/* * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include #include #include enum pll_clocks { PLL_SYS, /* System PLL */ PLL_BUS, /* System Bus PLL*/ PLL_USBOTG, /* OTG USB PLL */ PLL_ENET, /* ENET PLL */ }; struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; void enable_usboh3_clk(unsigned char enable) { u32 reg; reg = __raw_readl(&imx_ccm->CCGR6); if (enable) reg |= MXC_CCM_CCGR_CG_MASK << MXC_CCM_CCGR0_CG0_OFFSET; else reg &= ~(MXC_CCM_CCGR_CG_MASK << MXC_CCM_CCGR0_CG0_OFFSET); __raw_writel(reg, &imx_ccm->CCGR6); } #ifdef CONFIG_I2C_MXC /* i2c_num can be from 0 - 2 */ int enable_i2c_clk(unsigned char enable, unsigned i2c_num) { u32 reg; u32 mask; if (i2c_num > 2) return -EINVAL; mask = MXC_CCM_CCGR_CG_MASK << ((i2c_num + 3) << 1); reg = __raw_readl(&imx_ccm->CCGR2); if (enable) reg |= mask; else reg &= ~mask; __raw_writel(reg, &imx_ccm->CCGR2); return 0; } #endif static u32 decode_pll(enum pll_clocks pll, u32 infreq) { u32 div; switch (pll) { case PLL_SYS: div = __raw_readl(&imx_ccm->analog_pll_sys); div &= BM_ANADIG_PLL_SYS_DIV_SELECT; return infreq * (div >> 1); case PLL_BUS: div = __raw_readl(&imx_ccm->analog_pll_528); div &= BM_ANADIG_PLL_528_DIV_SELECT; return infreq * (20 + (div << 1)); case PLL_USBOTG: div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl); div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT; return infreq * (20 + (div << 1)); case PLL_ENET: div = __raw_readl(&imx_ccm->analog_pll_enet); div &= BM_ANADIG_PLL_ENET_DIV_SELECT; return (div == 3 ? 125000000 : 25000000 * (div << 1)); default: return 0; } /* NOTREACHED */ } static u32 get_mcu_main_clk(void) { u32 reg, freq; reg = __raw_readl(&imx_ccm->cacrr); reg &= MXC_CCM_CACRR_ARM_PODF_MASK; reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET; freq = decode_pll(PLL_SYS, CONFIG_SYS_MX6_HCLK); return freq / (reg + 1); } u32 get_periph_clk(void) { u32 reg, freq = 0; reg = __raw_readl(&imx_ccm->cbcdr); if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) { reg = __raw_readl(&imx_ccm->cbcmr); reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK; reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET; switch (reg) { case 0: freq = decode_pll(PLL_USBOTG, CONFIG_SYS_MX6_HCLK); break; case 1: case 2: freq = CONFIG_SYS_MX6_HCLK; break; default: break; } } else { reg = __raw_readl(&imx_ccm->cbcmr); reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK; reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET; switch (reg) { case 0: freq = decode_pll(PLL_BUS, CONFIG_SYS_MX6_HCLK); break; case 1: freq = PLL2_PFD2_FREQ; break; case 2: freq = PLL2_PFD0_FREQ; break; case 3: freq = PLL2_PFD2_DIV_FREQ; break; default: break; } } return freq; } static u32 get_ipg_clk(void) { u32 reg, ipg_podf; reg = __raw_readl(&imx_ccm->cbcdr); reg &= MXC_CCM_CBCDR_IPG_PODF_MASK; ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET; return get_ahb_clk() / (ipg_podf + 1); } static u32 get_ipg_per_clk(void) { u32 reg, perclk_podf; reg = __raw_readl(&imx_ccm->cscmr1); perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK; return get_ipg_clk() / (perclk_podf + 1); } static u32 get_uart_clk(void) { u32 reg, uart_podf; reg = __raw_readl(&imx_ccm->cscdr1); reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK; uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET; return PLL3_80M / (uart_podf + 1); } static u32 get_cspi_clk(void) { u32 reg, cspi_podf; reg = __raw_readl(&imx_ccm->cscdr2); reg &= MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK; cspi_podf = reg >> MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET; return PLL3_60M / (cspi_podf + 1); } static u32 get_axi_clk(void) { u32 root_freq, axi_podf; u32 cbcdr = __raw_readl(&imx_ccm->cbcdr); axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK; axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET; if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) { if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL) root_freq = PLL2_PFD2_FREQ; else root_freq = PLL3_PFD1_FREQ; } else root_freq = get_periph_clk(); return root_freq / (axi_podf + 1); } static u32 get_emi_slow_clk(void) { u32 emi_clk_sel, emi_slow_pof, cscmr1, root_freq = 0; cscmr1 = __raw_readl(&imx_ccm->cscmr1); emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK; emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET; emi_slow_pof = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK; emi_slow_pof >>= MXC_CCM_CSCMR1_ACLK_EMI_PODF_OFFSET; switch (emi_clk_sel) { case 0: root_freq = get_axi_clk(); break; case 1: root_freq = decode_pll(PLL_USBOTG, CONFIG_SYS_MX6_HCLK); break; case 2: root_freq = PLL2_PFD2_FREQ; break; case 3: root_freq = PLL2_PFD0_FREQ; break; } return root_freq / (emi_slow_pof + 1); } static u32 get_mmdc_ch0_clk(void) { u32 cbcdr = __raw_readl(&imx_ccm->cbcdr); u32 mmdc_ch0_podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >> MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET; return get_periph_clk() / (mmdc_ch0_podf + 1); } static u32 get_usdhc_clk(u32 port) { u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0; u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1); u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1); switch (port) { case 0: usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >> MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET; clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL; break; case 1: usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >> MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET; clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL; break; case 2: usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >> MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET; clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL; break; case 3: usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >> MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET; clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL; break; default: break; } if (clk_sel) root_freq = PLL2_PFD0_FREQ; else root_freq = PLL2_PFD2_FREQ; return root_freq / (usdhc_podf + 1); } u32 imx_get_uartclk(void) { return get_uart_clk(); } u32 imx_get_fecclk(void) { return decode_pll(PLL_ENET, CONFIG_SYS_MX6_HCLK); } int enable_sata_clock(void) { u32 reg = 0; s32 timeout = 100000; struct mxc_ccm_reg *const imx_ccm = (struct mxc_ccm_reg *) CCM_BASE_ADDR; /* Enable sata clock */ reg = readl(&imx_ccm->CCGR5); /* CCGR5 */ reg |= MXC_CCM_CCGR5_CG2_MASK; writel(reg, &imx_ccm->CCGR5); /* Enable PLLs */ reg = readl(&imx_ccm->analog_pll_enet); reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN; writel(reg, &imx_ccm->analog_pll_enet); reg |= BM_ANADIG_PLL_SYS_ENABLE; while (timeout--) { if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK) break; } if (timeout <= 0) return -EIO; reg &= ~BM_ANADIG_PLL_SYS_BYPASS; writel(reg, &imx_ccm->analog_pll_enet); reg |= BM_ANADIG_PLL_ENET_ENABLE_SATA; writel(reg, &imx_ccm->analog_pll_enet); return 0 ; } unsigned int mxc_get_clock(enum mxc_clock clk) { switch (clk) { case MXC_ARM_CLK: return get_mcu_main_clk(); case MXC_PER_CLK: return get_periph_clk(); case MXC_AHB_CLK: return get_ahb_clk(); case MXC_IPG_CLK: return get_ipg_clk(); case MXC_IPG_PERCLK: return get_ipg_per_clk(); case MXC_UART_CLK: return get_uart_clk(); case MXC_CSPI_CLK: return get_cspi_clk(); case MXC_AXI_CLK: return get_axi_clk(); case MXC_EMI_SLOW_CLK: return get_emi_slow_clk(); case MXC_DDR_CLK: return get_mmdc_ch0_clk(); case MXC_ESDHC_CLK: return get_usdhc_clk(0); case MXC_ESDHC2_CLK: return get_usdhc_clk(1); case MXC_ESDHC3_CLK: return get_usdhc_clk(2); case MXC_ESDHC4_CLK: return get_usdhc_clk(3); case MXC_SATA_CLK: return get_ahb_clk(); default: break; } return -1; } /* * Dump some core clockes. */ int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { u32 freq; freq = decode_pll(PLL_SYS, CONFIG_SYS_MX6_HCLK); printf("PLL_SYS %8d MHz\n", freq / 1000000); freq = decode_pll(PLL_BUS, CONFIG_SYS_MX6_HCLK); printf("PLL_BUS %8d MHz\n", freq / 1000000); freq = decode_pll(PLL_USBOTG, CONFIG_SYS_MX6_HCLK); printf("PLL_OTG %8d MHz\n", freq / 1000000); freq = decode_pll(PLL_ENET, CONFIG_SYS_MX6_HCLK); printf("PLL_NET %8d MHz\n", freq / 1000000); printf("\n"); printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000); printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000); printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000); printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000); printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000); printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000); printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000); printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000); printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000); printf("USDHC4 %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000); printf("EMI SLOW %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000); printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000); return 0; } /***************************************************/ U_BOOT_CMD( clocks, CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks, "display clocks", "" );