/* * Copyright (C) 2013 Altera Corporation * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include DECLARE_GLOBAL_DATA_PTR; static const struct socfpga_clock_manager *clock_manager_base = (struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS; static void cm_wait_for_lock(uint32_t mask) { register uint32_t inter_val; uint32_t retry = 0; do { inter_val = readl(&clock_manager_base->inter) & mask; if (inter_val == mask) retry++; else retry = 0; if (retry >= 10) break; } while (1); } /* function to poll in the fsm busy bit */ static void cm_wait_for_fsm(void) { while (readl(&clock_manager_base->stat) & CLKMGR_STAT_BUSY) ; } /* * function to write the bypass register which requires a poll of the * busy bit */ static void cm_write_bypass(uint32_t val) { writel(val, &clock_manager_base->bypass); cm_wait_for_fsm(); } /* function to write the ctrl register which requires a poll of the busy bit */ static void cm_write_ctrl(uint32_t val) { writel(val, &clock_manager_base->ctrl); cm_wait_for_fsm(); } /* function to write a clock register that has phase information */ static void cm_write_with_phase(uint32_t value, uint32_t reg_address, uint32_t mask) { /* poll until phase is zero */ while (readl(reg_address) & mask) ; writel(value, reg_address); while (readl(reg_address) & mask) ; } /* * Setup clocks while making no assumptions about previous state of the clocks. * * Start by being paranoid and gate all sw managed clocks * Put all plls in bypass * Put all plls VCO registers back to reset value (bandgap power down). * Put peripheral and main pll src to reset value to avoid glitch. * Delay 5 us. * Deassert bandgap power down and set numerator and denominator * Start 7 us timer. * set internal dividers * Wait for 7 us timer. * Enable plls * Set external dividers while plls are locking * Wait for pll lock * Assert/deassert outreset all. * Take all pll's out of bypass * Clear safe mode * set source main and peripheral clocks * Ungate clocks */ void cm_basic_init(const cm_config_t *cfg) { uint32_t start, timeout; /* Start by being paranoid and gate all sw managed clocks */ /* * We need to disable nandclk * and then do another apb access before disabling * gatting off the rest of the periperal clocks. */ writel(~CLKMGR_PERPLLGRP_EN_NANDCLK_MASK & readl(&clock_manager_base->per_pll.en), &clock_manager_base->per_pll.en); /* DO NOT GATE OFF DEBUG CLOCKS & BRIDGE CLOCKS */ writel(CLKMGR_MAINPLLGRP_EN_DBGTIMERCLK_MASK | CLKMGR_MAINPLLGRP_EN_DBGTRACECLK_MASK | CLKMGR_MAINPLLGRP_EN_DBGCLK_MASK | CLKMGR_MAINPLLGRP_EN_DBGATCLK_MASK | CLKMGR_MAINPLLGRP_EN_S2FUSER0CLK_MASK | CLKMGR_MAINPLLGRP_EN_L4MPCLK_MASK, &clock_manager_base->main_pll.en); writel(0, &clock_manager_base->sdr_pll.en); /* now we can gate off the rest of the peripheral clocks */ writel(0, &clock_manager_base->per_pll.en); /* Put all plls in bypass */ cm_write_bypass(CLKMGR_BYPASS_PERPLL | CLKMGR_BYPASS_SDRPLL | CLKMGR_BYPASS_MAINPLL); /* Put all plls VCO registers back to reset value. */ writel(CLKMGR_MAINPLLGRP_VCO_RESET_VALUE & ~CLKMGR_MAINPLLGRP_VCO_REGEXTSEL_MASK, &clock_manager_base->main_pll.vco); writel(CLKMGR_PERPLLGRP_VCO_RESET_VALUE & ~CLKMGR_PERPLLGRP_VCO_REGEXTSEL_MASK, &clock_manager_base->per_pll.vco); writel(CLKMGR_SDRPLLGRP_VCO_RESET_VALUE & ~CLKMGR_SDRPLLGRP_VCO_REGEXTSEL_MASK, &clock_manager_base->sdr_pll.vco); /* * The clocks to the flash devices and the L4_MAIN clocks can * glitch when coming out of safe mode if their source values * are different from their reset value. So the trick it to * put them back to their reset state, and change input * after exiting safe mode but before ungating the clocks. */ writel(CLKMGR_PERPLLGRP_SRC_RESET_VALUE, &clock_manager_base->per_pll.src); writel(CLKMGR_MAINPLLGRP_L4SRC_RESET_VALUE, &clock_manager_base->main_pll.l4src); /* read back for the required 5 us delay. */ readl(&clock_manager_base->main_pll.vco); readl(&clock_manager_base->per_pll.vco); readl(&clock_manager_base->sdr_pll.vco); /* * We made sure bgpwr down was assert for 5 us. Now deassert BG PWR DN * with numerator and denominator. */ writel(cfg->main_vco_base, &clock_manager_base->main_pll.vco); writel(cfg->peri_vco_base, &clock_manager_base->per_pll.vco); writel(cfg->sdram_vco_base, &clock_manager_base->sdr_pll.vco); /* * Time starts here * must wait 7 us from BGPWRDN_SET(0) to VCO_ENABLE_SET(1) */ start = get_timer(0); /* timeout in unit of us as CONFIG_SYS_HZ = 1000*1000 */ timeout = 7; /* main mpu */ writel(cfg->mpuclk, &clock_manager_base->main_pll.mpuclk); /* main main clock */ writel(cfg->mainclk, &clock_manager_base->main_pll.mainclk); /* main for dbg */ writel(cfg->dbgatclk, &clock_manager_base->main_pll.dbgatclk); /* main for cfgs2fuser0clk */ writel(cfg->cfg2fuser0clk, &clock_manager_base->main_pll.cfgs2fuser0clk); /* Peri emac0 50 MHz default to RMII */ writel(cfg->emac0clk, &clock_manager_base->per_pll.emac0clk); /* Peri emac1 50 MHz default to RMII */ writel(cfg->emac1clk, &clock_manager_base->per_pll.emac1clk); /* Peri QSPI */ writel(cfg->mainqspiclk, &clock_manager_base->main_pll.mainqspiclk); writel(cfg->perqspiclk, &clock_manager_base->per_pll.perqspiclk); /* Peri pernandsdmmcclk */ writel(cfg->mainnandsdmmcclk, &clock_manager_base->main_pll.mainnandsdmmcclk); writel(cfg->pernandsdmmcclk, &clock_manager_base->per_pll.pernandsdmmcclk); /* Peri perbaseclk */ writel(cfg->perbaseclk, &clock_manager_base->per_pll.perbaseclk); /* Peri s2fuser1clk */ writel(cfg->s2fuser1clk, &clock_manager_base->per_pll.s2fuser1clk); /* 7 us must have elapsed before we can enable the VCO */ while (get_timer(start) < timeout) ; /* Enable vco */ /* main pll vco */ writel(cfg->main_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, &clock_manager_base->main_pll.vco); /* periferal pll */ writel(cfg->peri_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, &clock_manager_base->per_pll.vco); /* sdram pll vco */ writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, &clock_manager_base->sdr_pll.vco); /* L3 MP and L3 SP */ writel(cfg->maindiv, &clock_manager_base->main_pll.maindiv); writel(cfg->dbgdiv, &clock_manager_base->main_pll.dbgdiv); writel(cfg->tracediv, &clock_manager_base->main_pll.tracediv); /* L4 MP, L4 SP, can0, and can1 */ writel(cfg->perdiv, &clock_manager_base->per_pll.div); writel(cfg->gpiodiv, &clock_manager_base->per_pll.gpiodiv); #define LOCKED_MASK \ (CLKMGR_INTER_SDRPLLLOCKED_MASK | \ CLKMGR_INTER_PERPLLLOCKED_MASK | \ CLKMGR_INTER_MAINPLLLOCKED_MASK) cm_wait_for_lock(LOCKED_MASK); /* write the sdram clock counters before toggling outreset all */ writel(cfg->ddrdqsclk & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK, &clock_manager_base->sdr_pll.ddrdqsclk); writel(cfg->ddr2xdqsclk & CLKMGR_SDRPLLGRP_DDR2XDQSCLK_CNT_MASK, &clock_manager_base->sdr_pll.ddr2xdqsclk); writel(cfg->ddrdqclk & CLKMGR_SDRPLLGRP_DDRDQCLK_CNT_MASK, &clock_manager_base->sdr_pll.ddrdqclk); writel(cfg->s2fuser2clk & CLKMGR_SDRPLLGRP_S2FUSER2CLK_CNT_MASK, &clock_manager_base->sdr_pll.s2fuser2clk); /* * after locking, but before taking out of bypass * assert/deassert outresetall */ uint32_t mainvco = readl(&clock_manager_base->main_pll.vco); /* assert main outresetall */ writel(mainvco | CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK, &clock_manager_base->main_pll.vco); uint32_t periphvco = readl(&clock_manager_base->per_pll.vco); /* assert pheriph outresetall */ writel(periphvco | CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK, &clock_manager_base->per_pll.vco); /* assert sdram outresetall */ writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN| CLKMGR_SDRPLLGRP_VCO_OUTRESETALL, &clock_manager_base->sdr_pll.vco); /* deassert main outresetall */ writel(mainvco & ~CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK, &clock_manager_base->main_pll.vco); /* deassert pheriph outresetall */ writel(periphvco & ~CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK, &clock_manager_base->per_pll.vco); /* deassert sdram outresetall */ writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, &clock_manager_base->sdr_pll.vco); /* * now that we've toggled outreset all, all the clocks * are aligned nicely; so we can change any phase. */ cm_write_with_phase(cfg->ddrdqsclk, (uint32_t)&clock_manager_base->sdr_pll.ddrdqsclk, CLKMGR_SDRPLLGRP_DDRDQSCLK_PHASE_MASK); /* SDRAM DDR2XDQSCLK */ cm_write_with_phase(cfg->ddr2xdqsclk, (uint32_t)&clock_manager_base->sdr_pll.ddr2xdqsclk, CLKMGR_SDRPLLGRP_DDR2XDQSCLK_PHASE_MASK); cm_write_with_phase(cfg->ddrdqclk, (uint32_t)&clock_manager_base->sdr_pll.ddrdqclk, CLKMGR_SDRPLLGRP_DDRDQCLK_PHASE_MASK); cm_write_with_phase(cfg->s2fuser2clk, (uint32_t)&clock_manager_base->sdr_pll.s2fuser2clk, CLKMGR_SDRPLLGRP_S2FUSER2CLK_PHASE_MASK); /* Take all three PLLs out of bypass when safe mode is cleared. */ cm_write_bypass(0); /* clear safe mode */ cm_write_ctrl(readl(&clock_manager_base->ctrl) | CLKMGR_CTRL_SAFEMODE); /* * now that safe mode is clear with clocks gated * it safe to change the source mux for the flashes the the L4_MAIN */ writel(cfg->persrc, &clock_manager_base->per_pll.src); writel(cfg->l4src, &clock_manager_base->main_pll.l4src); /* Now ungate non-hw-managed clocks */ writel(~0, &clock_manager_base->main_pll.en); writel(~0, &clock_manager_base->per_pll.en); writel(~0, &clock_manager_base->sdr_pll.en); /* Clear the loss of lock bits (write 1 to clear) */ writel(CLKMGR_INTER_SDRPLLLOST_MASK | CLKMGR_INTER_PERPLLLOST_MASK | CLKMGR_INTER_MAINPLLLOST_MASK, &clock_manager_base->inter); } static unsigned int cm_get_main_vco_clk_hz(void) { uint32_t reg, clock; /* get the main VCO clock */ reg = readl(&clock_manager_base->main_pll.vco); clock = CONFIG_HPS_CLK_OSC1_HZ; clock /= ((reg & CLKMGR_MAINPLLGRP_VCO_DENOM_MASK) >> CLKMGR_MAINPLLGRP_VCO_DENOM_OFFSET) + 1; clock *= ((reg & CLKMGR_MAINPLLGRP_VCO_NUMER_MASK) >> CLKMGR_MAINPLLGRP_VCO_NUMER_OFFSET) + 1; return clock; } static unsigned int cm_get_per_vco_clk_hz(void) { uint32_t reg, clock = 0; /* identify PER PLL clock source */ reg = readl(&clock_manager_base->per_pll.vco); reg = (reg & CLKMGR_PERPLLGRP_VCO_SSRC_MASK) >> CLKMGR_PERPLLGRP_VCO_SSRC_OFFSET; if (reg == CLKMGR_VCO_SSRC_EOSC1) clock = CONFIG_HPS_CLK_OSC1_HZ; else if (reg == CLKMGR_VCO_SSRC_EOSC2) clock = CONFIG_HPS_CLK_OSC2_HZ; else if (reg == CLKMGR_VCO_SSRC_F2S) clock = CONFIG_HPS_CLK_F2S_PER_REF_HZ; /* get the PER VCO clock */ reg = readl(&clock_manager_base->per_pll.vco); clock /= ((reg & CLKMGR_PERPLLGRP_VCO_DENOM_MASK) >> CLKMGR_PERPLLGRP_VCO_DENOM_OFFSET) + 1; clock *= ((reg & CLKMGR_PERPLLGRP_VCO_NUMER_MASK) >> CLKMGR_PERPLLGRP_VCO_NUMER_OFFSET) + 1; return clock; } unsigned long cm_get_mpu_clk_hz(void) { uint32_t reg, clock; clock = cm_get_main_vco_clk_hz(); /* get the MPU clock */ reg = readl(&clock_manager_base->altera.mpuclk); clock /= (reg + 1); reg = readl(&clock_manager_base->main_pll.mpuclk); clock /= (reg + 1); return clock; } unsigned long cm_get_sdram_clk_hz(void) { uint32_t reg, clock = 0; /* identify SDRAM PLL clock source */ reg = readl(&clock_manager_base->sdr_pll.vco); reg = (reg & CLKMGR_SDRPLLGRP_VCO_SSRC_MASK) >> CLKMGR_SDRPLLGRP_VCO_SSRC_OFFSET; if (reg == CLKMGR_VCO_SSRC_EOSC1) clock = CONFIG_HPS_CLK_OSC1_HZ; else if (reg == CLKMGR_VCO_SSRC_EOSC2) clock = CONFIG_HPS_CLK_OSC2_HZ; else if (reg == CLKMGR_VCO_SSRC_F2S) clock = CONFIG_HPS_CLK_F2S_SDR_REF_HZ; /* get the SDRAM VCO clock */ reg = readl(&clock_manager_base->sdr_pll.vco); clock /= ((reg & CLKMGR_SDRPLLGRP_VCO_DENOM_MASK) >> CLKMGR_SDRPLLGRP_VCO_DENOM_OFFSET) + 1; clock *= ((reg & CLKMGR_SDRPLLGRP_VCO_NUMER_MASK) >> CLKMGR_SDRPLLGRP_VCO_NUMER_OFFSET) + 1; /* get the SDRAM (DDR_DQS) clock */ reg = readl(&clock_manager_base->sdr_pll.ddrdqsclk); reg = (reg & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK) >> CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_OFFSET; clock /= (reg + 1); return clock; } unsigned int cm_get_l4_sp_clk_hz(void) { uint32_t reg, clock = 0; /* identify the source of L4 SP clock */ reg = readl(&clock_manager_base->main_pll.l4src); reg = (reg & CLKMGR_MAINPLLGRP_L4SRC_L4SP) >> CLKMGR_MAINPLLGRP_L4SRC_L4SP_OFFSET; if (reg == CLKMGR_L4_SP_CLK_SRC_MAINPLL) { clock = cm_get_main_vco_clk_hz(); /* get the clock prior L4 SP divider (main clk) */ reg = readl(&clock_manager_base->altera.mainclk); clock /= (reg + 1); reg = readl(&clock_manager_base->main_pll.mainclk); clock /= (reg + 1); } else if (reg == CLKMGR_L4_SP_CLK_SRC_PERPLL) { clock = cm_get_per_vco_clk_hz(); /* get the clock prior L4 SP divider (periph_base_clk) */ reg = readl(&clock_manager_base->per_pll.perbaseclk); clock /= (reg + 1); } /* get the L4 SP clock which supplied to UART */ reg = readl(&clock_manager_base->main_pll.maindiv); reg = (reg & CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_MASK) >> CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_OFFSET; clock = clock / (1 << reg); return clock; } unsigned int cm_get_mmc_controller_clk_hz(void) { uint32_t reg, clock = 0; /* identify the source of MMC clock */ reg = readl(&clock_manager_base->per_pll.src); reg = (reg & CLKMGR_PERPLLGRP_SRC_SDMMC_MASK) >> CLKMGR_PERPLLGRP_SRC_SDMMC_OFFSET; if (reg == CLKMGR_SDMMC_CLK_SRC_F2S) { clock = CONFIG_HPS_CLK_F2S_PER_REF_HZ; } else if (reg == CLKMGR_SDMMC_CLK_SRC_MAIN) { clock = cm_get_main_vco_clk_hz(); /* get the SDMMC clock */ reg = readl(&clock_manager_base->main_pll.mainnandsdmmcclk); clock /= (reg + 1); } else if (reg == CLKMGR_SDMMC_CLK_SRC_PER) { clock = cm_get_per_vco_clk_hz(); /* get the SDMMC clock */ reg = readl(&clock_manager_base->per_pll.pernandsdmmcclk); clock /= (reg + 1); } /* further divide by 4 as we have fixed divider at wrapper */ clock /= 4; return clock; } unsigned int cm_get_qspi_controller_clk_hz(void) { uint32_t reg, clock = 0; /* identify the source of QSPI clock */ reg = readl(&clock_manager_base->per_pll.src); reg = (reg & CLKMGR_PERPLLGRP_SRC_QSPI_MASK) >> CLKMGR_PERPLLGRP_SRC_QSPI_OFFSET; if (reg == CLKMGR_QSPI_CLK_SRC_F2S) { clock = CONFIG_HPS_CLK_F2S_PER_REF_HZ; } else if (reg == CLKMGR_QSPI_CLK_SRC_MAIN) { clock = cm_get_main_vco_clk_hz(); /* get the qspi clock */ reg = readl(&clock_manager_base->main_pll.mainqspiclk); clock /= (reg + 1); } else if (reg == CLKMGR_QSPI_CLK_SRC_PER) { clock = cm_get_per_vco_clk_hz(); /* get the qspi clock */ reg = readl(&clock_manager_base->per_pll.perqspiclk); clock /= (reg + 1); } return clock; } unsigned int cm_get_spi_controller_clk_hz(void) { uint32_t reg, clock = 0; clock = cm_get_per_vco_clk_hz(); /* get the clock prior L4 SP divider (periph_base_clk) */ reg = readl(&clock_manager_base->per_pll.perbaseclk); clock /= (reg + 1); return clock; } static void cm_print_clock_quick_summary(void) { printf("MPU %10ld kHz\n", cm_get_mpu_clk_hz() / 1000); printf("DDR %10ld kHz\n", cm_get_sdram_clk_hz() / 1000); printf("EOSC1 %8d kHz\n", CONFIG_HPS_CLK_OSC1_HZ / 1000); printf("EOSC2 %8d kHz\n", CONFIG_HPS_CLK_OSC2_HZ / 1000); printf("F2S_SDR_REF %8d kHz\n", CONFIG_HPS_CLK_F2S_SDR_REF_HZ / 1000); printf("F2S_PER_REF %8d kHz\n", CONFIG_HPS_CLK_F2S_PER_REF_HZ / 1000); printf("MMC %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000); printf("QSPI %8d kHz\n", cm_get_qspi_controller_clk_hz() / 1000); printf("UART %8d kHz\n", cm_get_l4_sp_clk_hz() / 1000); printf("SPI %8d kHz\n", cm_get_spi_controller_clk_hz() / 1000); } int set_cpu_clk_info(void) { /* Calculate the clock frequencies required for drivers */ cm_get_l4_sp_clk_hz(); cm_get_mmc_controller_clk_hz(); gd->bd->bi_arm_freq = cm_get_mpu_clk_hz() / 1000000; gd->bd->bi_dsp_freq = 0; gd->bd->bi_ddr_freq = cm_get_sdram_clk_hz() / 1000000; return 0; } int do_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { cm_print_clock_quick_summary(); return 0; } U_BOOT_CMD( clocks, CONFIG_SYS_MAXARGS, 1, do_showclocks, "display clocks", "" );