/* * (C) Copyright 2013 * David Feng * * (C) Copyright 2016 * Alexander Graf * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include DECLARE_GLOBAL_DATA_PTR; #ifndef CONFIG_SYS_DCACHE_OFF /* * With 4k page granule, a virtual address is split into 4 lookup parts * spanning 9 bits each: * * _______________________________________________ * | | | | | | | * | 0 | Lv0 | Lv1 | Lv2 | Lv3 | off | * |_______|_______|_______|_______|_______|_______| * 63-48 47-39 38-30 29-21 20-12 11-00 * * mask page size * * Lv0: FF8000000000 -- * Lv1: 7FC0000000 1G * Lv2: 3FE00000 2M * Lv3: 1FF000 4K * off: FFF */ static u64 get_tcr(int el, u64 *pips, u64 *pva_bits) { u64 max_addr = 0; u64 ips, va_bits; u64 tcr; int i; /* Find the largest address we need to support */ for (i = 0; mem_map[i].size || mem_map[i].attrs; i++) max_addr = max(max_addr, mem_map[i].base + mem_map[i].size); /* Calculate the maximum physical (and thus virtual) address */ if (max_addr > (1ULL << 44)) { ips = 5; va_bits = 48; } else if (max_addr > (1ULL << 42)) { ips = 4; va_bits = 44; } else if (max_addr > (1ULL << 40)) { ips = 3; va_bits = 42; } else if (max_addr > (1ULL << 36)) { ips = 2; va_bits = 40; } else if (max_addr > (1ULL << 32)) { ips = 1; va_bits = 36; } else { ips = 0; va_bits = 32; } if (el == 1) { tcr = TCR_EL1_RSVD | (ips << 32) | TCR_EPD1_DISABLE; } else if (el == 2) { tcr = TCR_EL2_RSVD | (ips << 16); } else { tcr = TCR_EL3_RSVD | (ips << 16); } /* PTWs cacheable, inner/outer WBWA and inner shareable */ tcr |= TCR_TG0_4K | TCR_SHARED_INNER | TCR_ORGN_WBWA | TCR_IRGN_WBWA; tcr |= TCR_T0SZ(va_bits); if (pips) *pips = ips; if (pva_bits) *pva_bits = va_bits; return tcr; } #define MAX_PTE_ENTRIES 512 static int pte_type(u64 *pte) { return *pte & PTE_TYPE_MASK; } /* Returns the LSB number for a PTE on level */ static int level2shift(int level) { /* Page is 12 bits wide, every level translates 9 bits */ return (12 + 9 * (3 - level)); } static u64 *find_pte(u64 addr, int level) { int start_level = 0; u64 *pte; u64 idx; u64 va_bits; int i; debug("addr=%llx level=%d\n", addr, level); get_tcr(0, NULL, &va_bits); if (va_bits < 39) start_level = 1; if (level < start_level) return NULL; /* Walk through all page table levels to find our PTE */ pte = (u64*)gd->arch.tlb_addr; for (i = start_level; i < 4; i++) { idx = (addr >> level2shift(i)) & 0x1FF; pte += idx; debug("idx=%llx PTE %p at level %d: %llx\n", idx, pte, i, *pte); /* Found it */ if (i == level) return pte; /* PTE is no table (either invalid or block), can't traverse */ if (pte_type(pte) != PTE_TYPE_TABLE) return NULL; /* Off to the next level */ pte = (u64*)(*pte & 0x0000fffffffff000ULL); } /* Should never reach here */ return NULL; } /* Returns and creates a new full table (512 entries) */ static u64 *create_table(void) { u64 *new_table = (u64*)gd->arch.tlb_fillptr; u64 pt_len = MAX_PTE_ENTRIES * sizeof(u64); /* Allocate MAX_PTE_ENTRIES pte entries */ gd->arch.tlb_fillptr += pt_len; if (gd->arch.tlb_fillptr - gd->arch.tlb_addr > gd->arch.tlb_size) panic("Insufficient RAM for page table: 0x%lx > 0x%lx. " "Please increase the size in get_page_table_size()", gd->arch.tlb_fillptr - gd->arch.tlb_addr, gd->arch.tlb_size); /* Mark all entries as invalid */ memset(new_table, 0, pt_len); return new_table; } static void set_pte_table(u64 *pte, u64 *table) { /* Point *pte to the new table */ debug("Setting %p to addr=%p\n", pte, table); *pte = PTE_TYPE_TABLE | (ulong)table; } /* Add one mm_region map entry to the page tables */ static void add_map(struct mm_region *map) { u64 *pte; u64 addr = map->base; u64 size = map->size; u64 attrs = map->attrs | PTE_TYPE_BLOCK | PTE_BLOCK_AF; u64 blocksize; int level; u64 *new_table; while (size) { pte = find_pte(addr, 0); if (pte && (pte_type(pte) == PTE_TYPE_FAULT)) { debug("Creating table for addr 0x%llx\n", addr); new_table = create_table(); set_pte_table(pte, new_table); } for (level = 1; level < 4; level++) { pte = find_pte(addr, level); blocksize = 1ULL << level2shift(level); debug("Checking if pte fits for addr=%llx size=%llx " "blocksize=%llx\n", addr, size, blocksize); if (size >= blocksize && !(addr & (blocksize - 1))) { /* Page fits, create block PTE */ debug("Setting PTE %p to block addr=%llx\n", pte, addr); *pte = addr | attrs; addr += blocksize; size -= blocksize; break; } else if ((pte_type(pte) == PTE_TYPE_FAULT)) { /* Page doesn't fit, create subpages */ debug("Creating subtable for addr 0x%llx " "blksize=%llx\n", addr, blocksize); new_table = create_table(); set_pte_table(pte, new_table); } } } } /* Splits a block PTE into table with subpages spanning the old block */ static void split_block(u64 *pte, int level) { u64 old_pte = *pte; u64 *new_table; u64 i = 0; /* level describes the parent level, we need the child ones */ int levelshift = level2shift(level + 1); if (pte_type(pte) != PTE_TYPE_BLOCK) panic("PTE %p (%llx) is not a block. Some driver code wants to " "modify dcache settings for an range not covered in " "mem_map.", pte, old_pte); new_table = create_table(); debug("Splitting pte %p (%llx) into %p\n", pte, old_pte, new_table); for (i = 0; i < MAX_PTE_ENTRIES; i++) { new_table[i] = old_pte | (i << levelshift); /* Level 3 block PTEs have the table type */ if ((level + 1) == 3) new_table[i] |= PTE_TYPE_TABLE; debug("Setting new_table[%lld] = %llx\n", i, new_table[i]); } /* Set the new table into effect */ set_pte_table(pte, new_table); } enum pte_type { PTE_INVAL, PTE_BLOCK, PTE_LEVEL, }; /* * This is a recursively called function to count the number of * page tables we need to cover a particular PTE range. If you * call this with level = -1 you basically get the full 48 bit * coverage. */ static int count_required_pts(u64 addr, int level, u64 maxaddr) { int levelshift = level2shift(level); u64 levelsize = 1ULL << levelshift; u64 levelmask = levelsize - 1; u64 levelend = addr + levelsize; int r = 0; int i; enum pte_type pte_type = PTE_INVAL; for (i = 0; mem_map[i].size || mem_map[i].attrs; i++) { struct mm_region *map = &mem_map[i]; u64 start = map->base; u64 end = start + map->size; /* Check if the PTE would overlap with the map */ if (max(addr, start) <= min(levelend, end)) { start = max(addr, start); end = min(levelend, end); /* We need a sub-pt for this level */ if ((start & levelmask) || (end & levelmask)) { pte_type = PTE_LEVEL; break; } /* Lv0 can not do block PTEs, so do levels here too */ if (level <= 0) { pte_type = PTE_LEVEL; break; } /* PTE is active, but fits into a block */ pte_type = PTE_BLOCK; } } /* * Block PTEs at this level are already covered by the parent page * table, so we only need to count sub page tables. */ if (pte_type == PTE_LEVEL) { int sublevel = level + 1; u64 sublevelsize = 1ULL << level2shift(sublevel); /* Account for the new sub page table ... */ r = 1; /* ... and for all child page tables that one might have */ for (i = 0; i < MAX_PTE_ENTRIES; i++) { r += count_required_pts(addr, sublevel, maxaddr); addr += sublevelsize; if (addr >= maxaddr) { /* * We reached the end of address space, no need * to look any further. */ break; } } } return r; } /* Returns the estimated required size of all page tables */ __weak u64 get_page_table_size(void) { u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64); u64 size = 0; u64 va_bits; int start_level = 0; get_tcr(0, NULL, &va_bits); if (va_bits < 39) start_level = 1; /* Account for all page tables we would need to cover our memory map */ size = one_pt * count_required_pts(0, start_level - 1, 1ULL << va_bits); /* * We need to duplicate our page table once to have an emergency pt to * resort to when splitting page tables later on */ size *= 2; /* * We may need to split page tables later on if dcache settings change, * so reserve up to 4 (random pick) page tables for that. */ size += one_pt * 4; return size; } static void setup_pgtables(void) { int i; /* * Allocate the first level we're on with invalidate entries. * If the starting level is 0 (va_bits >= 39), then this is our * Lv0 page table, otherwise it's the entry Lv1 page table. */ create_table(); /* Now add all MMU table entries one after another to the table */ for (i = 0; mem_map[i].size || mem_map[i].attrs; i++) add_map(&mem_map[i]); /* Create the same thing once more for our emergency page table */ create_table(); } static void setup_all_pgtables(void) { u64 tlb_addr = gd->arch.tlb_addr; /* Reset the fill ptr */ gd->arch.tlb_fillptr = tlb_addr; /* Create normal system page tables */ setup_pgtables(); /* Create emergency page tables */ gd->arch.tlb_addr = gd->arch.tlb_fillptr; setup_pgtables(); gd->arch.tlb_emerg = gd->arch.tlb_addr; gd->arch.tlb_addr = tlb_addr; } /* to activate the MMU we need to set up virtual memory */ __weak void mmu_setup(void) { int el; /* Set up page tables only once */ if (!gd->arch.tlb_fillptr) setup_all_pgtables(); el = current_el(); set_ttbr_tcr_mair(el, gd->arch.tlb_addr, get_tcr(el, NULL, NULL), MEMORY_ATTRIBUTES); /* enable the mmu */ set_sctlr(get_sctlr() | CR_M); } /* * Performs a invalidation of the entire data cache at all levels */ void invalidate_dcache_all(void) { __asm_invalidate_dcache_all(); } /* * Performs a clean & invalidation of the entire data cache at all levels. * This function needs to be inline to avoid using stack. * __asm_flush_l3_cache return status of timeout */ inline void flush_dcache_all(void) { int ret; __asm_flush_dcache_all(); ret = __asm_flush_l3_cache(); if (ret) debug("flushing dcache returns 0x%x\n", ret); else debug("flushing dcache successfully.\n"); } /* * Invalidates range in all levels of D-cache/unified cache */ void invalidate_dcache_range(unsigned long start, unsigned long stop) { __asm_flush_dcache_range(start, stop); } /* * Flush range(clean & invalidate) from all levels of D-cache/unified cache */ void flush_dcache_range(unsigned long start, unsigned long stop) { __asm_flush_dcache_range(start, stop); } void dcache_enable(void) { /* The data cache is not active unless the mmu is enabled */ if (!(get_sctlr() & CR_M)) { invalidate_dcache_all(); __asm_invalidate_tlb_all(); mmu_setup(); } set_sctlr(get_sctlr() | CR_C); } void dcache_disable(void) { uint32_t sctlr; sctlr = get_sctlr(); /* if cache isn't enabled no need to disable */ if (!(sctlr & CR_C)) return; set_sctlr(sctlr & ~(CR_C|CR_M)); flush_dcache_all(); __asm_invalidate_tlb_all(); } int dcache_status(void) { return (get_sctlr() & CR_C) != 0; } u64 *__weak arch_get_page_table(void) { puts("No page table offset defined\n"); return NULL; } static bool is_aligned(u64 addr, u64 size, u64 align) { return !(addr & (align - 1)) && !(size & (align - 1)); } static u64 set_one_region(u64 start, u64 size, u64 attrs, int level) { int levelshift = level2shift(level); u64 levelsize = 1ULL << levelshift; u64 *pte = find_pte(start, level); /* Can we can just modify the current level block PTE? */ if (is_aligned(start, size, levelsize)) { *pte &= ~PMD_ATTRINDX_MASK; *pte |= attrs; debug("Set attrs=%llx pte=%p level=%d\n", attrs, pte, level); return levelsize; } /* Unaligned or doesn't fit, maybe split block into table */ debug("addr=%llx level=%d pte=%p (%llx)\n", start, level, pte, *pte); /* Maybe we need to split the block into a table */ if (pte_type(pte) == PTE_TYPE_BLOCK) split_block(pte, level); /* And then double-check it became a table or already is one */ if (pte_type(pte) != PTE_TYPE_TABLE) panic("PTE %p (%llx) for addr=%llx should be a table", pte, *pte, start); /* Roll on to the next page table level */ return 0; } void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size, enum dcache_option option) { u64 attrs = PMD_ATTRINDX(option); u64 real_start = start; u64 real_size = size; debug("start=%lx size=%lx\n", (ulong)start, (ulong)size); /* * We can not modify page tables that we're currently running on, * so we first need to switch to the "emergency" page tables where * we can safely modify our primary page tables and then switch back */ __asm_switch_ttbr(gd->arch.tlb_emerg); /* * Loop through the address range until we find a page granule that fits * our alignment constraints, then set it to the new cache attributes */ while (size > 0) { int level; u64 r; for (level = 1; level < 4; level++) { r = set_one_region(start, size, attrs, level); if (r) { /* PTE successfully replaced */ size -= r; start += r; break; } } } /* We're done modifying page tables, switch back to our primary ones */ __asm_switch_ttbr(gd->arch.tlb_addr); /* * Make sure there's nothing stale in dcache for a region that might * have caches off now */ flush_dcache_range(real_start, real_start + real_size); } #else /* CONFIG_SYS_DCACHE_OFF */ /* * For SPL builds, we may want to not have dcache enabled. Any real U-Boot * running however really wants to have dcache and the MMU active. Check that * everything is sane and give the developer a hint if it isn't. */ #ifndef CONFIG_SPL_BUILD #error Please describe your MMU layout in CONFIG_SYS_MEM_MAP and enable dcache. #endif void invalidate_dcache_all(void) { } void flush_dcache_all(void) { } void dcache_enable(void) { } void dcache_disable(void) { } int dcache_status(void) { return 0; } void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size, enum dcache_option option) { } #endif /* CONFIG_SYS_DCACHE_OFF */ #ifndef CONFIG_SYS_ICACHE_OFF void icache_enable(void) { __asm_invalidate_icache_all(); set_sctlr(get_sctlr() | CR_I); } void icache_disable(void) { set_sctlr(get_sctlr() & ~CR_I); } int icache_status(void) { return (get_sctlr() & CR_I) != 0; } void invalidate_icache_all(void) { __asm_invalidate_icache_all(); } #else /* CONFIG_SYS_ICACHE_OFF */ void icache_enable(void) { } void icache_disable(void) { } int icache_status(void) { return 0; } void invalidate_icache_all(void) { } #endif /* CONFIG_SYS_ICACHE_OFF */ /* * Enable dCache & iCache, whether cache is actually enabled * depend on CONFIG_SYS_DCACHE_OFF and CONFIG_SYS_ICACHE_OFF */ void __weak enable_caches(void) { icache_enable(); dcache_enable(); }