/* * Freescale i.MX23/i.MX28 clock setup code * * Copyright (C) 2011 Marek Vasut * on behalf of DENX Software Engineering GmbH * * Based on code from LTIB: * Copyright (C) 2010 Freescale Semiconductor, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include /* * The PLL frequency is 480MHz and XTAL frequency is 24MHz * iMX23: datasheet section 4.2 * iMX28: datasheet section 10.2 */ #define PLL_FREQ_KHZ 480000 #define PLL_FREQ_COEF 18 #define XTAL_FREQ_KHZ 24000 #define PLL_FREQ_MHZ (PLL_FREQ_KHZ / 1000) #define XTAL_FREQ_MHZ (XTAL_FREQ_KHZ / 1000) #if defined(CONFIG_MX23) #define MXC_SSPCLK_MAX MXC_SSPCLK0 #elif defined(CONFIG_MX28) #define MXC_SSPCLK_MAX MXC_SSPCLK3 #endif static uint32_t mxs_get_pclk(void) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; uint32_t clkctrl, clkseq, div; uint8_t clkfrac, frac; clkctrl = readl(&clkctrl_regs->hw_clkctrl_cpu); /* No support of fractional divider calculation */ if (clkctrl & (CLKCTRL_CPU_DIV_XTAL_FRAC_EN | CLKCTRL_CPU_DIV_CPU_FRAC_EN)) { return 0; } clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq); /* XTAL Path */ if (clkseq & CLKCTRL_CLKSEQ_BYPASS_CPU) { div = (clkctrl & CLKCTRL_CPU_DIV_XTAL_MASK) >> CLKCTRL_CPU_DIV_XTAL_OFFSET; return XTAL_FREQ_MHZ / div; } /* REF Path */ clkfrac = readb(&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_CPU]); frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK; div = clkctrl & CLKCTRL_CPU_DIV_CPU_MASK; return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div; } static uint32_t mxs_get_hclk(void) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; uint32_t div; uint32_t clkctrl; clkctrl = readl(&clkctrl_regs->hw_clkctrl_hbus); /* No support of fractional divider calculation */ if (clkctrl & CLKCTRL_HBUS_DIV_FRAC_EN) return 0; div = clkctrl & CLKCTRL_HBUS_DIV_MASK; return mxs_get_pclk() / div; } static uint32_t mxs_get_emiclk(void) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; uint32_t clkctrl, clkseq, div; uint8_t clkfrac, frac; clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq); clkctrl = readl(&clkctrl_regs->hw_clkctrl_emi); /* XTAL Path */ if (clkseq & CLKCTRL_CLKSEQ_BYPASS_EMI) { div = (clkctrl & CLKCTRL_EMI_DIV_XTAL_MASK) >> CLKCTRL_EMI_DIV_XTAL_OFFSET; return XTAL_FREQ_MHZ / div; } /* REF Path */ clkfrac = readb(&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_EMI]); frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK; div = clkctrl & CLKCTRL_EMI_DIV_EMI_MASK; return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div; } static uint32_t mxs_get_gpmiclk(void) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; #if defined(CONFIG_MX23) uint8_t *reg = &clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_CPU]; #elif defined(CONFIG_MX28) uint8_t *reg = &clkctrl_regs->hw_clkctrl_frac1[CLKCTRL_FRAC1_GPMI]; #endif uint32_t clkctrl, clkseq, div; uint8_t clkfrac, frac; clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq); clkctrl = readl(&clkctrl_regs->hw_clkctrl_gpmi); /* XTAL Path */ if (clkseq & CLKCTRL_CLKSEQ_BYPASS_GPMI) { div = clkctrl & CLKCTRL_GPMI_DIV_MASK; return XTAL_FREQ_MHZ / div; } /* REF Path */ clkfrac = readb(reg); frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK; div = clkctrl & CLKCTRL_GPMI_DIV_MASK; return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div; } /* * Set IO clock frequency, in kHz */ void mxs_set_ioclk(enum mxs_ioclock io, uint32_t freq) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; uint32_t div; int io_reg; if (freq == 0) return; if ((io < MXC_IOCLK0) || (io > MXC_IOCLK1)) return; div = (PLL_FREQ_KHZ * PLL_FREQ_COEF) / freq; if (div < 18) div = 18; if (div > 35) div = 35; io_reg = CLKCTRL_FRAC0_IO0 - io; /* Register order is reversed */ writeb(CLKCTRL_FRAC_CLKGATE, &clkctrl_regs->hw_clkctrl_frac0_set[io_reg]); writeb(CLKCTRL_FRAC_CLKGATE | (div & CLKCTRL_FRAC_FRAC_MASK), &clkctrl_regs->hw_clkctrl_frac0[io_reg]); writeb(CLKCTRL_FRAC_CLKGATE, &clkctrl_regs->hw_clkctrl_frac0_clr[io_reg]); } /* * Get IO clock, returns IO clock in kHz */ static uint32_t mxs_get_ioclk(enum mxs_ioclock io) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; uint8_t ret; int io_reg; if ((io < MXC_IOCLK0) || (io > MXC_IOCLK1)) return 0; io_reg = CLKCTRL_FRAC0_IO0 - io; /* Register order is reversed */ ret = readb(&clkctrl_regs->hw_clkctrl_frac0[io_reg]) & CLKCTRL_FRAC_FRAC_MASK; return (PLL_FREQ_KHZ * PLL_FREQ_COEF) / ret; } /* * Configure SSP clock frequency, in kHz */ void mxs_set_sspclk(enum mxs_sspclock ssp, uint32_t freq, int xtal) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; uint32_t clk, clkreg; if (ssp > MXC_SSPCLK_MAX) return; clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) + (ssp * sizeof(struct mxs_register_32)); clrbits_le32(clkreg, CLKCTRL_SSP_CLKGATE); while (readl(clkreg) & CLKCTRL_SSP_CLKGATE) ; if (xtal) clk = XTAL_FREQ_KHZ; else clk = mxs_get_ioclk(ssp >> 1); if (freq > clk) return; /* Calculate the divider and cap it if necessary */ clk /= freq; if (clk > CLKCTRL_SSP_DIV_MASK) clk = CLKCTRL_SSP_DIV_MASK; clrsetbits_le32(clkreg, CLKCTRL_SSP_DIV_MASK, clk); while (readl(clkreg) & CLKCTRL_SSP_BUSY) ; if (xtal) writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp, &clkctrl_regs->hw_clkctrl_clkseq_set); else writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp, &clkctrl_regs->hw_clkctrl_clkseq_clr); } /* * Return SSP frequency, in kHz */ static uint32_t mxs_get_sspclk(enum mxs_sspclock ssp) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; uint32_t clkreg; uint32_t clk, tmp; if (ssp > MXC_SSPCLK_MAX) return 0; tmp = readl(&clkctrl_regs->hw_clkctrl_clkseq); if (tmp & (CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp)) return XTAL_FREQ_KHZ; clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) + (ssp * sizeof(struct mxs_register_32)); tmp = readl(clkreg) & CLKCTRL_SSP_DIV_MASK; if (tmp == 0) return 0; clk = mxs_get_ioclk(ssp >> 1); return clk / tmp; } /* * Set SSP/MMC bus frequency, in kHz) */ void mxs_set_ssp_busclock(unsigned int bus, uint32_t freq) { struct mxs_ssp_regs *ssp_regs; const enum mxs_sspclock clk = mxs_ssp_clock_by_bus(bus); const uint32_t sspclk = mxs_get_sspclk(clk); uint32_t reg; uint32_t divide, rate, tgtclk; ssp_regs = mxs_ssp_regs_by_bus(bus); /* * SSP bit rate = SSPCLK / (CLOCK_DIVIDE * (1 + CLOCK_RATE)), * CLOCK_DIVIDE has to be an even value from 2 to 254, and * CLOCK_RATE could be any integer from 0 to 255. */ for (divide = 2; divide < 254; divide += 2) { rate = sspclk / freq / divide; if (rate <= 256) break; } tgtclk = sspclk / divide / rate; while (tgtclk > freq) { rate++; tgtclk = sspclk / divide / rate; } if (rate > 256) rate = 256; /* Always set timeout the maximum */ reg = SSP_TIMING_TIMEOUT_MASK | (divide << SSP_TIMING_CLOCK_DIVIDE_OFFSET) | ((rate - 1) << SSP_TIMING_CLOCK_RATE_OFFSET); writel(reg, &ssp_regs->hw_ssp_timing); debug("SPI%d: Set freq rate to %d KHz (requested %d KHz)\n", bus, tgtclk, freq); } void mxs_set_lcdclk(uint32_t __maybe_unused lcd_base, uint32_t freq) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; uint32_t fp, x, k_rest, k_best, x_best, tk; int32_t k_best_l = 999, k_best_t = 0, x_best_l = 0xff, x_best_t = 0xff; if (freq == 0) return; #if defined(CONFIG_MX23) writel(CLKCTRL_CLKSEQ_BYPASS_PIX, &clkctrl_regs->hw_clkctrl_clkseq_clr); #elif defined(CONFIG_MX28) writel(CLKCTRL_CLKSEQ_BYPASS_DIS_LCDIF, &clkctrl_regs->hw_clkctrl_clkseq_clr); #endif /* * / 18 \ 1 1 * freq kHz = | 480000000 Hz * -- | * --- * ------ * \ x / k 1000 * * 480000000 Hz 18 * ------------ * -- * freq kHz x * k = ------------------- * 1000 */ fp = ((PLL_FREQ_KHZ * 1000) / freq) * 18; for (x = 18; x <= 35; x++) { tk = fp / x; if ((tk / 1000 == 0) || (tk / 1000 > 255)) continue; k_rest = tk % 1000; if (k_rest < (k_best_l % 1000)) { k_best_l = tk; x_best_l = x; } if (k_rest > (k_best_t % 1000)) { k_best_t = tk; x_best_t = x; } } if (1000 - (k_best_t % 1000) > (k_best_l % 1000)) { k_best = k_best_l; x_best = x_best_l; } else { k_best = k_best_t; x_best = x_best_t; } k_best /= 1000; #if defined(CONFIG_MX23) writeb(CLKCTRL_FRAC_CLKGATE, &clkctrl_regs->hw_clkctrl_frac0_set[CLKCTRL_FRAC0_PIX]); writeb(CLKCTRL_FRAC_CLKGATE | (x_best & CLKCTRL_FRAC_FRAC_MASK), &clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_PIX]); writeb(CLKCTRL_FRAC_CLKGATE, &clkctrl_regs->hw_clkctrl_frac0_clr[CLKCTRL_FRAC0_PIX]); writel(CLKCTRL_PIX_CLKGATE, &clkctrl_regs->hw_clkctrl_pix_set); clrsetbits_le32(&clkctrl_regs->hw_clkctrl_pix, CLKCTRL_PIX_DIV_MASK | CLKCTRL_PIX_CLKGATE, k_best << CLKCTRL_PIX_DIV_OFFSET); while (readl(&clkctrl_regs->hw_clkctrl_pix) & CLKCTRL_PIX_BUSY) ; #elif defined(CONFIG_MX28) writeb(CLKCTRL_FRAC_CLKGATE, &clkctrl_regs->hw_clkctrl_frac1_set[CLKCTRL_FRAC1_PIX]); writeb(CLKCTRL_FRAC_CLKGATE | (x_best & CLKCTRL_FRAC_FRAC_MASK), &clkctrl_regs->hw_clkctrl_frac1[CLKCTRL_FRAC1_PIX]); writeb(CLKCTRL_FRAC_CLKGATE, &clkctrl_regs->hw_clkctrl_frac1_clr[CLKCTRL_FRAC1_PIX]); writel(CLKCTRL_DIS_LCDIF_CLKGATE, &clkctrl_regs->hw_clkctrl_lcdif_set); clrsetbits_le32(&clkctrl_regs->hw_clkctrl_lcdif, CLKCTRL_DIS_LCDIF_DIV_MASK | CLKCTRL_DIS_LCDIF_CLKGATE, k_best << CLKCTRL_DIS_LCDIF_DIV_OFFSET); while (readl(&clkctrl_regs->hw_clkctrl_lcdif) & CLKCTRL_DIS_LCDIF_BUSY) ; #endif } uint32_t mxc_get_clock(enum mxc_clock clk) { switch (clk) { case MXC_ARM_CLK: return mxs_get_pclk() * 1000000; case MXC_GPMI_CLK: return mxs_get_gpmiclk() * 1000000; case MXC_AHB_CLK: case MXC_IPG_CLK: return mxs_get_hclk() * 1000000; case MXC_EMI_CLK: return mxs_get_emiclk(); case MXC_IO0_CLK: return mxs_get_ioclk(MXC_IOCLK0); case MXC_IO1_CLK: return mxs_get_ioclk(MXC_IOCLK1); case MXC_XTAL_CLK: return XTAL_FREQ_KHZ * 1000; case MXC_SSP0_CLK: return mxs_get_sspclk(MXC_SSPCLK0); #ifdef CONFIG_MX28 case MXC_SSP1_CLK: return mxs_get_sspclk(MXC_SSPCLK1); case MXC_SSP2_CLK: return mxs_get_sspclk(MXC_SSPCLK2); case MXC_SSP3_CLK: return mxs_get_sspclk(MXC_SSPCLK3); #endif } return 0; }