summaryrefslogtreecommitdiffstats
path: root/arch/arm/cpu/armv7/sunxi/dram_sun4i.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm/cpu/armv7/sunxi/dram_sun4i.c')
-rw-r--r--arch/arm/cpu/armv7/sunxi/dram_sun4i.c750
1 files changed, 750 insertions, 0 deletions
diff --git a/arch/arm/cpu/armv7/sunxi/dram_sun4i.c b/arch/arm/cpu/armv7/sunxi/dram_sun4i.c
new file mode 100644
index 0000000000..dc9fdb930b
--- /dev/null
+++ b/arch/arm/cpu/armv7/sunxi/dram_sun4i.c
@@ -0,0 +1,750 @@
+/*
+ * sunxi DRAM controller initialization
+ * (C) Copyright 2012 Henrik Nordstrom <henrik@henriknordstrom.net>
+ * (C) Copyright 2013 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
+ *
+ * Based on sun4i Linux kernel sources mach-sunxi/pm/standby/dram*.c
+ * and earlier U-Boot Allwiner A10 SPL work
+ *
+ * (C) Copyright 2007-2012
+ * Allwinner Technology Co., Ltd. <www.allwinnertech.com>
+ * Berg Xing <bergxing@allwinnertech.com>
+ * Tom Cubie <tangliang@allwinnertech.com>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+/*
+ * Unfortunately the only documentation we have on the sun7i DRAM
+ * controller is Allwinner boot0 + boot1 code, and that code uses
+ * magic numbers & shifts with no explanations. Hence this code is
+ * rather undocumented and full of magic.
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <asm/arch/clock.h>
+#include <asm/arch/dram.h>
+#include <asm/arch/timer.h>
+#include <asm/arch/sys_proto.h>
+
+#define CPU_CFG_CHIP_VER(n) ((n) << 6)
+#define CPU_CFG_CHIP_VER_MASK CPU_CFG_CHIP_VER(0x3)
+#define CPU_CFG_CHIP_REV_A 0x0
+#define CPU_CFG_CHIP_REV_C1 0x1
+#define CPU_CFG_CHIP_REV_C2 0x2
+#define CPU_CFG_CHIP_REV_B 0x3
+
+/*
+ * Wait up to 1s for value to be set in given part of reg.
+ */
+static void await_completion(u32 *reg, u32 mask, u32 val)
+{
+ unsigned long tmo = timer_get_us() + 1000000;
+
+ while ((readl(reg) & mask) != val) {
+ if (timer_get_us() > tmo)
+ panic("Timeout initialising DRAM\n");
+ }
+}
+
+/*
+ * Wait up to 1s for mask to be clear in given reg.
+ */
+static inline void await_bits_clear(u32 *reg, u32 mask)
+{
+ await_completion(reg, mask, 0);
+}
+
+/*
+ * Wait up to 1s for mask to be set in given reg.
+ */
+static inline void await_bits_set(u32 *reg, u32 mask)
+{
+ await_completion(reg, mask, mask);
+}
+
+/*
+ * This performs the external DRAM reset by driving the RESET pin low and
+ * then high again. According to the DDR3 spec, the RESET pin needs to be
+ * kept low for at least 200 us.
+ */
+static void mctl_ddr3_reset(void)
+{
+ struct sunxi_dram_reg *dram =
+ (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+
+#ifdef CONFIG_MACH_SUN4I
+ struct sunxi_timer_reg *timer =
+ (struct sunxi_timer_reg *)SUNXI_TIMER_BASE;
+ u32 reg_val;
+
+ writel(0, &timer->cpu_cfg);
+ reg_val = readl(&timer->cpu_cfg);
+
+ if ((reg_val & CPU_CFG_CHIP_VER_MASK) !=
+ CPU_CFG_CHIP_VER(CPU_CFG_CHIP_REV_A)) {
+ setbits_le32(&dram->mcr, DRAM_MCR_RESET);
+ udelay(200);
+ clrbits_le32(&dram->mcr, DRAM_MCR_RESET);
+ } else
+#endif
+ {
+ clrbits_le32(&dram->mcr, DRAM_MCR_RESET);
+ udelay(200);
+ setbits_le32(&dram->mcr, DRAM_MCR_RESET);
+ }
+ /* After the RESET pin is de-asserted, the DDR3 spec requires to wait
+ * for additional 500 us before driving the CKE pin (Clock Enable)
+ * high. The duration of this delay can be configured in the SDR_IDCR
+ * (Initialization Delay Configuration Register) and applied
+ * automatically by the DRAM controller during the DDR3 initialization
+ * step. But SDR_IDCR has limited range on sun4i/sun5i hardware and
+ * can't provide sufficient delay at DRAM clock frequencies higher than
+ * 524 MHz (while Allwinner A13 supports DRAM clock frequency up to
+ * 533 MHz according to the datasheet). Additionally, there is no
+ * official documentation for the SDR_IDCR register anywhere, and
+ * there is always a chance that we are interpreting it wrong.
+ * Better be safe than sorry, so add an explicit delay here. */
+ udelay(500);
+}
+
+static void mctl_set_drive(void)
+{
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+
+#ifdef CONFIG_MACH_SUN7I
+ clrsetbits_le32(&dram->mcr, DRAM_MCR_MODE_NORM(0x3) | (0x3 << 28),
+#else
+ clrsetbits_le32(&dram->mcr, DRAM_MCR_MODE_NORM(0x3),
+#endif
+ DRAM_MCR_MODE_EN(0x3) |
+ 0xffc);
+}
+
+static void mctl_itm_disable(void)
+{
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+
+ clrsetbits_le32(&dram->ccr, DRAM_CCR_INIT, DRAM_CCR_ITM_OFF);
+}
+
+static void mctl_itm_enable(void)
+{
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+
+ clrbits_le32(&dram->ccr, DRAM_CCR_ITM_OFF);
+}
+
+static void mctl_itm_reset(void)
+{
+ mctl_itm_disable();
+ udelay(1); /* ITM reset needs a bit of delay */
+ mctl_itm_enable();
+ udelay(1);
+}
+
+static void mctl_enable_dll0(u32 phase)
+{
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+
+ clrsetbits_le32(&dram->dllcr[0], 0x3f << 6,
+ ((phase >> 16) & 0x3f) << 6);
+ clrsetbits_le32(&dram->dllcr[0], DRAM_DLLCR_NRESET, DRAM_DLLCR_DISABLE);
+ udelay(2);
+
+ clrbits_le32(&dram->dllcr[0], DRAM_DLLCR_NRESET | DRAM_DLLCR_DISABLE);
+ udelay(22);
+
+ clrsetbits_le32(&dram->dllcr[0], DRAM_DLLCR_DISABLE, DRAM_DLLCR_NRESET);
+ udelay(22);
+}
+
+/* Get the number of DDR byte lanes */
+static u32 mctl_get_number_of_lanes(void)
+{
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+ if ((readl(&dram->dcr) & DRAM_DCR_BUS_WIDTH_MASK) ==
+ DRAM_DCR_BUS_WIDTH(DRAM_DCR_BUS_WIDTH_32BIT))
+ return 4;
+ else
+ return 2;
+}
+
+/*
+ * Note: This differs from pm/standby in that it checks the bus width
+ */
+static void mctl_enable_dllx(u32 phase)
+{
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+ u32 i, number_of_lanes;
+
+ number_of_lanes = mctl_get_number_of_lanes();
+
+ for (i = 1; i <= number_of_lanes; i++) {
+ clrsetbits_le32(&dram->dllcr[i], 0xf << 14,
+ (phase & 0xf) << 14);
+ clrsetbits_le32(&dram->dllcr[i], DRAM_DLLCR_NRESET,
+ DRAM_DLLCR_DISABLE);
+ phase >>= 4;
+ }
+ udelay(2);
+
+ for (i = 1; i <= number_of_lanes; i++)
+ clrbits_le32(&dram->dllcr[i], DRAM_DLLCR_NRESET |
+ DRAM_DLLCR_DISABLE);
+ udelay(22);
+
+ for (i = 1; i <= number_of_lanes; i++)
+ clrsetbits_le32(&dram->dllcr[i], DRAM_DLLCR_DISABLE,
+ DRAM_DLLCR_NRESET);
+ udelay(22);
+}
+
+static u32 hpcr_value[32] = {
+#ifdef CONFIG_MACH_SUN5I
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0x1031, 0x1031, 0x0735, 0x1035,
+ 0x1035, 0x0731, 0x1031, 0,
+ 0x0301, 0x0301, 0x0301, 0x0301,
+ 0x0301, 0x0301, 0x0301, 0
+#endif
+#ifdef CONFIG_MACH_SUN4I
+ 0x0301, 0x0301, 0x0301, 0x0301,
+ 0x0301, 0x0301, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0x1031, 0x1031, 0x0735, 0x5031,
+ 0x1035, 0x0731, 0x1031, 0x0735,
+ 0x1035, 0x1031, 0x0731, 0x1035,
+ 0x1031, 0x0301, 0x0301, 0x0731
+#endif
+#ifdef CONFIG_MACH_SUN7I
+ 0x0301, 0x0301, 0x0301, 0x0301,
+ 0x0301, 0x0301, 0x0301, 0x0301,
+ 0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0x1031, 0x1031, 0x0735, 0x1035,
+ 0x1035, 0x0731, 0x1031, 0x0735,
+ 0x1035, 0x1031, 0x0731, 0x1035,
+ 0x0001, 0x1031, 0, 0x1031
+ /* last row differs from boot0 source table
+ * 0x1031, 0x0301, 0x0301, 0x0731
+ * but boot0 code skips #28 and #30, and sets #29 and #31 to the
+ * value from #28 entry (0x1031)
+ */
+#endif
+};
+
+static void mctl_configure_hostport(void)
+{
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+ u32 i;
+
+ for (i = 0; i < 32; i++)
+ writel(hpcr_value[i], &dram->hpcr[i]);
+}
+
+static void mctl_setup_dram_clock(u32 clk, u32 mbus_clk)
+{
+ u32 reg_val;
+ struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
+ u32 pll5p_clk, pll6x_clk;
+ u32 pll5p_div, pll6x_div;
+ u32 pll5p_rate, pll6x_rate;
+
+ /* setup DRAM PLL */
+ reg_val = readl(&ccm->pll5_cfg);
+ reg_val &= ~CCM_PLL5_CTRL_M_MASK; /* set M to 0 (x1) */
+ reg_val &= ~CCM_PLL5_CTRL_K_MASK; /* set K to 0 (x1) */
+ reg_val &= ~CCM_PLL5_CTRL_N_MASK; /* set N to 0 (x0) */
+ reg_val &= ~CCM_PLL5_CTRL_P_MASK; /* set P to 0 (x1) */
+#ifdef CONFIG_OLD_SUNXI_KERNEL_COMPAT
+ /* Old kernels are hardcoded to P=1 (divide by 2) */
+ reg_val |= CCM_PLL5_CTRL_P(1);
+#endif
+ if (clk >= 540 && clk < 552) {
+ /* dram = 540MHz */
+ reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
+ reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3));
+ reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(15));
+ } else if (clk >= 512 && clk < 528) {
+ /* dram = 512MHz */
+ reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(3));
+ reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(4));
+ reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(16));
+ } else if (clk >= 496 && clk < 504) {
+ /* dram = 496MHz */
+ reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(3));
+ reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(2));
+ reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(31));
+ } else if (clk >= 468 && clk < 480) {
+ /* dram = 468MHz */
+ reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
+ reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3));
+ reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(13));
+ } else if (clk >= 396 && clk < 408) {
+ /* dram = 396MHz */
+ reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
+ reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3));
+ reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(11));
+ } else {
+ /* any other frequency that is a multiple of 24 */
+ reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
+ reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(2));
+ reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(clk / 24));
+ }
+ reg_val &= ~CCM_PLL5_CTRL_VCO_GAIN; /* PLL VCO Gain off */
+ reg_val |= CCM_PLL5_CTRL_EN; /* PLL On */
+ writel(reg_val, &ccm->pll5_cfg);
+ udelay(5500);
+
+ setbits_le32(&ccm->pll5_cfg, CCM_PLL5_CTRL_DDR_CLK);
+
+#if defined(CONFIG_MACH_SUN4I) || defined(CONFIG_MACH_SUN7I)
+ /* reset GPS */
+ clrbits_le32(&ccm->gps_clk_cfg, CCM_GPS_CTRL_RESET | CCM_GPS_CTRL_GATE);
+ setbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_GPS);
+ udelay(1);
+ clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_GPS);
+#endif
+
+ /* setup MBUS clock */
+ if (!mbus_clk)
+ mbus_clk = 300;
+
+ /* PLL5P and PLL6 are the potential clock sources for MBUS */
+ pll6x_clk = clock_get_pll6() / 1000000;
+#ifdef CONFIG_MACH_SUN7I
+ pll6x_clk *= 2; /* sun7i uses PLL6*2, sun5i uses just PLL6 */
+#endif
+ pll5p_clk = clock_get_pll5p() / 1000000;
+ pll6x_div = DIV_ROUND_UP(pll6x_clk, mbus_clk);
+ pll5p_div = DIV_ROUND_UP(pll5p_clk, mbus_clk);
+ pll6x_rate = pll6x_clk / pll6x_div;
+ pll5p_rate = pll5p_clk / pll5p_div;
+
+ if (pll6x_div <= 16 && pll6x_rate > pll5p_rate) {
+ /* use PLL6 as the MBUS clock source */
+ reg_val = CCM_MBUS_CTRL_GATE |
+ CCM_MBUS_CTRL_CLK_SRC(CCM_MBUS_CTRL_CLK_SRC_PLL6) |
+ CCM_MBUS_CTRL_N(CCM_MBUS_CTRL_N_X(1)) |
+ CCM_MBUS_CTRL_M(CCM_MBUS_CTRL_M_X(pll6x_div));
+ } else if (pll5p_div <= 16) {
+ /* use PLL5P as the MBUS clock source */
+ reg_val = CCM_MBUS_CTRL_GATE |
+ CCM_MBUS_CTRL_CLK_SRC(CCM_MBUS_CTRL_CLK_SRC_PLL5) |
+ CCM_MBUS_CTRL_N(CCM_MBUS_CTRL_N_X(1)) |
+ CCM_MBUS_CTRL_M(CCM_MBUS_CTRL_M_X(pll5p_div));
+ } else {
+ panic("Bad mbus_clk\n");
+ }
+ writel(reg_val, &ccm->mbus_clk_cfg);
+
+ /*
+ * open DRAMC AHB & DLL register clock
+ * close it first
+ */
+#if defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I)
+ clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM | CCM_AHB_GATE_DLL);
+#else
+ clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM);
+#endif
+ udelay(22);
+
+ /* then open it */
+#if defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I)
+ setbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM | CCM_AHB_GATE_DLL);
+#else
+ setbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM);
+#endif
+ udelay(22);
+}
+
+/*
+ * The data from rslrX and rdgrX registers (X=rank) is stored
+ * in a single 32-bit value using the following format:
+ * bits [31:26] - DQS gating system latency for byte lane 3
+ * bits [25:24] - DQS gating phase select for byte lane 3
+ * bits [23:18] - DQS gating system latency for byte lane 2
+ * bits [17:16] - DQS gating phase select for byte lane 2
+ * bits [15:10] - DQS gating system latency for byte lane 1
+ * bits [ 9:8 ] - DQS gating phase select for byte lane 1
+ * bits [ 7:2 ] - DQS gating system latency for byte lane 0
+ * bits [ 1:0 ] - DQS gating phase select for byte lane 0
+ */
+static void mctl_set_dqs_gating_delay(int rank, u32 dqs_gating_delay)
+{
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+ u32 lane, number_of_lanes = mctl_get_number_of_lanes();
+ /* rank0 gating system latency (3 bits per lane: cycles) */
+ u32 slr = readl(rank == 0 ? &dram->rslr0 : &dram->rslr1);
+ /* rank0 gating phase select (2 bits per lane: 90, 180, 270, 360) */
+ u32 dgr = readl(rank == 0 ? &dram->rdgr0 : &dram->rdgr1);
+ for (lane = 0; lane < number_of_lanes; lane++) {
+ u32 tmp = dqs_gating_delay >> (lane * 8);
+ slr &= ~(7 << (lane * 3));
+ slr |= ((tmp >> 2) & 7) << (lane * 3);
+ dgr &= ~(3 << (lane * 2));
+ dgr |= (tmp & 3) << (lane * 2);
+ }
+ writel(slr, rank == 0 ? &dram->rslr0 : &dram->rslr1);
+ writel(dgr, rank == 0 ? &dram->rdgr0 : &dram->rdgr1);
+}
+
+static int dramc_scan_readpipe(void)
+{
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+ u32 reg_val;
+
+ /* data training trigger */
+ clrbits_le32(&dram->csr, DRAM_CSR_FAILED);
+ setbits_le32(&dram->ccr, DRAM_CCR_DATA_TRAINING);
+
+ /* check whether data training process has completed */
+ await_bits_clear(&dram->ccr, DRAM_CCR_DATA_TRAINING);
+
+ /* check data training result */
+ reg_val = readl(&dram->csr);
+ if (reg_val & DRAM_CSR_FAILED)
+ return -1;
+
+ return 0;
+}
+
+static void dramc_clock_output_en(u32 on)
+{
+#if defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I)
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+
+ if (on)
+ setbits_le32(&dram->mcr, DRAM_MCR_DCLK_OUT);
+ else
+ clrbits_le32(&dram->mcr, DRAM_MCR_DCLK_OUT);
+#endif
+#ifdef CONFIG_MACH_SUN4I
+ struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
+ if (on)
+ setbits_le32(&ccm->dram_clk_cfg, CCM_DRAM_CTRL_DCLK_OUT);
+ else
+ clrbits_le32(&ccm->dram_clk_cfg, CCM_DRAM_CTRL_DCLK_OUT);
+#endif
+}
+
+/* tRFC in nanoseconds for different densities (from the DDR3 spec) */
+static const u16 tRFC_DDR3_table[6] = {
+ /* 256Mb 512Mb 1Gb 2Gb 4Gb 8Gb */
+ 90, 90, 110, 160, 300, 350
+};
+
+static void dramc_set_autorefresh_cycle(u32 clk, u32 density)
+{
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+ u32 tRFC, tREFI;
+
+ tRFC = (tRFC_DDR3_table[density] * clk + 999) / 1000;
+ tREFI = (7987 * clk) >> 10; /* <= 7.8us */
+
+ writel(DRAM_DRR_TREFI(tREFI) | DRAM_DRR_TRFC(tRFC), &dram->drr);
+}
+
+/* Calculate the value for A11, A10, A9 bits in MR0 (write recovery) */
+static u32 ddr3_write_recovery(u32 clk)
+{
+ u32 twr_ns = 15; /* DDR3 spec says that it is 15ns for all speed bins */
+ u32 twr_ck = (twr_ns * clk + 999) / 1000;
+ if (twr_ck < 5)
+ return 1;
+ else if (twr_ck <= 8)
+ return twr_ck - 4;
+ else if (twr_ck <= 10)
+ return 5;
+ else
+ return 6;
+}
+
+/*
+ * If the dram->ppwrsctl (SDR_DPCR) register has the lowest bit set to 1, this
+ * means that DRAM is currently in self-refresh mode and retaining the old
+ * data. Since we have no idea what to do in this situation yet, just set this
+ * register to 0 and initialize DRAM in the same way as on any normal reboot
+ * (discarding whatever was stored there).
+ *
+ * Note: on sun7i hardware, the highest 16 bits need to be set to 0x1651 magic
+ * value for this write operation to have any effect. On sun5i hadware this
+ * magic value is not necessary. And on sun4i hardware the writes to this
+ * register seem to have no effect at all.
+ */
+static void mctl_disable_power_save(void)
+{
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+ writel(0x16510000, &dram->ppwrsctl);
+}
+
+/*
+ * After the DRAM is powered up or reset, the DDR3 spec requires to wait at
+ * least 500 us before driving the CKE pin (Clock Enable) high. The dram->idct
+ * (SDR_IDCR) register appears to configure this delay, which gets applied
+ * right at the time when the DRAM initialization is activated in the
+ * 'mctl_ddr3_initialize' function.
+ */
+static void mctl_set_cke_delay(void)
+{
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+
+ /* The CKE delay is represented in DRAM clock cycles, multiplied by N
+ * (where N=2 for sun4i/sun5i and N=3 for sun7i). Here it is set to
+ * the maximum possible value 0x1ffff, just like in the Allwinner's
+ * boot0 bootloader. The resulting delay value is somewhere between
+ * ~0.4 ms (sun5i with 648 MHz DRAM clock speed) and ~1.1 ms (sun7i
+ * with 360 MHz DRAM clock speed). */
+ setbits_le32(&dram->idcr, 0x1ffff);
+}
+
+/*
+ * This triggers the DRAM initialization. It performs sending the mode registers
+ * to the DRAM among other things. Very likely the ZQCL command is also getting
+ * executed (to do the initial impedance calibration on the DRAM side of the
+ * wire). The memory controller and the PHY must be already configured before
+ * calling this function.
+ */
+static void mctl_ddr3_initialize(void)
+{
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+ setbits_le32(&dram->ccr, DRAM_CCR_INIT);
+ await_bits_clear(&dram->ccr, DRAM_CCR_INIT);
+}
+
+/*
+ * Perform impedance calibration on the DRAM controller side of the wire.
+ */
+static void mctl_set_impedance(u32 zq, u32 odt_en)
+{
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+ u32 reg_val;
+ u32 zprog = zq & 0xFF, zdata = (zq >> 8) & 0xFFFFF;
+
+#ifndef CONFIG_MACH_SUN7I
+ /* Appears that some kind of automatically initiated default
+ * ZQ calibration is already in progress at this point on sun4i/sun5i
+ * hardware, but not on sun7i. So it is reasonable to wait for its
+ * completion before doing anything else. */
+ await_bits_set(&dram->zqsr, DRAM_ZQSR_ZDONE);
+#endif
+
+ /* ZQ calibration is not really useful unless ODT is enabled */
+ if (!odt_en)
+ return;
+
+#ifdef CONFIG_MACH_SUN7I
+ /* Enabling ODT in SDR_IOCR on sun7i hardware results in a deadlock
+ * unless bit 24 is set in SDR_ZQCR1. Not much is known about the
+ * SDR_ZQCR1 register, but there are hints indicating that it might
+ * be related to periodic impedance re-calibration. This particular
+ * magic value is borrowed from the Allwinner boot0 bootloader, and
+ * using it helps to avoid troubles */
+ writel((1 << 24) | (1 << 1), &dram->zqcr1);
+#endif
+
+ /* Needed at least for sun5i, because it does not self clear there */
+ clrbits_le32(&dram->zqcr0, DRAM_ZQCR0_ZCAL);
+
+ if (zdata) {
+ /* Set the user supplied impedance data */
+ reg_val = DRAM_ZQCR0_ZDEN | zdata;
+ writel(reg_val, &dram->zqcr0);
+ /* no need to wait, this takes effect immediately */
+ } else {
+ /* Do the calibration using the external resistor */
+ reg_val = DRAM_ZQCR0_ZCAL | DRAM_ZQCR0_IMP_DIV(zprog);
+ writel(reg_val, &dram->zqcr0);
+ /* Wait for the new impedance configuration to settle */
+ await_bits_set(&dram->zqsr, DRAM_ZQSR_ZDONE);
+ }
+
+ /* Needed at least for sun5i, because it does not self clear there */
+ clrbits_le32(&dram->zqcr0, DRAM_ZQCR0_ZCAL);
+
+ /* Set I/O configure register */
+ writel(DRAM_IOCR_ODT_EN(odt_en), &dram->iocr);
+}
+
+static unsigned long dramc_init_helper(struct dram_para *para)
+{
+ struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
+ u32 reg_val;
+ u32 density;
+ int ret_val;
+
+ /*
+ * only single rank DDR3 is supported by this code even though the
+ * hardware can theoretically support DDR2 and up to two ranks
+ */
+ if (para->type != DRAM_MEMORY_TYPE_DDR3 || para->rank_num != 1)
+ return 0;
+
+ /* setup DRAM relative clock */
+ mctl_setup_dram_clock(para->clock, para->mbus_clock);
+
+ /* Disable any pad power save control */
+ mctl_disable_power_save();
+
+ mctl_set_drive();
+
+ /* dram clock off */
+ dramc_clock_output_en(0);
+
+#ifdef CONFIG_MACH_SUN4I
+ /* select dram controller 1 */
+ writel(DRAM_CSEL_MAGIC, &dram->csel);
+#endif
+
+ mctl_itm_disable();
+ mctl_enable_dll0(para->tpr3);
+
+ /* configure external DRAM */
+ reg_val = DRAM_DCR_TYPE_DDR3;
+ reg_val |= DRAM_DCR_IO_WIDTH(para->io_width >> 3);
+
+ if (para->density == 256)
+ density = DRAM_DCR_CHIP_DENSITY_256M;
+ else if (para->density == 512)
+ density = DRAM_DCR_CHIP_DENSITY_512M;
+ else if (para->density == 1024)
+ density = DRAM_DCR_CHIP_DENSITY_1024M;
+ else if (para->density == 2048)
+ density = DRAM_DCR_CHIP_DENSITY_2048M;
+ else if (para->density == 4096)
+ density = DRAM_DCR_CHIP_DENSITY_4096M;
+ else if (para->density == 8192)
+ density = DRAM_DCR_CHIP_DENSITY_8192M;
+ else
+ density = DRAM_DCR_CHIP_DENSITY_256M;
+
+ reg_val |= DRAM_DCR_CHIP_DENSITY(density);
+ reg_val |= DRAM_DCR_BUS_WIDTH((para->bus_width >> 3) - 1);
+ reg_val |= DRAM_DCR_RANK_SEL(para->rank_num - 1);
+ reg_val |= DRAM_DCR_CMD_RANK_ALL;
+ reg_val |= DRAM_DCR_MODE(DRAM_DCR_MODE_INTERLEAVE);
+ writel(reg_val, &dram->dcr);
+
+ dramc_clock_output_en(1);
+
+ mctl_set_impedance(para->zq, para->odt_en);
+
+ mctl_set_cke_delay();
+
+ mctl_ddr3_reset();
+
+ udelay(1);
+
+ await_bits_clear(&dram->ccr, DRAM_CCR_INIT);
+
+ mctl_enable_dllx(para->tpr3);
+
+ /* set refresh period */
+ dramc_set_autorefresh_cycle(para->clock, density);
+
+ /* set timing parameters */
+ writel(para->tpr0, &dram->tpr0);
+ writel(para->tpr1, &dram->tpr1);
+ writel(para->tpr2, &dram->tpr2);
+
+ reg_val = DRAM_MR_BURST_LENGTH(0x0);
+#if (defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I))
+ reg_val |= DRAM_MR_POWER_DOWN;
+#endif
+ reg_val |= DRAM_MR_CAS_LAT(para->cas - 4);
+ reg_val |= DRAM_MR_WRITE_RECOVERY(ddr3_write_recovery(para->clock));
+ writel(reg_val, &dram->mr);
+
+ writel(para->emr1, &dram->emr);
+ writel(para->emr2, &dram->emr2);
+ writel(para->emr3, &dram->emr3);
+
+ /* disable drift compensation and set passive DQS window mode */
+ clrsetbits_le32(&dram->ccr, DRAM_CCR_DQS_DRIFT_COMP, DRAM_CCR_DQS_GATE);
+
+#ifdef CONFIG_MACH_SUN7I
+ /* Command rate timing mode 2T & 1T */
+ if (para->tpr4 & 0x1)
+ setbits_le32(&dram->ccr, DRAM_CCR_COMMAND_RATE_1T);
+#endif
+ /* initialize external DRAM */
+ mctl_ddr3_initialize();
+
+ /* scan read pipe value */
+ mctl_itm_enable();
+
+ /* Hardware DQS gate training */
+ ret_val = dramc_scan_readpipe();
+
+ if (ret_val < 0)
+ return 0;
+
+ /* allow to override the DQS training results with a custom delay */
+ if (para->dqs_gating_delay)
+ mctl_set_dqs_gating_delay(0, para->dqs_gating_delay);
+
+ /* set the DQS gating window type */
+ if (para->active_windowing)
+ clrbits_le32(&dram->ccr, DRAM_CCR_DQS_GATE);
+ else
+ setbits_le32(&dram->ccr, DRAM_CCR_DQS_GATE);
+
+ mctl_itm_reset();
+
+ /* configure all host port */
+ mctl_configure_hostport();
+
+ return get_ram_size((long *)PHYS_SDRAM_0, PHYS_SDRAM_0_SIZE);
+}
+
+unsigned long dramc_init(struct dram_para *para)
+{
+ unsigned long dram_size, actual_density;
+
+ /* If the dram configuration is not provided, use a default */
+ if (!para)
+ return 0;
+
+ /* if everything is known, then autodetection is not necessary */
+ if (para->io_width && para->bus_width && para->density)
+ return dramc_init_helper(para);
+
+ /* try to autodetect the DRAM bus width and density */
+ para->io_width = 16;
+ para->bus_width = 32;
+#if defined(CONFIG_MACH_SUN4I) || defined(CONFIG_MACH_SUN5I)
+ /* only A0-A14 address lines on A10/A13, limiting max density to 4096 */
+ para->density = 4096;
+#else
+ /* all A0-A15 address lines on A20, which allow density 8192 */
+ para->density = 8192;
+#endif
+
+ dram_size = dramc_init_helper(para);
+ if (!dram_size) {
+ /* if 32-bit bus width failed, try 16-bit bus width instead */
+ para->bus_width = 16;
+ dram_size = dramc_init_helper(para);
+ if (!dram_size) {
+ /* if 16-bit bus width also failed, then bail out */
+ return dram_size;
+ }
+ }
+
+ /* check if we need to adjust the density */
+ actual_density = (dram_size >> 17) * para->io_width / para->bus_width;
+
+ if (actual_density != para->density) {
+ /* update the density and re-initialize DRAM again */
+ para->density = actual_density;
+ dram_size = dramc_init_helper(para);
+ }
+
+ return dram_size;
+}
OpenPOWER on IntegriCloud