data */ }; /** * Shift a vector left by one bit * * \param in Input vector * \param out Output vector * \param size Length of vector in bytes */ static void left_shift_vector(u8 *in, u8 *out, int size) { int carry = 0; int i; for (i = size - 1; i >= 0; i--) { out[i] = (in[i] << 1) | carry; carry = in[i] >> 7; /* get most significant bit */ } } /** * Sign a block of data, putting the result into dst. * * \param key Input AES key, length AES_KEY_LENGTH * \param key_schedule Expanded key to use * \param src Source data of length 'num_aes_blocks' blocks * \param dst Destination buffer, length AES_KEY_LENGTH * \param num_aes_blocks Number of AES blocks to encrypt */ static void sign_object(u8 *key, u8 *key_schedule, u8 *src, u8 *dst, u32 num_aes_blocks) { u8 tmp_data[AES_KEY_LENGTH]; u8 left[AES_KEY_LENGTH]; u8 k1[AES_KEY_LENGTH]; u8 *cbc_chain_data; unsigned i; cbc_chain_data = zero_key; /* Convenient array of 0's for IV */ /* compute K1 constant needed by AES-CMAC calculation */ for (i = 0; i < AES_KEY_LENGTH; i++) tmp_data[i] = 0; aes_cbc_encrypt_blocks(key_schedule, tmp_data, left, 1); left_shift_vector(left, k1, sizeof(left)); if ((left[0] >> 7) != 0) /* get MSB of L */ k1[AES_KEY_LENGTH-1] ^= AES_CMAC_CONST_RB; /* compute the AES-CMAC value */ for (i = 0; i < num_aes_blocks; i++) { /* Apply the chain data */ aes_apply_cbc_chain_data(cbc_chain_data, src, tmp_data); /* for the final block, XOR K1 into the IV */ if (i == num_aes_blocks - 1) aes_apply_cbc_chain_data(tmp_data, k1, tmp_data); /* encrypt the AES block */ aes_encrypt(tmp_data, key_schedule, dst); debug("sign_obj: block %d of %d\n", i, num_aes_blocks); /* Update pointers for next loop. */ cbc_chain_data = dst; src += AES_KEY_LENGTH; } } /** * Encrypt and sign a block of data (depending on security mode). * * \param key Input AES key, length AES_KEY_LENGTH * \param oper Security operations mask to perform (enum security_op) * \param src Source data * \param length Size of source data * \param sig_dst Destination address for signature, AES_KEY_LENGTH bytes */ static int encrypt_and_sign(u8 *key, enum security_op oper, u8 *src, u32 length, u8 *sig_dst) { u32 num_aes_blocks; u8 key_schedule[AES_EXPAND_KEY_LENGTH]; debug("encrypt_and_sign: length = %d\n", length); /* * The only need for a key is for signing/checksum purposes, so * if not encrypting, expand a key of 0s. */ aes_expand_key(oper & SECURITY_ENCRYPT ? key : zero_key, key_schedule); num_aes_blocks = (length + AES_KEY_LENGTH - 1) / AES_KEY_LENGTH; if (oper & SECURITY_ENCRYPT) { /* Perform this in place, resulting in src being encrypted. */ debug("encrypt_and_sign: begin encryption\n"); aes_cbc_encrypt_blocks(key_schedule, src, src, num_aes_blocks); debug("encrypt_and_sign: end encryption\n"); } if (oper & SECURITY_SIGN) { /* encrypt the data, overwriting the result in signature. */ debug("encrypt_and_sign: begin signing\n"); sign_object(key, key_schedule, src, sig_dst, num_aes_blocks); debug("encrypt_and_sign: end signing\n"); } return 0; } int sign_data_block(u8 *source, unsigned length, u8 *signature) { return encrypt_and_sign(zero_key, SECURITY_SIGN, source, length, signature); }