/* * Freescale i.MX28 Boot PMIC init * * Copyright (C) 2011 Marek Vasut * on behalf of DENX Software Engineering GmbH * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include "mxs_init.h" void mxs_power_clock2xtal(void) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; /* Set XTAL as CPU reference clock */ writel(CLKCTRL_CLKSEQ_BYPASS_CPU, &clkctrl_regs->hw_clkctrl_clkseq_set); } void mxs_power_clock2pll(void) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; setbits_le32(&clkctrl_regs->hw_clkctrl_pll0ctrl0, CLKCTRL_PLL0CTRL0_POWER); early_delay(100); setbits_le32(&clkctrl_regs->hw_clkctrl_clkseq, CLKCTRL_CLKSEQ_BYPASS_CPU); } void mxs_power_clear_auto_restart(void) { struct mxs_rtc_regs *rtc_regs = (struct mxs_rtc_regs *)MXS_RTC_BASE; writel(RTC_CTRL_SFTRST, &rtc_regs->hw_rtc_ctrl_clr); while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_SFTRST) ; writel(RTC_CTRL_CLKGATE, &rtc_regs->hw_rtc_ctrl_clr); while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_CLKGATE) ; /* * Due to the hardware design bug of mx28 EVK-A * we need to set the AUTO_RESTART bit. */ if (readl(&rtc_regs->hw_rtc_persistent0) & RTC_PERSISTENT0_AUTO_RESTART) return; while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK) ; setbits_le32(&rtc_regs->hw_rtc_persistent0, RTC_PERSISTENT0_AUTO_RESTART); writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_set); writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_clr); while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK) ; while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_STALE_REGS_MASK) ; } void mxs_power_set_linreg(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; /* Set linear regulator 25mV below switching converter */ clrsetbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_LINREG_OFFSET_MASK, POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW); clrsetbits_le32(&power_regs->hw_power_vddactrl, POWER_VDDACTRL_LINREG_OFFSET_MASK, POWER_VDDACTRL_LINREG_OFFSET_1STEPS_BELOW); clrsetbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_LINREG_OFFSET_MASK, POWER_VDDIOCTRL_LINREG_OFFSET_1STEPS_BELOW); } int mxs_get_batt_volt(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t volt = readl(&power_regs->hw_power_battmonitor); volt &= POWER_BATTMONITOR_BATT_VAL_MASK; volt >>= POWER_BATTMONITOR_BATT_VAL_OFFSET; volt *= 8; return volt; } int mxs_is_batt_ready(void) { return (mxs_get_batt_volt() >= 3600); } int mxs_is_batt_good(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t volt = mxs_get_batt_volt(); if ((volt >= 2400) && (volt <= 4300)) return 1; clrsetbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK, 0x3 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET); writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK, &power_regs->hw_power_5vctrl_clr); clrsetbits_le32(&power_regs->hw_power_charge, POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK, POWER_CHARGE_STOP_ILIMIT_10MA | 0x3); writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_clr); writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK, &power_regs->hw_power_5vctrl_clr); early_delay(500000); volt = mxs_get_batt_volt(); if (volt >= 3500) return 0; if (volt >= 2400) return 1; writel(POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK, &power_regs->hw_power_charge_clr); writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_set); return 0; } void mxs_power_setup_5v_detect(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; /* Start 5V detection */ clrsetbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_VBUSVALID_TRSH_MASK, POWER_5VCTRL_VBUSVALID_TRSH_4V4 | POWER_5VCTRL_PWRUP_VBUS_CMPS); } void mxs_src_power_init(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; /* Improve efficieny and reduce transient ripple */ writel(POWER_LOOPCTRL_TOGGLE_DIF | POWER_LOOPCTRL_EN_CM_HYST | POWER_LOOPCTRL_EN_DF_HYST, &power_regs->hw_power_loopctrl_set); clrsetbits_le32(&power_regs->hw_power_dclimits, POWER_DCLIMITS_POSLIMIT_BUCK_MASK, 0x30 << POWER_DCLIMITS_POSLIMIT_BUCK_OFFSET); setbits_le32(&power_regs->hw_power_battmonitor, POWER_BATTMONITOR_EN_BATADJ); /* Increase the RCSCALE level for quick DCDC response to dynamic load */ clrsetbits_le32(&power_regs->hw_power_loopctrl, POWER_LOOPCTRL_EN_RCSCALE_MASK, POWER_LOOPCTRL_RCSCALE_THRESH | POWER_LOOPCTRL_EN_RCSCALE_8X); clrsetbits_le32(&power_regs->hw_power_minpwr, POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS); /* 5V to battery handoff ... FIXME */ setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); early_delay(30); clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); } void mxs_power_init_4p2_params(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; /* Setup 4P2 parameters */ clrsetbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_CMPTRIP_MASK | POWER_DCDC4P2_TRG_MASK, POWER_DCDC4P2_TRG_4V2 | (31 << POWER_DCDC4P2_CMPTRIP_OFFSET)); clrsetbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_HEADROOM_ADJ_MASK, 0x4 << POWER_5VCTRL_HEADROOM_ADJ_OFFSET); clrsetbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_DROPOUT_CTRL_MASK, POWER_DCDC4P2_DROPOUT_CTRL_100MV | POWER_DCDC4P2_DROPOUT_CTRL_SRC_SEL); clrsetbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK, 0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET); } void mxs_enable_4p2_dcdc_input(int xfer) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t tmp, vbus_thresh, vbus_5vdetect, pwd_bo; uint32_t prev_5v_brnout, prev_5v_droop; prev_5v_brnout = readl(&power_regs->hw_power_5vctrl) & POWER_5VCTRL_PWDN_5VBRNOUT; prev_5v_droop = readl(&power_regs->hw_power_ctrl) & POWER_CTRL_ENIRQ_VDD5V_DROOP; clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT); writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF, &power_regs->hw_power_reset); clrbits_le32(&power_regs->hw_power_ctrl, POWER_CTRL_ENIRQ_VDD5V_DROOP); if (xfer && (readl(&power_regs->hw_power_5vctrl) & POWER_5VCTRL_ENABLE_DCDC)) { return; } /* * Recording orignal values that will be modified temporarlily * to handle a chip bug. See chip errata for CQ ENGR00115837 */ tmp = readl(&power_regs->hw_power_5vctrl); vbus_thresh = tmp & POWER_5VCTRL_VBUSVALID_TRSH_MASK; vbus_5vdetect = tmp & POWER_5VCTRL_VBUSVALID_5VDETECT; pwd_bo = readl(&power_regs->hw_power_minpwr) & POWER_MINPWR_PWD_BO; /* * Disable mechanisms that get erroneously tripped by when setting * the DCDC4P2 EN_DCDC */ clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_VBUSVALID_5VDETECT | POWER_5VCTRL_VBUSVALID_TRSH_MASK); writel(POWER_MINPWR_PWD_BO, &power_regs->hw_power_minpwr_set); if (xfer) { setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); early_delay(20); clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_ENABLE_DCDC); } else { setbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_DCDC); } early_delay(25); clrsetbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_VBUSVALID_TRSH_MASK, vbus_thresh); if (vbus_5vdetect) writel(vbus_5vdetect, &power_regs->hw_power_5vctrl_set); if (!pwd_bo) clrbits_le32(&power_regs->hw_power_minpwr, POWER_MINPWR_PWD_BO); while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) writel(POWER_CTRL_VBUS_VALID_IRQ, &power_regs->hw_power_ctrl_clr); if (prev_5v_brnout) { writel(POWER_5VCTRL_PWDN_5VBRNOUT, &power_regs->hw_power_5vctrl_set); writel(POWER_RESET_UNLOCK_KEY, &power_regs->hw_power_reset); } else { writel(POWER_5VCTRL_PWDN_5VBRNOUT, &power_regs->hw_power_5vctrl_clr); writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF, &power_regs->hw_power_reset); } while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VDD5V_DROOP_IRQ) writel(POWER_CTRL_VDD5V_DROOP_IRQ, &power_regs->hw_power_ctrl_clr); if (prev_5v_droop) clrbits_le32(&power_regs->hw_power_ctrl, POWER_CTRL_ENIRQ_VDD5V_DROOP); else setbits_le32(&power_regs->hw_power_ctrl, POWER_CTRL_ENIRQ_VDD5V_DROOP); } void mxs_power_init_4p2_regulator(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t tmp, tmp2; setbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_4P2); writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_set); writel(POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK, &power_regs->hw_power_5vctrl_clr); clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_TRG_MASK); /* Power up the 4p2 rail and logic/control */ writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK, &power_regs->hw_power_5vctrl_clr); /* * Start charging up the 4p2 capacitor. We ramp of this charge * gradually to avoid large inrush current from the 5V cable which can * cause transients/problems */ mxs_enable_4p2_dcdc_input(0); if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) { /* * If we arrived here, we were unable to recover from mx23 chip * errata 5837. 4P2 is disabled and sufficient battery power is * not present. Exiting to not enable DCDC power during 5V * connected state. */ clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_DCDC); writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK, &power_regs->hw_power_5vctrl_set); hang(); } /* * Here we set the 4p2 brownout level to something very close to 4.2V. * We then check the brownout status. If the brownout status is false, * the voltage is already close to the target voltage of 4.2V so we * can go ahead and set the 4P2 current limit to our max target limit. * If the brownout status is true, we need to ramp us the current limit * so that we don't cause large inrush current issues. We step up the * current limit until the brownout status is false or until we've * reached our maximum defined 4p2 current limit. */ clrsetbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK, 22 << POWER_DCDC4P2_BO_OFFSET); /* 4.15V */ if (!(readl(&power_regs->hw_power_sts) & POWER_STS_DCDC_4P2_BO)) { setbits_le32(&power_regs->hw_power_5vctrl, 0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET); } else { tmp = (readl(&power_regs->hw_power_5vctrl) & POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK) >> POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET; while (tmp < 0x3f) { if (!(readl(&power_regs->hw_power_sts) & POWER_STS_DCDC_4P2_BO)) { tmp = readl(&power_regs->hw_power_5vctrl); tmp |= POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK; early_delay(100); writel(tmp, &power_regs->hw_power_5vctrl); break; } else { tmp++; tmp2 = readl(&power_regs->hw_power_5vctrl); tmp2 &= ~POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK; tmp2 |= tmp << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET; writel(tmp2, &power_regs->hw_power_5vctrl); early_delay(100); } } } clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK); writel(POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr); } void mxs_power_init_dcdc_4p2_source(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; if (!(readl(&power_regs->hw_power_dcdc4p2) & POWER_DCDC4P2_ENABLE_DCDC)) { hang(); } mxs_enable_4p2_dcdc_input(1); if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) { clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_DCDC); writel(POWER_5VCTRL_ENABLE_DCDC, &power_regs->hw_power_5vctrl_clr); writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK, &power_regs->hw_power_5vctrl_set); } } void mxs_power_enable_4p2(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t vdddctrl, vddactrl, vddioctrl; uint32_t tmp; vdddctrl = readl(&power_regs->hw_power_vdddctrl); vddactrl = readl(&power_regs->hw_power_vddactrl); vddioctrl = readl(&power_regs->hw_power_vddioctrl); setbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG | POWER_VDDDCTRL_PWDN_BRNOUT); setbits_le32(&power_regs->hw_power_vddactrl, POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG | POWER_VDDACTRL_PWDN_BRNOUT); setbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_DISABLE_FET | POWER_VDDIOCTRL_PWDN_BRNOUT); mxs_power_init_4p2_params(); mxs_power_init_4p2_regulator(); /* Shutdown battery (none present) */ if (!mxs_is_batt_ready()) { clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK); writel(POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr); writel(POWER_CTRL_ENIRQ_DCDC4P2_BO, &power_regs->hw_power_ctrl_clr); } mxs_power_init_dcdc_4p2_source(); writel(vdddctrl, &power_regs->hw_power_vdddctrl); early_delay(20); writel(vddactrl, &power_regs->hw_power_vddactrl); early_delay(20); writel(vddioctrl, &power_regs->hw_power_vddioctrl); /* * Check if FET is enabled on either powerout and if so, * disable load. */ tmp = 0; tmp |= !(readl(&power_regs->hw_power_vdddctrl) & POWER_VDDDCTRL_DISABLE_FET); tmp |= !(readl(&power_regs->hw_power_vddactrl) & POWER_VDDACTRL_DISABLE_FET); tmp |= !(readl(&power_regs->hw_power_vddioctrl) & POWER_VDDIOCTRL_DISABLE_FET); if (tmp) writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_clr); } void mxs_boot_valid_5v(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; /* * Use VBUSVALID level instead of VDD5V_GT_VDDIO level to trigger a 5V * disconnect event. FIXME */ writel(POWER_5VCTRL_VBUSVALID_5VDETECT, &power_regs->hw_power_5vctrl_set); /* Configure polarity to check for 5V disconnection. */ writel(POWER_CTRL_POLARITY_VBUSVALID | POWER_CTRL_POLARITY_VDD5V_GT_VDDIO, &power_regs->hw_power_ctrl_clr); writel(POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_VDD5V_GT_VDDIO_IRQ, &power_regs->hw_power_ctrl_clr); mxs_power_enable_4p2(); } void mxs_powerdown(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; writel(POWER_RESET_UNLOCK_KEY, &power_regs->hw_power_reset); writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF, &power_regs->hw_power_reset); } void mxs_batt_boot(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT); clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_ENABLE_DCDC); clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_DCDC | POWER_DCDC4P2_ENABLE_4P2); writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_clr); /* 5V to battery handoff. */ setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); early_delay(30); clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER); writel(POWER_CTRL_ENIRQ_DCDC4P2_BO, &power_regs->hw_power_ctrl_clr); clrsetbits_le32(&power_regs->hw_power_minpwr, POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS); mxs_power_set_linreg(); clrbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG); clrbits_le32(&power_regs->hw_power_vddactrl, POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG); clrbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_DISABLE_FET); setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWD_CHARGE_4P2_MASK); setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_ENABLE_DCDC); clrsetbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK, 0x8 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET); } void mxs_handle_5v_conflict(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t tmp; setbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_BO_OFFSET_MASK); for (;;) { tmp = readl(&power_regs->hw_power_sts); if (tmp & POWER_STS_VDDIO_BO) { /* * VDDIO has a brownout, then the VDD5V_GT_VDDIO becomes * unreliable */ mxs_powerdown(); break; } if (tmp & POWER_STS_VDD5V_GT_VDDIO) { mxs_boot_valid_5v(); break; } else { mxs_powerdown(); break; } if (tmp & POWER_STS_PSWITCH_MASK) { mxs_batt_boot(); break; } } } void mxs_5v_boot(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; /* * NOTE: In original IMX-Bootlets, this also checks for VBUSVALID, * but their implementation always returns 1 so we omit it here. */ if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) { mxs_boot_valid_5v(); return; } early_delay(1000); if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) { mxs_boot_valid_5v(); return; } mxs_handle_5v_conflict(); } void mxs_init_batt_bo(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; /* Brownout at 3V */ clrsetbits_le32(&power_regs->hw_power_battmonitor, POWER_BATTMONITOR_BRWNOUT_LVL_MASK, 15 << POWER_BATTMONITOR_BRWNOUT_LVL_OFFSET); writel(POWER_CTRL_BATT_BO_IRQ, &power_regs->hw_power_ctrl_clr); writel(POWER_CTRL_ENIRQ_BATT_BO, &power_regs->hw_power_ctrl_clr); } void mxs_switch_vddd_to_dcdc_source(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; clrsetbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_LINREG_OFFSET_MASK, POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW); clrbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG | POWER_VDDDCTRL_DISABLE_STEPPING); } void mxs_power_configure_power_source(void) { int batt_ready, batt_good; struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; struct mxs_lradc_regs *lradc_regs = (struct mxs_lradc_regs *)MXS_LRADC_BASE; mxs_src_power_init(); batt_ready = mxs_is_batt_ready(); if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) { batt_good = mxs_is_batt_good(); if (batt_ready) { /* 5V source detected, good battery detected. */ mxs_batt_boot(); } else { if (batt_good) { /* 5V source detected, low battery detceted. */ } else { /* 5V source detected, bad battery detected. */ writel(LRADC_CONVERSION_AUTOMATIC, &lradc_regs->hw_lradc_conversion_clr); clrbits_le32(&power_regs->hw_power_battmonitor, POWER_BATTMONITOR_BATT_VAL_MASK); } mxs_5v_boot(); } } else { /* 5V not detected, booting from battery. */ mxs_batt_boot(); } mxs_power_clock2pll(); mxs_init_batt_bo(); mxs_switch_vddd_to_dcdc_source(); } void mxs_enable_output_rail_protection(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ | POWER_CTRL_VDDIO_BO_IRQ, &power_regs->hw_power_ctrl_clr); setbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_PWDN_BRNOUT); setbits_le32(&power_regs->hw_power_vddactrl, POWER_VDDACTRL_PWDN_BRNOUT); setbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_PWDN_BRNOUT); } int mxs_get_vddio_power_source_off(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t tmp; if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) { tmp = readl(&power_regs->hw_power_vddioctrl); if (tmp & POWER_VDDIOCTRL_DISABLE_FET) { if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) == POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) { return 1; } } if (!(readl(&power_regs->hw_power_5vctrl) & POWER_5VCTRL_ENABLE_DCDC)) { if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) == POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) { return 1; } } } return 0; } int mxs_get_vddd_power_source_off(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t tmp; tmp = readl(&power_regs->hw_power_vdddctrl); if (tmp & POWER_VDDDCTRL_DISABLE_FET) { if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) == POWER_VDDDCTRL_LINREG_OFFSET_0STEPS) { return 1; } } if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) { if (!(readl(&power_regs->hw_power_5vctrl) & POWER_5VCTRL_ENABLE_DCDC)) { return 1; } } if (!(tmp & POWER_VDDDCTRL_ENABLE_LINREG)) { if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) == POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW) { return 1; } } return 0; } void mxs_power_set_vddio(uint32_t new_target, uint32_t new_brownout) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t cur_target, diff, bo_int = 0; uint32_t powered_by_linreg = 0; new_brownout = (new_target - new_brownout + 25) / 50; cur_target = readl(&power_regs->hw_power_vddioctrl); cur_target &= POWER_VDDIOCTRL_TRG_MASK; cur_target *= 50; /* 50 mV step*/ cur_target += 2800; /* 2800 mV lowest */ powered_by_linreg = mxs_get_vddio_power_source_off(); if (new_target > cur_target) { if (powered_by_linreg) { bo_int = readl(&power_regs->hw_power_vddioctrl); clrbits_le32(&power_regs->hw_power_vddioctrl, POWER_CTRL_ENIRQ_VDDIO_BO); } setbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_BO_OFFSET_MASK); do { if (new_target - cur_target > 100) diff = cur_target + 100; else diff = new_target; diff -= 2800; diff /= 50; clrsetbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_TRG_MASK, diff); if (powered_by_linreg || (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO)) early_delay(500); else { while (!(readl(&power_regs->hw_power_sts) & POWER_STS_DC_OK)) ; } cur_target = readl(&power_regs->hw_power_vddioctrl); cur_target &= POWER_VDDIOCTRL_TRG_MASK; cur_target *= 50; /* 50 mV step*/ cur_target += 2800; /* 2800 mV lowest */ } while (new_target > cur_target); if (powered_by_linreg) { writel(POWER_CTRL_VDDIO_BO_IRQ, &power_regs->hw_power_ctrl_clr); if (bo_int & POWER_CTRL_ENIRQ_VDDIO_BO) setbits_le32(&power_regs->hw_power_vddioctrl, POWER_CTRL_ENIRQ_VDDIO_BO); } } else { do { if (cur_target - new_target > 100) diff = cur_target - 100; else diff = new_target; diff -= 2800; diff /= 50; clrsetbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_TRG_MASK, diff); if (powered_by_linreg || (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO)) early_delay(500); else { while (!(readl(&power_regs->hw_power_sts) & POWER_STS_DC_OK)) ; } cur_target = readl(&power_regs->hw_power_vddioctrl); cur_target &= POWER_VDDIOCTRL_TRG_MASK; cur_target *= 50; /* 50 mV step*/ cur_target += 2800; /* 2800 mV lowest */ } while (new_target < cur_target); } clrsetbits_le32(&power_regs->hw_power_vddioctrl, POWER_VDDIOCTRL_BO_OFFSET_MASK, new_brownout << POWER_VDDIOCTRL_BO_OFFSET_OFFSET); } void mxs_power_set_vddd(uint32_t new_target, uint32_t new_brownout) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; uint32_t cur_target, diff, bo_int = 0; uint32_t powered_by_linreg = 0; new_brownout = (new_target - new_brownout + 12) / 25; cur_target = readl(&power_regs->hw_power_vdddctrl); cur_target &= POWER_VDDDCTRL_TRG_MASK; cur_target *= 25; /* 25 mV step*/ cur_target += 800; /* 800 mV lowest */ powered_by_linreg = mxs_get_vddd_power_source_off(); if (new_target > cur_target) { if (powered_by_linreg) { bo_int = readl(&power_regs->hw_power_vdddctrl); clrbits_le32(&power_regs->hw_power_vdddctrl, POWER_CTRL_ENIRQ_VDDD_BO); } setbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_BO_OFFSET_MASK); do { if (new_target - cur_target > 100) diff = cur_target + 100; else diff = new_target; diff -= 800; diff /= 25; clrsetbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_TRG_MASK, diff); if (powered_by_linreg || (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO)) early_delay(500); else { while (!(readl(&power_regs->hw_power_sts) & POWER_STS_DC_OK)) ; } cur_target = readl(&power_regs->hw_power_vdddctrl); cur_target &= POWER_VDDDCTRL_TRG_MASK; cur_target *= 25; /* 25 mV step*/ cur_target += 800; /* 800 mV lowest */ } while (new_target > cur_target); if (powered_by_linreg) { writel(POWER_CTRL_VDDD_BO_IRQ, &power_regs->hw_power_ctrl_clr); if (bo_int & POWER_CTRL_ENIRQ_VDDD_BO) setbits_le32(&power_regs->hw_power_vdddctrl, POWER_CTRL_ENIRQ_VDDD_BO); } } else { do { if (cur_target - new_target > 100) diff = cur_target - 100; else diff = new_target; diff -= 800; diff /= 25; clrsetbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_TRG_MASK, diff); if (powered_by_linreg || (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO)) early_delay(500); else { while (!(readl(&power_regs->hw_power_sts) & POWER_STS_DC_OK)) ; } cur_target = readl(&power_regs->hw_power_vdddctrl); cur_target &= POWER_VDDDCTRL_TRG_MASK; cur_target *= 25; /* 25 mV step*/ cur_target += 800; /* 800 mV lowest */ } while (new_target < cur_target); } clrsetbits_le32(&power_regs->hw_power_vdddctrl, POWER_VDDDCTRL_BO_OFFSET_MASK, new_brownout << POWER_VDDDCTRL_BO_OFFSET_OFFSET); } void mxs_setup_batt_detect(void) { mxs_lradc_init(); mxs_lradc_enable_batt_measurement(); early_delay(10); } void mxs_power_init(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; mxs_power_clock2xtal(); mxs_power_clear_auto_restart(); mxs_power_set_linreg(); mxs_power_setup_5v_detect(); mxs_setup_batt_detect(); mxs_power_configure_power_source(); mxs_enable_output_rail_protection(); mxs_power_set_vddio(3300, 3150); mxs_power_set_vddd(1350, 1200); writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ | POWER_CTRL_VDDIO_BO_IRQ | POWER_CTRL_VDD5V_DROOP_IRQ | POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_BATT_BO_IRQ | POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr); writel(POWER_5VCTRL_PWDN_5VBRNOUT, &power_regs->hw_power_5vctrl_set); early_delay(1000); } #ifdef CONFIG_SPL_MX28_PSWITCH_WAIT void mxs_power_wait_pswitch(void) { struct mxs_power_regs *power_regs = (struct mxs_power_regs *)MXS_POWER_BASE; while (!(readl(&power_regs->hw_power_sts) & POWER_STS_PSWITCH_MASK)) ; } #endif