/* * Freescale i.MX28 timer driver * * Copyright (C) 2011 Marek Vasut * on behalf of DENX Software Engineering GmbH * * Based on code from LTIB: * (C) Copyright 2009-2010 Freescale Semiconductor, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include /* Maximum fixed count */ #if defined(CONFIG_MX23) #define TIMER_LOAD_VAL 0xffff #elif defined(CONFIG_MX28) #define TIMER_LOAD_VAL 0xffffffff #endif DECLARE_GLOBAL_DATA_PTR; #define timestamp (gd->arch.tbl) #define lastdec (gd->arch.lastinc) /* * This driver uses 1kHz clock source. */ #define MXS_INCREMENTER_HZ 1000 static inline unsigned long tick_to_time(unsigned long tick) { return tick / (MXS_INCREMENTER_HZ / CONFIG_SYS_HZ); } static inline unsigned long time_to_tick(unsigned long time) { return time * (MXS_INCREMENTER_HZ / CONFIG_SYS_HZ); } /* Calculate how many ticks happen in "us" microseconds */ static inline unsigned long us_to_tick(unsigned long us) { return (us * MXS_INCREMENTER_HZ) / 1000000; } int timer_init(void) { struct mxs_timrot_regs *timrot_regs = (struct mxs_timrot_regs *)MXS_TIMROT_BASE; /* Reset Timers and Rotary Encoder module */ mxs_reset_block(&timrot_regs->hw_timrot_rotctrl_reg); /* Set fixed_count to 0 */ #if defined(CONFIG_MX23) writel(0, &timrot_regs->hw_timrot_timcount0); #elif defined(CONFIG_MX28) writel(0, &timrot_regs->hw_timrot_fixed_count0); #endif /* Set UPDATE bit and 1Khz frequency */ writel(TIMROT_TIMCTRLn_UPDATE | TIMROT_TIMCTRLn_RELOAD | TIMROT_TIMCTRLn_SELECT_1KHZ_XTAL, &timrot_regs->hw_timrot_timctrl0); /* Set fixed_count to maximal value */ #if defined(CONFIG_MX23) writel(TIMER_LOAD_VAL - 1, &timrot_regs->hw_timrot_timcount0); #elif defined(CONFIG_MX28) writel(TIMER_LOAD_VAL, &timrot_regs->hw_timrot_fixed_count0); #endif return 0; } unsigned long long get_ticks(void) { struct mxs_timrot_regs *timrot_regs = (struct mxs_timrot_regs *)MXS_TIMROT_BASE; uint32_t now; /* Current tick value */ #if defined(CONFIG_MX23) /* Upper bits are the valid ones. */ now = readl(&timrot_regs->hw_timrot_timcount0) >> TIMROT_RUNNING_COUNTn_RUNNING_COUNT_OFFSET; #elif defined(CONFIG_MX28) now = readl(&timrot_regs->hw_timrot_running_count0); #endif if (lastdec >= now) { /* * normal mode (non roll) * move stamp forward with absolut diff ticks */ timestamp += (lastdec - now); } else { /* we have rollover of decrementer */ timestamp += (TIMER_LOAD_VAL - now) + lastdec; } lastdec = now; return timestamp; } ulong get_timer_masked(void) { return tick_to_time(get_ticks()); } ulong get_timer(ulong base) { return get_timer_masked() - base; } /* We use the HW_DIGCTL_MICROSECONDS register for sub-millisecond timer. */ #define MXS_HW_DIGCTL_MICROSECONDS 0x8001c0c0 void __udelay(unsigned long usec) { uint32_t old, new, incr; uint32_t counter = 0; old = readl(MXS_HW_DIGCTL_MICROSECONDS); while (counter < usec) { new = readl(MXS_HW_DIGCTL_MICROSECONDS); /* Check if the timer wrapped. */ if (new < old) { incr = 0xffffffff - old; incr += new; } else { incr = new - old; } /* * Check if we are close to the maximum time and the counter * would wrap if incremented. If that's the case, break out * from the loop as the requested delay time passed. */ if (counter + incr < counter) break; counter += incr; old = new; } } ulong get_tbclk(void) { return MXS_INCREMENTER_HZ; }