summaryrefslogtreecommitdiffstats
path: root/cpu/bf533/cplbmgr.S
diff options
context:
space:
mode:
Diffstat (limited to 'cpu/bf533/cplbmgr.S')
-rw-r--r--cpu/bf533/cplbmgr.S601
1 files changed, 0 insertions, 601 deletions
diff --git a/cpu/bf533/cplbmgr.S b/cpu/bf533/cplbmgr.S
deleted file mode 100644
index 7a0b048629..0000000000
--- a/cpu/bf533/cplbmgr.S
+++ /dev/null
@@ -1,601 +0,0 @@
-/*This file is subject to the terms and conditions of the GNU General Public
- * License.
- *
- * Blackfin BF533/2.6 support : LG Soft India
- * Modification: Dec 07 2004
- * 1. Correction in icheck_lock. Valid lock entries were
- * geting victimized, for instruction cplb replacement.
- * 2. Setup loop's are modified as now toolchain support's P Indexed
- * addressing
- * :LG Soft India
- *
- */
-
-/* Usage: int _cplb_mgr(is_data_miss,int enable_cache)
- * is_data_miss==2 => Mark as Dirty, write to the clean data page
- * is_data_miss==1 => Replace a data CPLB.
- * is_data_miss==0 => Replace an instruction CPLB.
- *
- * Returns:
- * CPLB_RELOADED => Successfully updated CPLB table.
- * CPLB_NO_UNLOCKED => All CPLBs are locked, so cannot be evicted.This indicates
- * that the CPLBs in the configuration tablei are badly
- * configured, as this should never occur.
- * CPLB_NO_ADDR_MATCH => The address being accessed, that triggered the exception,
- * is not covered by any of the CPLBs in the configuration
- * table. The application isi presumably misbehaving.
- * CPLB_PROT_VIOL => The address being accessed, that triggered thei exception,
- * was not a first-write to a clean Write Back Data page,
- * and so presumably is a genuine violation of the page's
- * protection attributes. The application is misbehaving.
- */
-#define ASSEMBLY
-
-#include <asm-blackfin/linkage.h>
-#include <asm-blackfin/blackfin.h>
-#include <asm-blackfin/cplbtab.h>
-#include <asm-blackfin/cplb.h>
-
-.text
-
-.align 2;
-ENTRY(_cplb_mgr)
-
- [--SP]=( R7:0,P5:0 );
-
- CC = R0 == 2;
- IF CC JUMP dcplb_write;
-
- CC = R0 == 0;
- IF !CC JUMP dcplb_miss_compare;
-
- /* ICPLB Miss Exception. We need to choose one of the
- * currently-installed CPLBs, and replace it with one
- * from the configuration table.
- */
-
- P4.L = (ICPLB_FAULT_ADDR & 0xFFFF);
- P4.H = (ICPLB_FAULT_ADDR >> 16);
-
- P1 = 16;
- P5.L = page_size_table;
- P5.H = page_size_table;
-
- P0.L = (ICPLB_DATA0 & 0xFFFF);
- P0.H = (ICPLB_DATA0 >> 16);
- R4 = [P4]; /* Get faulting address*/
- R6 = 64; /* Advance past the fault address, which*/
- R6 = R6 + R4; /* we'll use if we find a match*/
- R3 = ((16 << 8) | 2); /* Extract mask, bits 16 and 17.*/
-
- R5 = 0;
-isearch:
-
- R1 = [P0-0x100]; /* Address for this CPLB */
-
- R0 = [P0++]; /* Info for this CPLB*/
- CC = BITTST(R0,0); /* Is the CPLB valid?*/
- IF !CC JUMP nomatch; /* Skip it, if not.*/
- CC = R4 < R1(IU); /* If fault address less than page start*/
- IF CC JUMP nomatch; /* then skip this one.*/
- R2 = EXTRACT(R0,R3.L) (Z); /* Get page size*/
- P1 = R2;
- P1 = P5 + (P1<<2); /* index into page-size table*/
- R2 = [P1]; /* Get the page size*/
- R1 = R1 + R2; /* and add to page start, to get page end*/
- CC = R4 < R1(IU); /* and see whether fault addr is in page.*/
- IF !CC R4 = R6; /* If so, advance the address and finish loop.*/
- IF !CC JUMP isearch_done;
-nomatch:
- /* Go around again*/
- R5 += 1;
- CC = BITTST(R5, 4); /* i.e CC = R5 >= 16*/
- IF !CC JUMP isearch;
-
-isearch_done:
- I0 = R4; /* Fault address we'll search for*/
-
- /* set up pointers */
- P0.L = (ICPLB_DATA0 & 0xFFFF);
- P0.H = (ICPLB_DATA0 >> 16);
-
- /* The replacement procedure for ICPLBs */
-
- P4.L = (IMEM_CONTROL & 0xFFFF);
- P4.H = (IMEM_CONTROL >> 16);
-
- /* disable cplbs */
- R5 = [P4]; /* Control Register*/
- BITCLR(R5,ENICPLB_P);
- CLI R1;
- SSYNC; /* SSYNC required before writing to IMEM_CONTROL. */
- .align 8;
- [P4] = R5;
- SSYNC;
- STI R1;
-
- R1 = -1; /* end point comparison */
- R3 = 16; /* counter */
-
- /* Search through CPLBs for first non-locked entry */
- /* Overwrite it by moving everyone else up by 1 */
-icheck_lock:
- R0 = [P0++];
- R3 = R3 + R1;
- CC = R3 == R1;
- IF CC JUMP all_locked;
- CC = BITTST(R0, 0); /* an invalid entry is good */
- IF !CC JUMP ifound_victim;
- CC = BITTST(R0,1); /* but a locked entry isn't */
- IF CC JUMP icheck_lock;
-
-ifound_victim:
-#ifdef CONFIG_CPLB_INFO
- R7 = [P0 - 0x104];
- P2.L = ipdt_table;
- P2.H = ipdt_table;
- P3.L = ipdt_swapcount_table;
- P3.H = ipdt_swapcount_table;
- P3 += -4;
-icount:
- R2 = [P2]; /* address from config table */
- P2 += 8;
- P3 += 8;
- CC = R2==-1;
- IF CC JUMP icount_done;
- CC = R7==R2;
- IF !CC JUMP icount;
- R7 = [P3];
- R7 += 1;
- [P3] = R7;
- CSYNC;
-icount_done:
-#endif
- LC0=R3;
- LSETUP(is_move,ie_move) LC0;
-is_move:
- R0 = [P0];
- [P0 - 4] = R0;
- R0 = [P0 - 0x100];
- [P0-0x104] = R0;
-ie_move:P0+=4;
-
- /* We've made space in the ICPLB table, so that ICPLB15
- * is now free to be overwritten. Next, we have to determine
- * which CPLB we need to install, from the configuration
- * table. This is a matter of getting the start-of-page
- * addresses and page-lengths from the config table, and
- * determining whether the fault address falls within that
- * range.
- */
-
- P2.L = ipdt_table;
- P2.H = ipdt_table;
-#ifdef CONFIG_CPLB_INFO
- P3.L = ipdt_swapcount_table;
- P3.H = ipdt_swapcount_table;
- P3 += -8;
-#endif
- P0.L = page_size_table;
- P0.H = page_size_table;
-
- /* Retrieve our fault address (which may have been advanced
- * because the faulting instruction crossed a page boundary).
- */
-
- R0 = I0;
-
- /* An extraction pattern, to get the page-size bits from
- * the CPLB data entry. Bits 16-17, so two bits at posn 16.
- */
-
- R1 = ((16<<8)|2);
-inext: R4 = [P2++]; /* address from config table */
- R2 = [P2++]; /* data from config table */
-#ifdef CONFIG_CPLB_INFO
- P3 += 8;
-#endif
-
- CC = R4 == -1; /* End of config table*/
- IF CC JUMP no_page_in_table;
-
- /* See if failed address > start address */
- CC = R4 <= R0(IU);
- IF !CC JUMP inext;
-
- /* extract page size (17:16)*/
- R3 = EXTRACT(R2, R1.L) (Z);
-
- /* add page size to addr to get range */
-
- P5 = R3;
- P5 = P0 + (P5 << 2); /* scaled, for int access*/
- R3 = [P5];
- R3 = R3 + R4;
-
- /* See if failed address < (start address + page size) */
- CC = R0 < R3(IU);
- IF !CC JUMP inext;
-
- /* We've found a CPLB in the config table that covers
- * the faulting address, so install this CPLB into the
- * last entry of the table.
- */
-
- P1.L = (ICPLB_DATA15 & 0xFFFF); /*ICPLB_DATA15*/
- P1.H = (ICPLB_DATA15 >> 16);
- [P1] = R2;
- [P1-0x100] = R4;
-#ifdef CONFIG_CPLB_INFO
- R3 = [P3];
- R3 += 1;
- [P3] = R3;
-#endif
-
- /* P4 points to IMEM_CONTROL, and R5 contains its old
- * value, after we disabled ICPLBS. Re-enable them.
- */
-
- BITSET(R5,ENICPLB_P);
- CLI R2;
- SSYNC; /* SSYNC required before writing to IMEM_CONTROL. */
- .align 8;
- [P4] = R5;
- SSYNC;
- STI R2;
-
- ( R7:0,P5:0 ) = [SP++];
- R0 = CPLB_RELOADED;
- RTS;
-
-/* FAILED CASES*/
-no_page_in_table:
- ( R7:0,P5:0 ) = [SP++];
- R0 = CPLB_NO_ADDR_MATCH;
- RTS;
-all_locked:
- ( R7:0,P5:0 ) = [SP++];
- R0 = CPLB_NO_UNLOCKED;
- RTS;
-prot_violation:
- ( R7:0,P5:0 ) = [SP++];
- R0 = CPLB_PROT_VIOL;
- RTS;
-
-dcplb_write:
-
- /* if a DCPLB is marked as write-back (CPLB_WT==0), and
- * it is clean (CPLB_DIRTY==0), then a write to the
- * CPLB's page triggers a protection violation. We have to
- * mark the CPLB as dirty, to indicate that there are
- * pending writes associated with the CPLB.
- */
-
- P4.L = (DCPLB_STATUS & 0xFFFF);
- P4.H = (DCPLB_STATUS >> 16);
- P3.L = (DCPLB_DATA0 & 0xFFFF);
- P3.H = (DCPLB_DATA0 >> 16);
- R5 = [P4];
-
- /* A protection violation can be caused by more than just writes
- * to a clean WB page, so we have to ensure that:
- * - It's a write
- * - to a clean WB page
- * - and is allowed in the mode the access occurred.
- */
-
- CC = BITTST(R5, 16); /* ensure it was a write*/
- IF !CC JUMP prot_violation;
-
- /* to check the rest, we have to retrieve the DCPLB.*/
-
- /* The low half of DCPLB_STATUS is a bit mask*/
-
- R2 = R5.L (Z); /* indicating which CPLB triggered the event.*/
- R3 = 30; /* so we can use this to determine the offset*/
- R2.L = SIGNBITS R2;
- R2 = R2.L (Z); /* into the DCPLB table.*/
- R3 = R3 - R2;
- P4 = R3;
- P3 = P3 + (P4<<2);
- R3 = [P3]; /* Retrieve the CPLB*/
-
- /* Now we can check whether it's a clean WB page*/
-
- CC = BITTST(R3, 14); /* 0==WB, 1==WT*/
- IF CC JUMP prot_violation;
- CC = BITTST(R3, 7); /* 0 == clean, 1 == dirty*/
- IF CC JUMP prot_violation;
-
- /* Check whether the write is allowed in the mode that was active.*/
-
- R2 = 1<<3; /* checking write in user mode*/
- CC = BITTST(R5, 17); /* 0==was user, 1==was super*/
- R5 = CC;
- R2 <<= R5; /* if was super, check write in super mode*/
- R2 = R3 & R2;
- CC = R2 == 0;
- IF CC JUMP prot_violation;
-
- /* It's a genuine write-to-clean-page.*/
-
- BITSET(R3, 7); /* mark as dirty*/
- [P3] = R3; /* and write back.*/
- CSYNC;
- ( R7:0,P5:0 ) = [SP++];
- R0 = CPLB_RELOADED;
- RTS;
-
-dcplb_miss_compare:
-
- /* Data CPLB Miss event. We need to choose a CPLB to
- * evict, and then locate a new CPLB to install from the
- * config table, that covers the faulting address.
- */
-
- P1.L = (DCPLB_DATA15 & 0xFFFF);
- P1.H = (DCPLB_DATA15 >> 16);
-
- P4.L = (DCPLB_FAULT_ADDR & 0xFFFF);
- P4.H = (DCPLB_FAULT_ADDR >> 16);
- R4 = [P4];
- I0 = R4;
-
- /* The replacement procedure for DCPLBs*/
-
- R6 = R1; /* Save for later*/
-
- /* Turn off CPLBs while we work.*/
- P4.L = (DMEM_CONTROL & 0xFFFF);
- P4.H = (DMEM_CONTROL >> 16);
- R5 = [P4];
- BITCLR(R5,ENDCPLB_P);
- CLI R0;
- SSYNC; /* SSYNC required before writing to DMEM_CONTROL. */
- .align 8;
- [P4] = R5;
- SSYNC;
- STI R0;
-
- /* Start looking for a CPLB to evict. Our order of preference
- * is: invalid CPLBs, clean CPLBs, dirty CPLBs. Locked CPLBs
- * are no good.
- */
-
- I1.L = (DCPLB_DATA0 & 0xFFFF);
- I1.H = (DCPLB_DATA0 >> 16);
- P1 = 3;
- P2 = 16;
- I2.L = dcplb_preference;
- I2.H = dcplb_preference;
- LSETUP(sdsearch1, edsearch1) LC0 = P1;
-sdsearch1:
- R0 = [I2++]; /* Get the bits we're interested in*/
- P0 = I1; /* Go back to start of table*/
- LSETUP (sdsearch2, edsearch2) LC1 = P2;
-sdsearch2:
- R1 = [P0++]; /* Fetch each installed CPLB in turn*/
- R2 = R1 & R0; /* and test for interesting bits.*/
- CC = R2 == 0; /* If none are set, it'll do.*/
- IF !CC JUMP skip_stack_check;
-
- R2 = [P0 - 0x104]; /* R2 - PageStart */
- P3.L = page_size_table; /* retrive end address */
- P3.H = page_size_table; /* retrive end address */
- R3 = 0x2; /* 0th - position, 2 bits -length */
- nop; /*Anamoly 05000209*/
- R7 = EXTRACT(R1,R3.l);
- R7 = R7 << 2; /* Page size index offset */
- P5 = R7;
- P3 = P3 + P5;
- R7 = [P3]; /* page size in 1K bytes */
-
- R7 = R7 << 0xA; /* in bytes * 1024*/
- R7 = R2 + R7; /* R7 - PageEnd */
- R4 = SP; /* Test SP is in range */
-
- CC = R7 < R4; /* if PageEnd < SP */
- IF CC JUMP dfound_victim;
- R3 = 0x284; /* stack length from start of trap till the point */
- /* 20 stack locations for future modifications */
- R4 = R4 + R3;
- CC = R4 < R2; /* if SP + stacklen < PageStart */
- IF CC JUMP dfound_victim;
-skip_stack_check:
-
-edsearch2: NOP;
-edsearch1: NOP;
-
- /* If we got here, we didn't find a DCPLB we considered
- * replacable, which means all of them were locked.
- */
-
- JUMP all_locked;
-dfound_victim:
-
-#ifdef CONFIG_CPLB_INFO
- R1 = [P0 - 0x104];
- P2.L = dpdt_table;
- P2.H = dpdt_table;
- P3.L = dpdt_swapcount_table;
- P3.H = dpdt_swapcount_table;
- P3 += -4;
-dicount:
- R2 = [P2];
- P2 += 8;
- P3 += 8;
- CC = R2==-1;
- IF CC JUMP dicount_done;
- CC = R1==R2;
- IF !CC JUMP dicount;
- R1 = [P3];
- R1 += 1;
- [P3] = R1;
- CSYNC;
-dicount_done:
-#endif
-
- /* Clean down the hardware loops*/
- R2 = 0;
- LC1 = R2;
- LC0 = R2;
-
- /* There's a suitable victim in [P0-4] (because we've
- * advanced already). If it's a valid dirty write-back
- * CPLB, we need to flush the pending writes first.
- */
-
- CC = BITTST(R1, 0); /* Is it valid?*/
- IF !CC JUMP Ddoverwrite;/* nope.*/
- CC = BITTST(R1, 7); /* Is it dirty?*/
- IF !CC JUMP Ddoverwrite (BP); /* Nope.*/
- CC = BITTST(R1, 14); /* Is it Write-Through?*/
- IF CC JUMP Ddoverwrite; /* Yep*/
-
- /* This is a dirty page, so we need to flush all writes
- * that are pending on the page.
- */
-
- /* Retrieve the page start address*/
- R0 = [P0 - 0x104];
- [--sp] = rets;
- CALL dcplb_flush; /* R0==CPLB addr, R1==CPLB data*/
- rets = [sp++];
-Ddoverwrite:
-
- /* [P0-4] is a suitable victim CPLB, so we want to
- * overwrite it by moving all the following CPLBs
- * one space closer to the start.
- */
-
- R1.L = ((DCPLB_DATA15+4) & 0xFFFF); /*DCPLB_DATA15+4*/
- R1.H = ((DCPLB_DATA15+4) >> 16);
- R0 = P0;
-
- /* If the victim happens to be in DCPLB15,
- * we don't need to move anything.
- */
-
- CC = R1 == R0;
- IF CC JUMP de_moved;
- R1 = R1 - R0;
- R1 >>= 2;
- P1 = R1;
- LSETUP(ds_move, de_move) LC0=P1;
-ds_move:
- R0 = [P0++]; /* move data */
- [P0 - 8] = R0;
- R0 = [P0-0x104] /* move address */
-de_move: [P0-0x108] = R0;
-
- /* We've now made space in DCPLB15 for the new CPLB to be
- * installed. The next stage is to locate a CPLB in the
- * config table that covers the faulting address.
- */
-
-de_moved:NOP;
- R0 = I0; /* Our faulting address */
-
- P2.L = dpdt_table;
- P2.H = dpdt_table;
-#ifdef CONFIG_CPLB_INFO
- P3.L = dpdt_swapcount_table;
- P3.H = dpdt_swapcount_table;
- P3 += -8;
-#endif
-
- P1.L = page_size_table;
- P1.H = page_size_table;
-
- /* An extraction pattern, to retrieve bits 17:16.*/
-
- R1 = (16<<8)|2;
-dnext: R4 = [P2++]; /* address */
- R2 = [P2++]; /* data */
-#ifdef CONFIG_CPLB_INFO
- P3 += 8;
-#endif
-
- CC = R4 == -1;
- IF CC JUMP no_page_in_table;
-
- /* See if failed address > start address */
- CC = R4 <= R0(IU);
- IF !CC JUMP dnext;
-
- /* extract page size (17:16)*/
- R3 = EXTRACT(R2, R1.L) (Z);
-
- /* add page size to addr to get range */
-
- P5 = R3;
- P5 = P1 + (P5 << 2);
- R3 = [P5];
- R3 = R3 + R4;
-
- /* See if failed address < (start address + page size) */
- CC = R0 < R3(IU);
- IF !CC JUMP dnext;
-
- /* We've found the CPLB that should be installed, so
- * write it into CPLB15, masking off any caching bits
- * if necessary.
- */
-
- P1.L = (DCPLB_DATA15 & 0xFFFF);
- P1.H = (DCPLB_DATA15 >> 16);
-
- /* If the DCPLB has cache bits set, but caching hasn't
- * been enabled, then we want to mask off the cache-in-L1
- * bit before installing. Moreover, if caching is off, we
- * also want to ensure that the DCPLB has WT mode set, rather
- * than WB, since WB pages still trigger first-write exceptions
- * even when not caching is off, and the page isn't marked as
- * cachable. Finally, we could mark the page as clean, not dirty,
- * but we choose to leave that decision to the user; if the user
- * chooses to have a CPLB pre-defined as dirty, then they always
- * pay the cost of flushing during eviction, but don't pay the
- * cost of first-write exceptions to mark the page as dirty.
- */
-
-#ifdef CONFIG_BLKFIN_WT
- BITSET(R6, 14); /* Set WT*/
-#endif
-
- [P1] = R2;
- [P1-0x100] = R4;
-#ifdef CONFIG_CPLB_INFO
- R3 = [P3];
- R3 += 1;
- [P3] = R3;
-#endif
-
- /* We've installed the CPLB, so re-enable CPLBs. P4
- * points to DMEM_CONTROL, and R5 is the value we
- * last wrote to it, when we were disabling CPLBs.
- */
-
- BITSET(R5,ENDCPLB_P);
- CLI R2;
- .align 8;
- [P4] = R5;
- SSYNC;
- STI R2;
-
- ( R7:0,P5:0 ) = [SP++];
- R0 = CPLB_RELOADED;
- RTS;
-
-.data
-.align 4;
-page_size_table:
-.byte4 0x00000400; /* 1K */
-.byte4 0x00001000; /* 4K */
-.byte4 0x00100000; /* 1M */
-.byte4 0x00400000; /* 4M */
-
-.align 4;
-dcplb_preference:
-.byte4 0x00000001; /* valid bit */
-.byte4 0x00000082; /* dirty+lock bits */
-.byte4 0x00000002; /* lock bit */
OpenPOWER on IntegriCloud