/* Copyright (c) 2009-2011, Code Aurora Forum. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MSM_USB_BASE (motg->regs) #define DRIVER_NAME "msm_otg" #define ULPI_IO_TIMEOUT_USEC (10 * 1000) #define LINK_RESET_TIMEOUT_USEC (250 * 1000) #define USB_PHY_3P3_VOL_MIN 3050000 /* uV */ #define USB_PHY_3P3_VOL_MAX 3300000 /* uV */ #define USB_PHY_3P3_HPM_LOAD 50000 /* uA */ #define USB_PHY_3P3_LPM_LOAD 4000 /* uA */ #define USB_PHY_1P8_VOL_MIN 1800000 /* uV */ #define USB_PHY_1P8_VOL_MAX 1800000 /* uV */ #define USB_PHY_1P8_HPM_LOAD 50000 /* uA */ #define USB_PHY_1P8_LPM_LOAD 4000 /* uA */ #define USB_PHY_VDD_DIG_VOL_MIN 1000000 /* uV */ #define USB_PHY_VDD_DIG_VOL_MAX 1320000 /* uV */ #define USB_PHY_SUSP_DIG_VOL 500000 /* uV */ enum vdd_levels { VDD_LEVEL_NONE = 0, VDD_LEVEL_MIN, VDD_LEVEL_MAX, }; static int msm_hsusb_init_vddcx(struct msm_otg *motg, int init) { int ret = 0; if (init) { ret = regulator_set_voltage(motg->vddcx, motg->vdd_levels[VDD_LEVEL_MIN], motg->vdd_levels[VDD_LEVEL_MAX]); if (ret) { dev_err(motg->phy.dev, "Cannot set vddcx voltage\n"); return ret; } ret = regulator_enable(motg->vddcx); if (ret) dev_err(motg->phy.dev, "unable to enable hsusb vddcx\n"); } else { ret = regulator_set_voltage(motg->vddcx, 0, motg->vdd_levels[VDD_LEVEL_MAX]); if (ret) dev_err(motg->phy.dev, "Cannot set vddcx voltage\n"); ret = regulator_disable(motg->vddcx); if (ret) dev_err(motg->phy.dev, "unable to disable hsusb vddcx\n"); } return ret; } static int msm_hsusb_ldo_init(struct msm_otg *motg, int init) { int rc = 0; if (init) { rc = regulator_set_voltage(motg->v3p3, USB_PHY_3P3_VOL_MIN, USB_PHY_3P3_VOL_MAX); if (rc) { dev_err(motg->phy.dev, "Cannot set v3p3 voltage\n"); goto exit; } rc = regulator_enable(motg->v3p3); if (rc) { dev_err(motg->phy.dev, "unable to enable the hsusb 3p3\n"); goto exit; } rc = regulator_set_voltage(motg->v1p8, USB_PHY_1P8_VOL_MIN, USB_PHY_1P8_VOL_MAX); if (rc) { dev_err(motg->phy.dev, "Cannot set v1p8 voltage\n"); goto disable_3p3; } rc = regulator_enable(motg->v1p8); if (rc) { dev_err(motg->phy.dev, "unable to enable the hsusb 1p8\n"); goto disable_3p3; } return 0; } regulator_disable(motg->v1p8); disable_3p3: regulator_disable(motg->v3p3); exit: return rc; } static int msm_hsusb_ldo_set_mode(struct msm_otg *motg, int on) { int ret = 0; if (on) { ret = regulator_set_optimum_mode(motg->v1p8, USB_PHY_1P8_HPM_LOAD); if (ret < 0) { pr_err("Could not set HPM for v1p8\n"); return ret; } ret = regulator_set_optimum_mode(motg->v3p3, USB_PHY_3P3_HPM_LOAD); if (ret < 0) { pr_err("Could not set HPM for v3p3\n"); regulator_set_optimum_mode(motg->v1p8, USB_PHY_1P8_LPM_LOAD); return ret; } } else { ret = regulator_set_optimum_mode(motg->v1p8, USB_PHY_1P8_LPM_LOAD); if (ret < 0) pr_err("Could not set LPM for v1p8\n"); ret = regulator_set_optimum_mode(motg->v3p3, USB_PHY_3P3_LPM_LOAD); if (ret < 0) pr_err("Could not set LPM for v3p3\n"); } pr_debug("reg (%s)\n", on ? "HPM" : "LPM"); return ret < 0 ? ret : 0; } static int ulpi_read(struct usb_phy *phy, u32 reg) { struct msm_otg *motg = container_of(phy, struct msm_otg, phy); int cnt = 0; /* initiate read operation */ writel(ULPI_RUN | ULPI_READ | ULPI_ADDR(reg), USB_ULPI_VIEWPORT); /* wait for completion */ while (cnt < ULPI_IO_TIMEOUT_USEC) { if (!(readl(USB_ULPI_VIEWPORT) & ULPI_RUN)) break; udelay(1); cnt++; } if (cnt >= ULPI_IO_TIMEOUT_USEC) { dev_err(phy->dev, "ulpi_read: timeout %08x\n", readl(USB_ULPI_VIEWPORT)); return -ETIMEDOUT; } return ULPI_DATA_READ(readl(USB_ULPI_VIEWPORT)); } static int ulpi_write(struct usb_phy *phy, u32 val, u32 reg) { struct msm_otg *motg = container_of(phy, struct msm_otg, phy); int cnt = 0; /* initiate write operation */ writel(ULPI_RUN | ULPI_WRITE | ULPI_ADDR(reg) | ULPI_DATA(val), USB_ULPI_VIEWPORT); /* wait for completion */ while (cnt < ULPI_IO_TIMEOUT_USEC) { if (!(readl(USB_ULPI_VIEWPORT) & ULPI_RUN)) break; udelay(1); cnt++; } if (cnt >= ULPI_IO_TIMEOUT_USEC) { dev_err(phy->dev, "ulpi_write: timeout\n"); return -ETIMEDOUT; } return 0; } static struct usb_phy_io_ops msm_otg_io_ops = { .read = ulpi_read, .write = ulpi_write, }; static void ulpi_init(struct msm_otg *motg) { struct msm_otg_platform_data *pdata = motg->pdata; int *seq = pdata->phy_init_seq, idx; u32 addr = ULPI_EXT_VENDOR_SPECIFIC; for (idx = 0; idx < pdata->phy_init_sz; idx++) { if (seq[idx] == -1) continue; dev_vdbg(motg->phy.dev, "ulpi: write 0x%02x to 0x%02x\n", seq[idx], addr + idx); ulpi_write(&motg->phy, seq[idx], addr + idx); } } static int msm_phy_notify_disconnect(struct usb_phy *phy, enum usb_device_speed speed) { int val; /* * Put the transceiver in non-driving mode. Otherwise host * may not detect soft-disconnection. */ val = ulpi_read(phy, ULPI_FUNC_CTRL); val &= ~ULPI_FUNC_CTRL_OPMODE_MASK; val |= ULPI_FUNC_CTRL_OPMODE_NONDRIVING; ulpi_write(phy, val, ULPI_FUNC_CTRL); return 0; } static int msm_otg_link_clk_reset(struct msm_otg *motg, bool assert) { int ret; if (assert) ret = reset_control_assert(motg->link_rst); else ret = reset_control_deassert(motg->link_rst); if (ret) dev_err(motg->phy.dev, "usb link clk reset %s failed\n", assert ? "assert" : "deassert"); return ret; } static int msm_otg_phy_clk_reset(struct msm_otg *motg) { int ret = 0; if (motg->phy_rst) ret = reset_control_reset(motg->phy_rst); if (ret) dev_err(motg->phy.dev, "usb phy clk reset failed\n"); return ret; } static int msm_link_reset(struct msm_otg *motg) { u32 val; int ret; ret = msm_otg_link_clk_reset(motg, 1); if (ret) return ret; /* wait for 1ms delay as suggested in HPG. */ usleep_range(1000, 1200); ret = msm_otg_link_clk_reset(motg, 0); if (ret) return ret; if (motg->phy_number) writel(readl(USB_PHY_CTRL2) | BIT(16), USB_PHY_CTRL2); /* put transceiver in serial mode as part of reset */ val = readl(USB_PORTSC) & ~PORTSC_PTS_MASK; writel(val | PORTSC_PTS_SERIAL, USB_PORTSC); return 0; } static int msm_otg_reset(struct usb_phy *phy) { struct msm_otg *motg = container_of(phy, struct msm_otg, phy); int cnt = 0; writel(USBCMD_RESET, USB_USBCMD); while (cnt < LINK_RESET_TIMEOUT_USEC) { if (!(readl(USB_USBCMD) & USBCMD_RESET)) break; udelay(1); cnt++; } if (cnt >= LINK_RESET_TIMEOUT_USEC) return -ETIMEDOUT; /* select ULPI phy and clear other status/control bits in PORTSC */ writel(PORTSC_PTS_ULPI, USB_PORTSC); writel(0x0, USB_AHBBURST); writel(0x08, USB_AHBMODE); if (motg->phy_number) writel(readl(USB_PHY_CTRL2) | BIT(16), USB_PHY_CTRL2); return 0; } static void msm_phy_reset(struct msm_otg *motg) { void __iomem *addr; if (motg->pdata->phy_type != SNPS_28NM_INTEGRATED_PHY) { msm_otg_phy_clk_reset(motg); return; } addr = USB_PHY_CTRL; if (motg->phy_number) addr = USB_PHY_CTRL2; /* Assert USB PHY_POR */ writel(readl(addr) | PHY_POR_ASSERT, addr); /* * wait for minimum 10 microseconds as suggested in HPG. * Use a slightly larger value since the exact value didn't * work 100% of the time. */ udelay(12); /* Deassert USB PHY_POR */ writel(readl(addr) & ~PHY_POR_ASSERT, addr); } static int msm_usb_reset(struct usb_phy *phy) { struct msm_otg *motg = container_of(phy, struct msm_otg, phy); int ret; if (!IS_ERR(motg->core_clk)) clk_prepare_enable(motg->core_clk); ret = msm_link_reset(motg); if (ret) { dev_err(phy->dev, "phy_reset failed\n"); return ret; } ret = msm_otg_reset(&motg->phy); if (ret) { dev_err(phy->dev, "link reset failed\n"); return ret; } msleep(100); /* Reset USB PHY after performing USB Link RESET */ msm_phy_reset(motg); if (!IS_ERR(motg->core_clk)) clk_disable_unprepare(motg->core_clk); return 0; } static int msm_phy_init(struct usb_phy *phy) { struct msm_otg *motg = container_of(phy, struct msm_otg, phy); struct msm_otg_platform_data *pdata = motg->pdata; u32 val, ulpi_val = 0; /* Program USB PHY Override registers. */ ulpi_init(motg); /* * It is recommended in HPG to reset USB PHY after programming * USB PHY Override registers. */ msm_phy_reset(motg); if (pdata->otg_control == OTG_PHY_CONTROL) { val = readl(USB_OTGSC); if (pdata->mode == USB_DR_MODE_OTG) { ulpi_val = ULPI_INT_IDGRD | ULPI_INT_SESS_VALID; val |= OTGSC_IDIE | OTGSC_BSVIE; } else if (pdata->mode == USB_DR_MODE_PERIPHERAL) { ulpi_val = ULPI_INT_SESS_VALID; val |= OTGSC_BSVIE; } writel(val, USB_OTGSC); ulpi_write(phy, ulpi_val, ULPI_USB_INT_EN_RISE); ulpi_write(phy, ulpi_val, ULPI_USB_INT_EN_FALL); } if (motg->phy_number) writel(readl(USB_PHY_CTRL2) | BIT(16), USB_PHY_CTRL2); return 0; } #define PHY_SUSPEND_TIMEOUT_USEC (500 * 1000) #define PHY_RESUME_TIMEOUT_USEC (100 * 1000) #ifdef CONFIG_PM static int msm_hsusb_config_vddcx(struct msm_otg *motg, int high) { int max_vol = motg->vdd_levels[VDD_LEVEL_MAX]; int min_vol; int ret; if (high) min_vol = motg->vdd_levels[VDD_LEVEL_MIN]; else min_vol = motg->vdd_levels[VDD_LEVEL_NONE]; ret = regulator_set_voltage(motg->vddcx, min_vol, max_vol); if (ret) { pr_err("Cannot set vddcx voltage\n"); return ret; } pr_debug("%s: min_vol:%d max_vol:%d\n", __func__, min_vol, max_vol); return ret; } static int msm_otg_suspend(struct msm_otg *motg) { struct usb_phy *phy = &motg->phy; struct usb_bus *bus = phy->otg->host; struct msm_otg_platform_data *pdata = motg->pdata; void __iomem *addr; int cnt = 0; if (atomic_read(&motg->in_lpm)) return 0; disable_irq(motg->irq); /* * Chipidea 45-nm PHY suspend sequence: * * Interrupt Latch Register auto-clear feature is not present * in all PHY versions. Latch register is clear on read type. * Clear latch register to avoid spurious wakeup from * low power mode (LPM). * * PHY comparators are disabled when PHY enters into low power * mode (LPM). Keep PHY comparators ON in LPM only when we expect * VBUS/Id notifications from USB PHY. Otherwise turn off USB * PHY comparators. This save significant amount of power. * * PLL is not turned off when PHY enters into low power mode (LPM). * Disable PLL for maximum power savings. */ if (motg->pdata->phy_type == CI_45NM_INTEGRATED_PHY) { ulpi_read(phy, 0x14); if (pdata->otg_control == OTG_PHY_CONTROL) ulpi_write(phy, 0x01, 0x30); ulpi_write(phy, 0x08, 0x09); } /* * PHY may take some time or even fail to enter into low power * mode (LPM). Hence poll for 500 msec and reset the PHY and link * in failure case. */ writel(readl(USB_PORTSC) | PORTSC_PHCD, USB_PORTSC); while (cnt < PHY_SUSPEND_TIMEOUT_USEC) { if (readl(USB_PORTSC) & PORTSC_PHCD) break; udelay(1); cnt++; } if (cnt >= PHY_SUSPEND_TIMEOUT_USEC) { dev_err(phy->dev, "Unable to suspend PHY\n"); msm_otg_reset(phy); enable_irq(motg->irq); return -ETIMEDOUT; } /* * PHY has capability to generate interrupt asynchronously in low * power mode (LPM). This interrupt is level triggered. So USB IRQ * line must be disabled till async interrupt enable bit is cleared * in USBCMD register. Assert STP (ULPI interface STOP signal) to * block data communication from PHY. */ writel(readl(USB_USBCMD) | ASYNC_INTR_CTRL | ULPI_STP_CTRL, USB_USBCMD); addr = USB_PHY_CTRL; if (motg->phy_number) addr = USB_PHY_CTRL2; if (motg->pdata->phy_type == SNPS_28NM_INTEGRATED_PHY && motg->pdata->otg_control == OTG_PMIC_CONTROL) writel(readl(addr) | PHY_RETEN, addr); clk_disable_unprepare(motg->pclk); clk_disable_unprepare(motg->clk); if (!IS_ERR(motg->core_clk)) clk_disable_unprepare(motg->core_clk); if (motg->pdata->phy_type == SNPS_28NM_INTEGRATED_PHY && motg->pdata->otg_control == OTG_PMIC_CONTROL) { msm_hsusb_ldo_set_mode(motg, 0); msm_hsusb_config_vddcx(motg, 0); } if (device_may_wakeup(phy->dev)) enable_irq_wake(motg->irq); if (bus) clear_bit(HCD_FLAG_HW_ACCESSIBLE, &(bus_to_hcd(bus))->flags); atomic_set(&motg->in_lpm, 1); enable_irq(motg->irq); dev_info(phy->dev, "USB in low power mode\n"); return 0; } static int msm_otg_resume(struct msm_otg *motg) { struct usb_phy *phy = &motg->phy; struct usb_bus *bus = phy->otg->host; void __iomem *addr; int cnt = 0; unsigned temp; if (!atomic_read(&motg->in_lpm)) return 0; clk_prepare_enable(motg->pclk); clk_prepare_enable(motg->clk); if (!IS_ERR(motg->core_clk)) clk_prepare_enable(motg->core_clk); if (motg->pdata->phy_type == SNPS_28NM_INTEGRATED_PHY && motg->pdata->otg_control == OTG_PMIC_CONTROL) { addr = USB_PHY_CTRL; if (motg->phy_number) addr = USB_PHY_CTRL2; msm_hsusb_ldo_set_mode(motg, 1); msm_hsusb_config_vddcx(motg, 1); writel(readl(addr) & ~PHY_RETEN, addr); } temp = readl(USB_USBCMD); temp &= ~ASYNC_INTR_CTRL; temp &= ~ULPI_STP_CTRL; writel(temp, USB_USBCMD); /* * PHY comes out of low power mode (LPM) in case of wakeup * from asynchronous interrupt. */ if (!(readl(USB_PORTSC) & PORTSC_PHCD)) goto skip_phy_resume; writel(readl(USB_PORTSC) & ~PORTSC_PHCD, USB_PORTSC); while (cnt < PHY_RESUME_TIMEOUT_USEC) { if (!(readl(USB_PORTSC) & PORTSC_PHCD)) break; udelay(1); cnt++; } if (cnt >= PHY_RESUME_TIMEOUT_USEC) { /* * This is a fatal error. Reset the link and * PHY. USB state can not be restored. Re-insertion * of USB cable is the only way to get USB working. */ dev_err(phy->dev, "Unable to resume USB. Re-plugin the cable\n"); msm_otg_reset(phy); } skip_phy_resume: if (device_may_wakeup(phy->dev)) disable_irq_wake(motg->irq); if (bus) set_bit(HCD_FLAG_HW_ACCESSIBLE, &(bus_to_hcd(bus))->flags); atomic_set(&motg->in_lpm, 0); if (motg->async_int) { motg->async_int = 0; pm_runtime_put(phy->dev); enable_irq(motg->irq); } dev_info(phy->dev, "USB exited from low power mode\n"); return 0; } #endif static void msm_otg_notify_charger(struct msm_otg *motg, unsigned mA) { if (motg->cur_power == mA) return; /* TODO: Notify PMIC about available current */ dev_info(motg->phy.dev, "Avail curr from USB = %u\n", mA); motg->cur_power = mA; } static int msm_otg_set_power(struct usb_phy *phy, unsigned mA) { struct msm_otg *motg = container_of(phy, struct msm_otg, phy); /* * Gadget driver uses set_power method to notify about the * available current based on suspend/configured states. * * IDEV_CHG can be drawn irrespective of suspend/un-configured * states when CDP/ACA is connected. */ if (motg->chg_type == USB_SDP_CHARGER) msm_otg_notify_charger(motg, mA); return 0; } static void msm_otg_start_host(struct usb_phy *phy, int on) { struct msm_otg *motg = container_of(phy, struct msm_otg, phy); struct msm_otg_platform_data *pdata = motg->pdata; struct usb_hcd *hcd; if (!phy->otg->host) return; hcd = bus_to_hcd(phy->otg->host); if (on) { dev_dbg(phy->dev, "host on\n"); if (pdata->vbus_power) pdata->vbus_power(1); /* * Some boards have a switch cotrolled by gpio * to enable/disable internal HUB. Enable internal * HUB before kicking the host. */ if (pdata->setup_gpio) pdata->setup_gpio(OTG_STATE_A_HOST); #ifdef CONFIG_USB usb_add_hcd(hcd, hcd->irq, IRQF_SHARED); device_wakeup_enable(hcd->self.controller); #endif } else { dev_dbg(phy->dev, "host off\n"); #ifdef CONFIG_USB usb_remove_hcd(hcd); #endif if (pdata->setup_gpio) pdata->setup_gpio(OTG_STATE_UNDEFINED); if (pdata->vbus_power) pdata->vbus_power(0); } } static int msm_otg_set_host(struct usb_otg *otg, struct usb_bus *host) { struct msm_otg *motg = container_of(otg->usb_phy, struct msm_otg, phy); struct usb_hcd *hcd; /* * Fail host registration if this board can support * only peripheral configuration. */ if (motg->pdata->mode == USB_DR_MODE_PERIPHERAL) { dev_info(otg->usb_phy->dev, "Host mode is not supported\n"); return -ENODEV; } if (!host) { if (otg->state == OTG_STATE_A_HOST) { pm_runtime_get_sync(otg->usb_phy->dev); msm_otg_start_host(otg->usb_phy, 0); otg->host = NULL; otg->state = OTG_STATE_UNDEFINED; schedule_work(&motg->sm_work); } else { otg->host = NULL; } return 0; } hcd = bus_to_hcd(host); hcd->power_budget = motg->pdata->power_budget; otg->host = host; dev_dbg(otg->usb_phy->dev, "host driver registered w/ tranceiver\n"); /* * Kick the state machine work, if peripheral is not supported * or peripheral is already registered with us. */ if (motg->pdata->mode == USB_DR_MODE_HOST || otg->gadget) { pm_runtime_get_sync(otg->usb_phy->dev); schedule_work(&motg->sm_work); } return 0; } static void msm_otg_start_peripheral(struct usb_phy *phy, int on) { struct msm_otg *motg = container_of(phy, struct msm_otg, phy); struct msm_otg_platform_data *pdata = motg->pdata; if (!phy->otg->gadget) return; if (on) { dev_dbg(phy->dev, "gadget on\n"); /* * Some boards have a switch cotrolled by gpio * to enable/disable internal HUB. Disable internal * HUB before kicking the gadget. */ if (pdata->setup_gpio) pdata->setup_gpio(OTG_STATE_B_PERIPHERAL); usb_gadget_vbus_connect(phy->otg->gadget); } else { dev_dbg(phy->dev, "gadget off\n"); usb_gadget_vbus_disconnect(phy->otg->gadget); if (pdata->setup_gpio) pdata->setup_gpio(OTG_STATE_UNDEFINED); } } static int msm_otg_set_peripheral(struct usb_otg *otg, struct usb_gadget *gadget) { struct msm_otg *motg = container_of(otg->usb_phy, struct msm_otg, phy); /* * Fail peripheral registration if this board can support * only host configuration. */ if (motg->pdata->mode == USB_DR_MODE_HOST) { dev_info(otg->usb_phy->dev, "Peripheral mode is not supported\n"); return -ENODEV; } if (!gadget) { if (otg->state == OTG_STATE_B_PERIPHERAL) { pm_runtime_get_sync(otg->usb_phy->dev); msm_otg_start_peripheral(otg->usb_phy, 0); otg->gadget = NULL; otg->state = OTG_STATE_UNDEFINED; schedule_work(&motg->sm_work); } else { otg->gadget = NULL; } return 0; } otg->gadget = gadget; dev_dbg(otg->usb_phy->dev, "peripheral driver registered w/ tranceiver\n"); /* * Kick the state machine work, if host is not supported * or host is already registered with us. */ if (motg->pdata->mode == USB_DR_MODE_PERIPHERAL || otg->host) { pm_runtime_get_sync(otg->usb_phy->dev); schedule_work(&motg->sm_work); } return 0; } static bool msm_chg_check_secondary_det(struct msm_otg *motg) { struct usb_phy *phy = &motg->phy; u32 chg_det; bool ret = false; switch (motg->pdata->phy_type) { case CI_45NM_INTEGRATED_PHY: chg_det = ulpi_read(phy, 0x34); ret = chg_det & (1 << 4); break; case SNPS_28NM_INTEGRATED_PHY: chg_det = ulpi_read(phy, 0x87); ret = chg_det & 1; break; default: break; } return ret; } static void msm_chg_enable_secondary_det(struct msm_otg *motg) { struct usb_phy *phy = &motg->phy; u32 chg_det; switch (motg->pdata->phy_type) { case CI_45NM_INTEGRATED_PHY: chg_det = ulpi_read(phy, 0x34); /* Turn off charger block */ chg_det |= ~(1 << 1); ulpi_write(phy, chg_det, 0x34); udelay(20); /* control chg block via ULPI */ chg_det &= ~(1 << 3); ulpi_write(phy, chg_det, 0x34); /* put it in host mode for enabling D- source */ chg_det &= ~(1 << 2); ulpi_write(phy, chg_det, 0x34); /* Turn on chg detect block */ chg_det &= ~(1 << 1); ulpi_write(phy, chg_det, 0x34); udelay(20); /* enable chg detection */ chg_det &= ~(1 << 0); ulpi_write(phy, chg_det, 0x34); break; case SNPS_28NM_INTEGRATED_PHY: /* * Configure DM as current source, DP as current sink * and enable battery charging comparators. */ ulpi_write(phy, 0x8, 0x85); ulpi_write(phy, 0x2, 0x85); ulpi_write(phy, 0x1, 0x85); break; default: break; } } static bool msm_chg_check_primary_det(struct msm_otg *motg) { struct usb_phy *phy = &motg->phy; u32 chg_det; bool ret = false; switch (motg->pdata->phy_type) { case CI_45NM_INTEGRATED_PHY: chg_det = ulpi_read(phy, 0x34); ret = chg_det & (1 << 4); break; case SNPS_28NM_INTEGRATED_PHY: chg_det = ulpi_read(phy, 0x87); ret = chg_det & 1; break; default: break; } return ret; } static void msm_chg_enable_primary_det(struct msm_otg *motg) { struct usb_phy *phy = &motg->phy; u32 chg_det; switch (motg->pdata->phy_type) { case CI_45NM_INTEGRATED_PHY: chg_det = ulpi_read(phy, 0x34); /* enable chg detection */ chg_det &= ~(1 << 0); ulpi_write(phy, chg_det, 0x34); break; case SNPS_28NM_INTEGRATED_PHY: /* * Configure DP as current source, DM as current sink * and enable battery charging comparators. */ ulpi_write(phy, 0x2, 0x85); ulpi_write(phy, 0x1, 0x85); break; default: break; } } static bool msm_chg_check_dcd(struct msm_otg *motg) { struct usb_phy *phy = &motg->phy; u32 line_state; bool ret = false; switch (motg->pdata->phy_type) { case CI_45NM_INTEGRATED_PHY: line_state = ulpi_read(phy, 0x15); ret = !(line_state & 1); break; case SNPS_28NM_INTEGRATED_PHY: line_state = ulpi_read(phy, 0x87); ret = line_state & 2; break; default: break; } return ret; } static void msm_chg_disable_dcd(struct msm_otg *motg) { struct usb_phy *phy = &motg->phy; u32 chg_det; switch (motg->pdata->phy_type) { case CI_45NM_INTEGRATED_PHY: chg_det = ulpi_read(phy, 0x34); chg_det &= ~(1 << 5); ulpi_write(phy, chg_det, 0x34); break; case SNPS_28NM_INTEGRATED_PHY: ulpi_write(phy, 0x10, 0x86); break; default: break; } } static void msm_chg_enable_dcd(struct msm_otg *motg) { struct usb_phy *phy = &motg->phy; u32 chg_det; switch (motg->pdata->phy_type) { case CI_45NM_INTEGRATED_PHY: chg_det = ulpi_read(phy, 0x34); /* Turn on D+ current source */ chg_det |= (1 << 5); ulpi_write(phy, chg_det, 0x34); break; case SNPS_28NM_INTEGRATED_PHY: /* Data contact detection enable */ ulpi_write(phy, 0x10, 0x85); break; default: break; } } static void msm_chg_block_on(struct msm_otg *motg) { struct usb_phy *phy = &motg->phy; u32 func_ctrl, chg_det; /* put the controller in non-driving mode */ func_ctrl = ulpi_read(phy, ULPI_FUNC_CTRL); func_ctrl &= ~ULPI_FUNC_CTRL_OPMODE_MASK; func_ctrl |= ULPI_FUNC_CTRL_OPMODE_NONDRIVING; ulpi_write(phy, func_ctrl, ULPI_FUNC_CTRL); switch (motg->pdata->phy_type) { case CI_45NM_INTEGRATED_PHY: chg_det = ulpi_read(phy, 0x34); /* control chg block via ULPI */ chg_det &= ~(1 << 3); ulpi_write(phy, chg_det, 0x34); /* Turn on chg detect block */ chg_det &= ~(1 << 1); ulpi_write(phy, chg_det, 0x34); udelay(20); break; case SNPS_28NM_INTEGRATED_PHY: /* Clear charger detecting control bits */ ulpi_write(phy, 0x3F, 0x86); /* Clear alt interrupt latch and enable bits */ ulpi_write(phy, 0x1F, 0x92); ulpi_write(phy, 0x1F, 0x95); udelay(100); break; default: break; } } static void msm_chg_block_off(struct msm_otg *motg) { struct usb_phy *phy = &motg->phy; u32 func_ctrl, chg_det; switch (motg->pdata->phy_type) { case CI_45NM_INTEGRATED_PHY: chg_det = ulpi_read(phy, 0x34); /* Turn off charger block */ chg_det |= ~(1 << 1); ulpi_write(phy, chg_det, 0x34); break; case SNPS_28NM_INTEGRATED_PHY: /* Clear charger detecting control bits */ ulpi_write(phy, 0x3F, 0x86); /* Clear alt interrupt latch and enable bits */ ulpi_write(phy, 0x1F, 0x92); ulpi_write(phy, 0x1F, 0x95); break; default: break; } /* put the controller in normal mode */ func_ctrl = ulpi_read(phy, ULPI_FUNC_CTRL); func_ctrl &= ~ULPI_FUNC_CTRL_OPMODE_MASK; func_ctrl |= ULPI_FUNC_CTRL_OPMODE_NORMAL; ulpi_write(phy, func_ctrl, ULPI_FUNC_CTRL); } #define MSM_CHG_DCD_POLL_TIME (100 * HZ/1000) /* 100 msec */ #define MSM_CHG_DCD_MAX_RETRIES 6 /* Tdcd_tmout = 6 * 100 msec */ #define MSM_CHG_PRIMARY_DET_TIME (40 * HZ/1000) /* TVDPSRC_ON */ #define MSM_CHG_SECONDARY_DET_TIME (40 * HZ/1000) /* TVDMSRC_ON */ static void msm_chg_detect_work(struct work_struct *w) { struct msm_otg *motg = container_of(w, struct msm_otg, chg_work.work); struct usb_phy *phy = &motg->phy; bool is_dcd, tmout, vout; unsigned long delay; dev_dbg(phy->dev, "chg detection work\n"); switch (motg->chg_state) { case USB_CHG_STATE_UNDEFINED: pm_runtime_get_sync(phy->dev); msm_chg_block_on(motg); msm_chg_enable_dcd(motg); motg->chg_state = USB_CHG_STATE_WAIT_FOR_DCD; motg->dcd_retries = 0; delay = MSM_CHG_DCD_POLL_TIME; break; case USB_CHG_STATE_WAIT_FOR_DCD: is_dcd = msm_chg_check_dcd(motg); tmout = ++motg->dcd_retries == MSM_CHG_DCD_MAX_RETRIES; if (is_dcd || tmout) { msm_chg_disable_dcd(motg); msm_chg_enable_primary_det(motg); delay = MSM_CHG_PRIMARY_DET_TIME; motg->chg_state = USB_CHG_STATE_DCD_DONE; } else { delay = MSM_CHG_DCD_POLL_TIME; } break; case USB_CHG_STATE_DCD_DONE: vout = msm_chg_check_primary_det(motg); if (vout) { msm_chg_enable_secondary_det(motg); delay = MSM_CHG_SECONDARY_DET_TIME; motg->chg_state = USB_CHG_STATE_PRIMARY_DONE; } else { motg->chg_type = USB_SDP_CHARGER; motg->chg_state = USB_CHG_STATE_DETECTED; delay = 0; } break; case USB_CHG_STATE_PRIMARY_DONE: vout = msm_chg_check_secondary_det(motg); if (vout) motg->chg_type = USB_DCP_CHARGER; else motg->chg_type = USB_CDP_CHARGER; motg->chg_state = USB_CHG_STATE_SECONDARY_DONE; /* fall through */ case USB_CHG_STATE_SECONDARY_DONE: motg->chg_state = USB_CHG_STATE_DETECTED; case USB_CHG_STATE_DETECTED: msm_chg_block_off(motg); dev_dbg(phy->dev, "charger = %d\n", motg->chg_type); schedule_work(&motg->sm_work); return; default: return; } schedule_delayed_work(&motg->chg_work, delay); } /* * We support OTG, Peripheral only and Host only configurations. In case * of OTG, mode switch (host-->peripheral/peripheral-->host) can happen * via Id pin status or user request (debugfs). Id/BSV interrupts are not * enabled when switch is controlled by user and default mode is supplied * by board file, which can be changed by userspace later. */ static void msm_otg_init_sm(struct msm_otg *motg) { struct msm_otg_platform_data *pdata = motg->pdata; u32 otgsc = readl(USB_OTGSC); switch (pdata->mode) { case USB_DR_MODE_OTG: if (pdata->otg_control == OTG_PHY_CONTROL) { if (otgsc & OTGSC_ID) set_bit(ID, &motg->inputs); else clear_bit(ID, &motg->inputs); if (otgsc & OTGSC_BSV) set_bit(B_SESS_VLD, &motg->inputs); else clear_bit(B_SESS_VLD, &motg->inputs); } else if (pdata->otg_control == OTG_USER_CONTROL) { set_bit(ID, &motg->inputs); clear_bit(B_SESS_VLD, &motg->inputs); } break; case USB_DR_MODE_HOST: clear_bit(ID, &motg->inputs); break; case USB_DR_MODE_PERIPHERAL: set_bit(ID, &motg->inputs); if (otgsc & OTGSC_BSV) set_bit(B_SESS_VLD, &motg->inputs); else clear_bit(B_SESS_VLD, &motg->inputs); break; default: break; } } static void msm_otg_sm_work(struct work_struct *w) { struct msm_otg *motg = container_of(w, struct msm_otg, sm_work); struct usb_otg *otg = motg->phy.otg; switch (otg->state) { case OTG_STATE_UNDEFINED: dev_dbg(otg->usb_phy->dev, "OTG_STATE_UNDEFINED state\n"); msm_otg_reset(otg->usb_phy); msm_otg_init_sm(motg); otg->state = OTG_STATE_B_IDLE; /* FALL THROUGH */ case OTG_STATE_B_IDLE: dev_dbg(otg->usb_phy->dev, "OTG_STATE_B_IDLE state\n"); if (!test_bit(ID, &motg->inputs) && otg->host) { /* disable BSV bit */ writel(readl(USB_OTGSC) & ~OTGSC_BSVIE, USB_OTGSC); msm_otg_start_host(otg->usb_phy, 1); otg->state = OTG_STATE_A_HOST; } else if (test_bit(B_SESS_VLD, &motg->inputs)) { switch (motg->chg_state) { case USB_CHG_STATE_UNDEFINED: msm_chg_detect_work(&motg->chg_work.work); break; case USB_CHG_STATE_DETECTED: switch (motg->chg_type) { case USB_DCP_CHARGER: msm_otg_notify_charger(motg, IDEV_CHG_MAX); break; case USB_CDP_CHARGER: msm_otg_notify_charger(motg, IDEV_CHG_MAX); msm_otg_start_peripheral(otg->usb_phy, 1); otg->state = OTG_STATE_B_PERIPHERAL; break; case USB_SDP_CHARGER: msm_otg_notify_charger(motg, IUNIT); msm_otg_start_peripheral(otg->usb_phy, 1); otg->state = OTG_STATE_B_PERIPHERAL; break; default: break; } break; default: break; } } else { /* * If charger detection work is pending, decrement * the pm usage counter to balance with the one that * is incremented in charger detection work. */ if (cancel_delayed_work_sync(&motg->chg_work)) { pm_runtime_put_sync(otg->usb_phy->dev); msm_otg_reset(otg->usb_phy); } msm_otg_notify_charger(motg, 0); motg->chg_state = USB_CHG_STATE_UNDEFINED; motg->chg_type = USB_INVALID_CHARGER; } if (otg->state == OTG_STATE_B_IDLE) pm_runtime_put_sync(otg->usb_phy->dev); break; case OTG_STATE_B_PERIPHERAL: dev_dbg(otg->usb_phy->dev, "OTG_STATE_B_PERIPHERAL state\n"); if (!test_bit(B_SESS_VLD, &motg->inputs) || !test_bit(ID, &motg->inputs)) { msm_otg_notify_charger(motg, 0); msm_otg_start_peripheral(otg->usb_phy, 0); motg->chg_state = USB_CHG_STATE_UNDEFINED; motg->chg_type = USB_INVALID_CHARGER; otg->state = OTG_STATE_B_IDLE; msm_otg_reset(otg->usb_phy); schedule_work(w); } break; case OTG_STATE_A_HOST: dev_dbg(otg->usb_phy->dev, "OTG_STATE_A_HOST state\n"); if (test_bit(ID, &motg->inputs)) { msm_otg_start_host(otg->usb_phy, 0); otg->state = OTG_STATE_B_IDLE; msm_otg_reset(otg->usb_phy); schedule_work(w); } break; default: break; } } static irqreturn_t msm_otg_irq(int irq, void *data) { struct msm_otg *motg = data; struct usb_phy *phy = &motg->phy; u32 otgsc = 0; if (atomic_read(&motg->in_lpm)) { disable_irq_nosync(irq); motg->async_int = 1; pm_runtime_get(phy->dev); return IRQ_HANDLED; } otgsc = readl(USB_OTGSC); if (!(otgsc & (OTGSC_IDIS | OTGSC_BSVIS))) return IRQ_NONE; if ((otgsc & OTGSC_IDIS) && (otgsc & OTGSC_IDIE)) { if (otgsc & OTGSC_ID) set_bit(ID, &motg->inputs); else clear_bit(ID, &motg->inputs); dev_dbg(phy->dev, "ID set/clear\n"); pm_runtime_get_noresume(phy->dev); } else if ((otgsc & OTGSC_BSVIS) && (otgsc & OTGSC_BSVIE)) { if (otgsc & OTGSC_BSV) set_bit(B_SESS_VLD, &motg->inputs); else clear_bit(B_SESS_VLD, &motg->inputs); dev_dbg(phy->dev, "BSV set/clear\n"); pm_runtime_get_noresume(phy->dev); } writel(otgsc, USB_OTGSC); schedule_work(&motg->sm_work); return IRQ_HANDLED; } static int msm_otg_mode_show(struct seq_file *s, void *unused) { struct msm_otg *motg = s->private; struct usb_otg *otg = motg->phy.otg; switch (otg->state) { case OTG_STATE_A_HOST: seq_puts(s, "host\n"); break; case OTG_STATE_B_PERIPHERAL: seq_puts(s, "peripheral\n"); break; default: seq_puts(s, "none\n"); break; } return 0; } static int msm_otg_mode_open(struct inode *inode, struct file *file) { return single_open(file, msm_otg_mode_show, inode->i_private); } static ssize_t msm_otg_mode_write(struct file *file, const char __user *ubuf, size_t count, loff_t *ppos) { struct seq_file *s = file->private_data; struct msm_otg *motg = s->private; char buf[16]; struct usb_otg *otg = motg->phy.otg; int status = count; enum usb_dr_mode req_mode; memset(buf, 0x00, sizeof(buf)); if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count))) { status = -EFAULT; goto out; } if (!strncmp(buf, "host", 4)) { req_mode = USB_DR_MODE_HOST; } else if (!strncmp(buf, "peripheral", 10)) { req_mode = USB_DR_MODE_PERIPHERAL; } else if (!strncmp(buf, "none", 4)) { req_mode = USB_DR_MODE_UNKNOWN; } else { status = -EINVAL; goto out; } switch (req_mode) { case USB_DR_MODE_UNKNOWN: switch (otg->state) { case OTG_STATE_A_HOST: case OTG_STATE_B_PERIPHERAL: set_bit(ID, &motg->inputs); clear_bit(B_SESS_VLD, &motg->inputs); break; default: goto out; } break; case USB_DR_MODE_PERIPHERAL: switch (otg->state) { case OTG_STATE_B_IDLE: case OTG_STATE_A_HOST: set_bit(ID, &motg->inputs); set_bit(B_SESS_VLD, &motg->inputs); break; default: goto out; } break; case USB_DR_MODE_HOST: switch (otg->state) { case OTG_STATE_B_IDLE: case OTG_STATE_B_PERIPHERAL: clear_bit(ID, &motg->inputs); break; default: goto out; } break; default: goto out; } pm_runtime_get_sync(otg->usb_phy->dev); schedule_work(&motg->sm_work); out: return status; } static const struct file_operations msm_otg_mode_fops = { .open = msm_otg_mode_open, .read = seq_read, .write = msm_otg_mode_write, .llseek = seq_lseek, .release = single_release, }; static struct dentry *msm_otg_dbg_root; static struct dentry *msm_otg_dbg_mode; static int msm_otg_debugfs_init(struct msm_otg *motg) { msm_otg_dbg_root = debugfs_create_dir("msm_otg", NULL); if (!msm_otg_dbg_root || IS_ERR(msm_otg_dbg_root)) return -ENODEV; msm_otg_dbg_mode = debugfs_create_file("mode", S_IRUGO | S_IWUSR, msm_otg_dbg_root, motg, &msm_otg_mode_fops); if (!msm_otg_dbg_mode) { debugfs_remove(msm_otg_dbg_root); msm_otg_dbg_root = NULL; return -ENODEV; } return 0; } static void msm_otg_debugfs_cleanup(void) { debugfs_remove(msm_otg_dbg_mode); debugfs_remove(msm_otg_dbg_root); } static const struct of_device_id msm_otg_dt_match[] = { { .compatible = "qcom,usb-otg-ci", .data = (void *) CI_45NM_INTEGRATED_PHY }, { .compatible = "qcom,usb-otg-snps", .data = (void *) SNPS_28NM_INTEGRATED_PHY }, { } }; MODULE_DEVICE_TABLE(of, msm_otg_dt_match); static int msm_otg_read_dt(struct platform_device *pdev, struct msm_otg *motg) { struct msm_otg_platform_data *pdata; const struct of_device_id *id; struct device_node *node = pdev->dev.of_node; struct property *prop; int len, ret, words; u32 val, tmp[3]; pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; motg->pdata = pdata; id = of_match_device(msm_otg_dt_match, &pdev->dev); pdata->phy_type = (enum msm_usb_phy_type) id->data; motg->link_rst = devm_reset_control_get(&pdev->dev, "link"); if (IS_ERR(motg->link_rst)) return PTR_ERR(motg->link_rst); motg->phy_rst = devm_reset_control_get(&pdev->dev, "phy"); if (IS_ERR(motg->phy_rst)) motg->phy_rst = NULL; pdata->mode = of_usb_get_dr_mode(node); if (pdata->mode == USB_DR_MODE_UNKNOWN) pdata->mode = USB_DR_MODE_OTG; pdata->otg_control = OTG_PHY_CONTROL; if (!of_property_read_u32(node, "qcom,otg-control", &val)) if (val == OTG_PMIC_CONTROL) pdata->otg_control = val; if (!of_property_read_u32(node, "qcom,phy-num", &val) && val < 2) motg->phy_number = val; motg->vdd_levels[VDD_LEVEL_NONE] = USB_PHY_SUSP_DIG_VOL; motg->vdd_levels[VDD_LEVEL_MIN] = USB_PHY_VDD_DIG_VOL_MIN; motg->vdd_levels[VDD_LEVEL_MAX] = USB_PHY_VDD_DIG_VOL_MAX; if (of_get_property(node, "qcom,vdd-levels", &len) && len == sizeof(tmp)) { of_property_read_u32_array(node, "qcom,vdd-levels", tmp, len / sizeof(*tmp)); motg->vdd_levels[VDD_LEVEL_NONE] = tmp[VDD_LEVEL_NONE]; motg->vdd_levels[VDD_LEVEL_MIN] = tmp[VDD_LEVEL_MIN]; motg->vdd_levels[VDD_LEVEL_MAX] = tmp[VDD_LEVEL_MAX]; } prop = of_find_property(node, "qcom,phy-init-sequence", &len); if (!prop || !len) return 0; words = len / sizeof(u32); if (words >= ULPI_EXT_VENDOR_SPECIFIC) { dev_warn(&pdev->dev, "Too big PHY init sequence %d\n", words); return 0; } pdata->phy_init_seq = devm_kzalloc(&pdev->dev, len, GFP_KERNEL); if (!pdata->phy_init_seq) return 0; ret = of_property_read_u32_array(node, "qcom,phy-init-sequence", pdata->phy_init_seq, words); if (!ret) pdata->phy_init_sz = words; return 0; } static int msm_otg_probe(struct platform_device *pdev) { struct regulator_bulk_data regs[3]; int ret = 0; struct device_node *np = pdev->dev.of_node; struct msm_otg_platform_data *pdata; struct resource *res; struct msm_otg *motg; struct usb_phy *phy; void __iomem *phy_select; motg = devm_kzalloc(&pdev->dev, sizeof(struct msm_otg), GFP_KERNEL); if (!motg) return -ENOMEM; pdata = dev_get_platdata(&pdev->dev); if (!pdata) { if (!np) return -ENXIO; ret = msm_otg_read_dt(pdev, motg); if (ret) return ret; } motg->phy.otg = devm_kzalloc(&pdev->dev, sizeof(struct usb_otg), GFP_KERNEL); if (!motg->phy.otg) return -ENOMEM; phy = &motg->phy; phy->dev = &pdev->dev; motg->clk = devm_clk_get(&pdev->dev, np ? "core" : "usb_hs_clk"); if (IS_ERR(motg->clk)) { dev_err(&pdev->dev, "failed to get usb_hs_clk\n"); return PTR_ERR(motg->clk); } /* * If USB Core is running its protocol engine based on CORE CLK, * CORE CLK must be running at >55Mhz for correct HSUSB * operation and USB core cannot tolerate frequency changes on * CORE CLK. */ motg->pclk = devm_clk_get(&pdev->dev, np ? "iface" : "usb_hs_pclk"); if (IS_ERR(motg->pclk)) { dev_err(&pdev->dev, "failed to get usb_hs_pclk\n"); return PTR_ERR(motg->pclk); } /* * USB core clock is not present on all MSM chips. This * clock is introduced to remove the dependency on AXI * bus frequency. */ motg->core_clk = devm_clk_get(&pdev->dev, np ? "alt_core" : "usb_hs_core_clk"); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -EINVAL; motg->regs = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!motg->regs) return -ENOMEM; /* * NOTE: The PHYs can be multiplexed between the chipidea controller * and the dwc3 controller, using a single bit. It is important that * the dwc3 driver does not set this bit in an incompatible way. */ if (motg->phy_number) { phy_select = devm_ioremap_nocache(&pdev->dev, USB2_PHY_SEL, 4); if (!phy_select) return -ENOMEM; /* Enable second PHY with the OTG port */ writel(0x1, phy_select); } dev_info(&pdev->dev, "OTG regs = %p\n", motg->regs); motg->irq = platform_get_irq(pdev, 0); if (motg->irq < 0) { dev_err(&pdev->dev, "platform_get_irq failed\n"); return motg->irq; } regs[0].supply = "vddcx"; regs[1].supply = "v3p3"; regs[2].supply = "v1p8"; ret = devm_regulator_bulk_get(motg->phy.dev, ARRAY_SIZE(regs), regs); if (ret) return ret; motg->vddcx = regs[0].consumer; motg->v3p3 = regs[1].consumer; motg->v1p8 = regs[2].consumer; clk_set_rate(motg->clk, 60000000); clk_prepare_enable(motg->clk); clk_prepare_enable(motg->pclk); if (!IS_ERR(motg->core_clk)) clk_prepare_enable(motg->core_clk); ret = msm_hsusb_init_vddcx(motg, 1); if (ret) { dev_err(&pdev->dev, "hsusb vddcx configuration failed\n"); goto disable_clks; } ret = msm_hsusb_ldo_init(motg, 1); if (ret) { dev_err(&pdev->dev, "hsusb vreg configuration failed\n"); goto disable_vddcx; } ret = msm_hsusb_ldo_set_mode(motg, 1); if (ret) { dev_err(&pdev->dev, "hsusb vreg enable failed\n"); goto disable_ldo; } writel(0, USB_USBINTR); writel(0, USB_OTGSC); INIT_WORK(&motg->sm_work, msm_otg_sm_work); INIT_DELAYED_WORK(&motg->chg_work, msm_chg_detect_work); ret = devm_request_irq(&pdev->dev, motg->irq, msm_otg_irq, IRQF_SHARED, "msm_otg", motg); if (ret) { dev_err(&pdev->dev, "request irq failed\n"); goto disable_ldo; } phy->init = msm_phy_init; phy->set_power = msm_otg_set_power; phy->notify_disconnect = msm_phy_notify_disconnect; phy->type = USB_PHY_TYPE_USB2; phy->io_ops = &msm_otg_io_ops; phy->otg->usb_phy = &motg->phy; phy->otg->set_host = msm_otg_set_host; phy->otg->set_peripheral = msm_otg_set_peripheral; msm_usb_reset(phy); ret = usb_add_phy_dev(&motg->phy); if (ret) { dev_err(&pdev->dev, "usb_add_phy failed\n"); goto disable_ldo; } platform_set_drvdata(pdev, motg); device_init_wakeup(&pdev->dev, 1); if (motg->pdata->mode == USB_DR_MODE_OTG && motg->pdata->otg_control == OTG_USER_CONTROL) { ret = msm_otg_debugfs_init(motg); if (ret) dev_dbg(&pdev->dev, "Can not create mode change file\n"); } pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); return 0; disable_ldo: msm_hsusb_ldo_init(motg, 0); disable_vddcx: msm_hsusb_init_vddcx(motg, 0); disable_clks: clk_disable_unprepare(motg->pclk); clk_disable_unprepare(motg->clk); if (!IS_ERR(motg->core_clk)) clk_disable_unprepare(motg->core_clk); return ret; } static int msm_otg_remove(struct platform_device *pdev) { struct msm_otg *motg = platform_get_drvdata(pdev); struct usb_phy *phy = &motg->phy; int cnt = 0; if (phy->otg->host || phy->otg->gadget) return -EBUSY; msm_otg_debugfs_cleanup(); cancel_delayed_work_sync(&motg->chg_work); cancel_work_sync(&motg->sm_work); pm_runtime_resume(&pdev->dev); device_init_wakeup(&pdev->dev, 0); pm_runtime_disable(&pdev->dev); usb_remove_phy(phy); disable_irq(motg->irq); /* * Put PHY in low power mode. */ ulpi_read(phy, 0x14); ulpi_write(phy, 0x08, 0x09); writel(readl(USB_PORTSC) | PORTSC_PHCD, USB_PORTSC); while (cnt < PHY_SUSPEND_TIMEOUT_USEC) { if (readl(USB_PORTSC) & PORTSC_PHCD) break; udelay(1); cnt++; } if (cnt >= PHY_SUSPEND_TIMEOUT_USEC) dev_err(phy->dev, "Unable to suspend PHY\n"); clk_disable_unprepare(motg->pclk); clk_disable_unprepare(motg->clk); if (!IS_ERR(motg->core_clk)) clk_disable_unprepare(motg->core_clk); msm_hsusb_ldo_init(motg, 0); pm_runtime_set_suspended(&pdev->dev); return 0; } #ifdef CONFIG_PM static int msm_otg_runtime_idle(struct device *dev) { struct msm_otg *motg = dev_get_drvdata(dev); struct usb_otg *otg = motg->phy.otg; dev_dbg(dev, "OTG runtime idle\n"); /* * It is observed some times that a spurious interrupt * comes when PHY is put into LPM immediately after PHY reset. * This 1 sec delay also prevents entering into LPM immediately * after asynchronous interrupt. */ if (otg->state != OTG_STATE_UNDEFINED) pm_schedule_suspend(dev, 1000); return -EAGAIN; } static int msm_otg_runtime_suspend(struct device *dev) { struct msm_otg *motg = dev_get_drvdata(dev); dev_dbg(dev, "OTG runtime suspend\n"); return msm_otg_suspend(motg); } static int msm_otg_runtime_resume(struct device *dev) { struct msm_otg *motg = dev_get_drvdata(dev); dev_dbg(dev, "OTG runtime resume\n"); return msm_otg_resume(motg); } #endif #ifdef CONFIG_PM_SLEEP static int msm_otg_pm_suspend(struct device *dev) { struct msm_otg *motg = dev_get_drvdata(dev); dev_dbg(dev, "OTG PM suspend\n"); return msm_otg_suspend(motg); } static int msm_otg_pm_resume(struct device *dev) { struct msm_otg *motg = dev_get_drvdata(dev); int ret; dev_dbg(dev, "OTG PM resume\n"); ret = msm_otg_resume(motg); if (ret) return ret; /* * Runtime PM Documentation recommends bringing the * device to full powered state upon resume. */ pm_runtime_disable(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); return 0; } #endif static const struct dev_pm_ops msm_otg_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(msm_otg_pm_suspend, msm_otg_pm_resume) SET_RUNTIME_PM_OPS(msm_otg_runtime_suspend, msm_otg_runtime_resume, msm_otg_runtime_idle) }; static struct platform_driver msm_otg_driver = { .probe = msm_otg_probe, .remove = msm_otg_remove, .driver = { .name = DRIVER_NAME, .pm = &msm_otg_dev_pm_ops, .of_match_table = msm_otg_dt_match, }, }; module_platform_driver(msm_otg_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MSM USB transceiver driver");