/* * Copyright (c) 2008, Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Implementation of the main "ATH" layer. */ #include "core.h" #include "regd.h" static int ath_outdoor; /* enable outdoor use */ static u32 ath_chainmask_sel_up_rssi_thres = ATH_CHAINMASK_SEL_UP_RSSI_THRES; static u32 ath_chainmask_sel_down_rssi_thres = ATH_CHAINMASK_SEL_DOWN_RSSI_THRES; static u32 ath_chainmask_sel_period = ATH_CHAINMASK_SEL_TIMEOUT; /* return bus cachesize in 4B word units */ static void bus_read_cachesize(struct ath_softc *sc, int *csz) { u8 u8tmp; pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp); *csz = (int)u8tmp; /* * This check was put in to avoid "unplesant" consequences if * the bootrom has not fully initialized all PCI devices. * Sometimes the cache line size register is not set */ if (*csz == 0) *csz = DEFAULT_CACHELINE >> 2; /* Use the default size */ } static u8 parse_mpdudensity(u8 mpdudensity) { /* * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing": * 0 for no restriction * 1 for 1/4 us * 2 for 1/2 us * 3 for 1 us * 4 for 2 us * 5 for 4 us * 6 for 8 us * 7 for 16 us */ switch (mpdudensity) { case 0: return 0; case 1: case 2: case 3: /* Our lower layer calculations limit our precision to 1 microsecond */ return 1; case 4: return 2; case 5: return 4; case 6: return 8; case 7: return 16; default: return 0; } } /* * Set current operating mode * * This function initializes and fills the rate table in the ATH object based * on the operating mode. */ static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode) { const struct ath9k_rate_table *rt; int i; memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); rt = ath9k_hw_getratetable(sc->sc_ah, mode); BUG_ON(!rt); for (i = 0; i < rt->rateCount; i++) sc->sc_rixmap[rt->info[i].rateCode] = (u8) i; memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); for (i = 0; i < 256; i++) { u8 ix = rt->rateCodeToIndex[i]; if (ix == 0xff) continue; sc->sc_hwmap[i].ieeerate = rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; sc->sc_hwmap[i].rateKbps = rt->info[ix].rateKbps; if (rt->info[ix].shortPreamble || rt->info[ix].phy == PHY_OFDM) { /* XXX: Handle this */ } /* NB: this uses the last entry if the rate isn't found */ /* XXX beware of overlow */ } sc->sc_currates = rt; sc->sc_curmode = mode; /* * All protection frames are transmited at 2Mb/s for * 11g, otherwise at 1Mb/s. * XXX select protection rate index from rate table. */ sc->sc_protrix = (mode == ATH9K_MODE_11G ? 1 : 0); } /* * Set up rate table (legacy rates) */ static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band) { struct ath_hal *ah = sc->sc_ah; const struct ath9k_rate_table *rt = NULL; struct ieee80211_supported_band *sband; struct ieee80211_rate *rate; int i, maxrates; switch (band) { case IEEE80211_BAND_2GHZ: rt = ath9k_hw_getratetable(ah, ATH9K_MODE_11G); break; case IEEE80211_BAND_5GHZ: rt = ath9k_hw_getratetable(ah, ATH9K_MODE_11A); break; default: break; } if (rt == NULL) return; sband = &sc->sbands[band]; rate = sc->rates[band]; if (rt->rateCount > ATH_RATE_MAX) maxrates = ATH_RATE_MAX; else maxrates = rt->rateCount; for (i = 0; i < maxrates; i++) { rate[i].bitrate = rt->info[i].rateKbps / 100; rate[i].hw_value = rt->info[i].rateCode; sband->n_bitrates++; DPRINTF(sc, ATH_DBG_CONFIG, "%s: Rate: %2dMbps, ratecode: %2d\n", __func__, rate[i].bitrate / 10, rate[i].hw_value); } } /* * Set up channel list */ static int ath_setup_channels(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; int nchan, i, a = 0, b = 0; u8 regclassids[ATH_REGCLASSIDS_MAX]; u32 nregclass = 0; struct ieee80211_supported_band *band_2ghz; struct ieee80211_supported_band *band_5ghz; struct ieee80211_channel *chan_2ghz; struct ieee80211_channel *chan_5ghz; struct ath9k_channel *c; /* Fill in ah->ah_channels */ if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan, regclassids, ATH_REGCLASSIDS_MAX, &nregclass, CTRY_DEFAULT, false, 1)) { u32 rd = ah->ah_currentRD; DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to collect channel list; " "regdomain likely %u country code %u\n", __func__, rd, CTRY_DEFAULT); return -EINVAL; } band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ]; band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ]; chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ]; chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ]; for (i = 0; i < nchan; i++) { c = &ah->ah_channels[i]; if (IS_CHAN_2GHZ(c)) { chan_2ghz[a].band = IEEE80211_BAND_2GHZ; chan_2ghz[a].center_freq = c->channel; chan_2ghz[a].max_power = c->maxTxPower; if (c->privFlags & CHANNEL_DISALLOW_ADHOC) chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS; if (c->channelFlags & CHANNEL_PASSIVE) chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN; band_2ghz->n_channels = ++a; DPRINTF(sc, ATH_DBG_CONFIG, "%s: 2MHz channel: %d, " "channelFlags: 0x%x\n", __func__, c->channel, c->channelFlags); } else if (IS_CHAN_5GHZ(c)) { chan_5ghz[b].band = IEEE80211_BAND_5GHZ; chan_5ghz[b].center_freq = c->channel; chan_5ghz[b].max_power = c->maxTxPower; if (c->privFlags & CHANNEL_DISALLOW_ADHOC) chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS; if (c->channelFlags & CHANNEL_PASSIVE) chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN; band_5ghz->n_channels = ++b; DPRINTF(sc, ATH_DBG_CONFIG, "%s: 5MHz channel: %d, " "channelFlags: 0x%x\n", __func__, c->channel, c->channelFlags); } } return 0; } /* * Determine mode from channel flags * * This routine will provide the enumerated WIRELESSS_MODE value based * on the settings of the channel flags. If no valid set of flags * exist, the lowest mode (11b) is selected. */ static enum wireless_mode ath_chan2mode(struct ath9k_channel *chan) { if (chan->chanmode == CHANNEL_A) return ATH9K_MODE_11A; else if (chan->chanmode == CHANNEL_G) return ATH9K_MODE_11G; else if (chan->chanmode == CHANNEL_B) return ATH9K_MODE_11B; else if (chan->chanmode == CHANNEL_A_HT20) return ATH9K_MODE_11NA_HT20; else if (chan->chanmode == CHANNEL_G_HT20) return ATH9K_MODE_11NG_HT20; else if (chan->chanmode == CHANNEL_A_HT40PLUS) return ATH9K_MODE_11NA_HT40PLUS; else if (chan->chanmode == CHANNEL_A_HT40MINUS) return ATH9K_MODE_11NA_HT40MINUS; else if (chan->chanmode == CHANNEL_G_HT40PLUS) return ATH9K_MODE_11NG_HT40PLUS; else if (chan->chanmode == CHANNEL_G_HT40MINUS) return ATH9K_MODE_11NG_HT40MINUS; WARN_ON(1); /* should not get here */ return ATH9K_MODE_11B; } /* * Stop the device, grabbing the top-level lock to protect * against concurrent entry through ath_init (which can happen * if another thread does a system call and the thread doing the * stop is preempted). */ static int ath_stop(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; DPRINTF(sc, ATH_DBG_CONFIG, "%s: invalid %ld\n", __func__, sc->sc_flags & SC_OP_INVALID); /* * Shutdown the hardware and driver: * stop output from above * turn off timers * disable interrupts * clear transmit machinery * clear receive machinery * turn off the radio * reclaim beacon resources * * Note that some of this work is not possible if the * hardware is gone (invalid). */ ath_draintxq(sc, false); if (!(sc->sc_flags & SC_OP_INVALID)) { ath_stoprecv(sc); ath9k_hw_phy_disable(ah); } else sc->sc_rxlink = NULL; return 0; } /* * Set the current channel * * Set/change channels. If the channel is really being changed, it's done * by reseting the chip. To accomplish this we must first cleanup any pending * DMA, then restart stuff after a la ath_init. */ int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan) { struct ath_hal *ah = sc->sc_ah; bool fastcc = true, stopped; if (sc->sc_flags & SC_OP_INVALID) /* the device is invalid or removed */ return -EIO; DPRINTF(sc, ATH_DBG_CONFIG, "%s: %u (%u MHz) -> %u (%u MHz), cflags:%x\n", __func__, ath9k_hw_mhz2ieee(ah, sc->sc_ah->ah_curchan->channel, sc->sc_ah->ah_curchan->channelFlags), sc->sc_ah->ah_curchan->channel, ath9k_hw_mhz2ieee(ah, hchan->channel, hchan->channelFlags), hchan->channel, hchan->channelFlags); if (hchan->channel != sc->sc_ah->ah_curchan->channel || hchan->channelFlags != sc->sc_ah->ah_curchan->channelFlags || (sc->sc_flags & SC_OP_CHAINMASK_UPDATE) || (sc->sc_flags & SC_OP_FULL_RESET)) { int status; /* * This is only performed if the channel settings have * actually changed. * * To switch channels clear any pending DMA operations; * wait long enough for the RX fifo to drain, reset the * hardware at the new frequency, and then re-enable * the relevant bits of the h/w. */ ath9k_hw_set_interrupts(ah, 0); /* disable interrupts */ ath_draintxq(sc, false); /* clear pending tx frames */ stopped = ath_stoprecv(sc); /* turn off frame recv */ /* XXX: do not flush receive queue here. We don't want * to flush data frames already in queue because of * changing channel. */ if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET)) fastcc = false; spin_lock_bh(&sc->sc_resetlock); if (!ath9k_hw_reset(ah, hchan, sc->sc_ht_info.tx_chan_width, sc->sc_tx_chainmask, sc->sc_rx_chainmask, sc->sc_ht_extprotspacing, fastcc, &status)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to reset channel %u (%uMhz) " "flags 0x%x hal status %u\n", __func__, ath9k_hw_mhz2ieee(ah, hchan->channel, hchan->channelFlags), hchan->channel, hchan->channelFlags, status); spin_unlock_bh(&sc->sc_resetlock); return -EIO; } spin_unlock_bh(&sc->sc_resetlock); sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE; sc->sc_flags &= ~SC_OP_FULL_RESET; /* Re-enable rx framework */ if (ath_startrecv(sc) != 0) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to restart recv logic\n", __func__); return -EIO; } /* * Change channels and update the h/w rate map * if we're switching; e.g. 11a to 11b/g. */ ath_setcurmode(sc, ath_chan2mode(hchan)); ath_update_txpow(sc); /* update tx power state */ /* * Re-enable interrupts. */ ath9k_hw_set_interrupts(ah, sc->sc_imask); } return 0; } /**********************/ /* Chainmask Handling */ /**********************/ static void ath_chainmask_sel_timertimeout(unsigned long data) { struct ath_chainmask_sel *cm = (struct ath_chainmask_sel *)data; cm->switch_allowed = 1; } /* Start chainmask select timer */ static void ath_chainmask_sel_timerstart(struct ath_chainmask_sel *cm) { cm->switch_allowed = 0; mod_timer(&cm->timer, ath_chainmask_sel_period); } /* Stop chainmask select timer */ static void ath_chainmask_sel_timerstop(struct ath_chainmask_sel *cm) { cm->switch_allowed = 0; del_timer_sync(&cm->timer); } static void ath_chainmask_sel_init(struct ath_softc *sc, struct ath_node *an) { struct ath_chainmask_sel *cm = &an->an_chainmask_sel; memset(cm, 0, sizeof(struct ath_chainmask_sel)); cm->cur_tx_mask = sc->sc_tx_chainmask; cm->cur_rx_mask = sc->sc_rx_chainmask; cm->tx_avgrssi = ATH_RSSI_DUMMY_MARKER; setup_timer(&cm->timer, ath_chainmask_sel_timertimeout, (unsigned long) cm); } int ath_chainmask_sel_logic(struct ath_softc *sc, struct ath_node *an) { struct ath_chainmask_sel *cm = &an->an_chainmask_sel; /* * Disable auto-swtiching in one of the following if conditions. * sc_chainmask_auto_sel is used for internal global auto-switching * enabled/disabled setting */ if (sc->sc_ah->ah_caps.tx_chainmask != ATH_CHAINMASK_SEL_3X3) { cm->cur_tx_mask = sc->sc_tx_chainmask; return cm->cur_tx_mask; } if (cm->tx_avgrssi == ATH_RSSI_DUMMY_MARKER) return cm->cur_tx_mask; if (cm->switch_allowed) { /* Switch down from tx 3 to tx 2. */ if (cm->cur_tx_mask == ATH_CHAINMASK_SEL_3X3 && ATH_RSSI_OUT(cm->tx_avgrssi) >= ath_chainmask_sel_down_rssi_thres) { cm->cur_tx_mask = sc->sc_tx_chainmask; /* Don't let another switch happen until * this timer expires */ ath_chainmask_sel_timerstart(cm); } /* Switch up from tx 2 to 3. */ else if (cm->cur_tx_mask == sc->sc_tx_chainmask && ATH_RSSI_OUT(cm->tx_avgrssi) <= ath_chainmask_sel_up_rssi_thres) { cm->cur_tx_mask = ATH_CHAINMASK_SEL_3X3; /* Don't let another switch happen * until this timer expires */ ath_chainmask_sel_timerstart(cm); } } return cm->cur_tx_mask; } /* * Update tx/rx chainmask. For legacy association, * hard code chainmask to 1x1, for 11n association, use * the chainmask configuration. */ void ath_update_chainmask(struct ath_softc *sc, int is_ht) { sc->sc_flags |= SC_OP_CHAINMASK_UPDATE; if (is_ht) { sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask; sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask; } else { sc->sc_tx_chainmask = 1; sc->sc_rx_chainmask = 1; } DPRINTF(sc, ATH_DBG_CONFIG, "%s: tx chmask: %d, rx chmask: %d\n", __func__, sc->sc_tx_chainmask, sc->sc_rx_chainmask); } /*******/ /* ANI */ /*******/ /* * This routine performs the periodic noise floor calibration function * that is used to adjust and optimize the chip performance. This * takes environmental changes (location, temperature) into account. * When the task is complete, it reschedules itself depending on the * appropriate interval that was calculated. */ static void ath_ani_calibrate(unsigned long data) { struct ath_softc *sc; struct ath_hal *ah; bool longcal = false; bool shortcal = false; bool aniflag = false; unsigned int timestamp = jiffies_to_msecs(jiffies); u32 cal_interval; sc = (struct ath_softc *)data; ah = sc->sc_ah; /* * don't calibrate when we're scanning. * we are most likely not on our home channel. */ if (sc->rx_filter & FIF_BCN_PRBRESP_PROMISC) return; /* Long calibration runs independently of short calibration. */ if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) { longcal = true; DPRINTF(sc, ATH_DBG_ANI, "%s: longcal @%lu\n", __func__, jiffies); sc->sc_ani.sc_longcal_timer = timestamp; } /* Short calibration applies only while sc_caldone is false */ if (!sc->sc_ani.sc_caldone) { if ((timestamp - sc->sc_ani.sc_shortcal_timer) >= ATH_SHORT_CALINTERVAL) { shortcal = true; DPRINTF(sc, ATH_DBG_ANI, "%s: shortcal @%lu\n", __func__, jiffies); sc->sc_ani.sc_shortcal_timer = timestamp; sc->sc_ani.sc_resetcal_timer = timestamp; } } else { if ((timestamp - sc->sc_ani.sc_resetcal_timer) >= ATH_RESTART_CALINTERVAL) { ath9k_hw_reset_calvalid(ah, ah->ah_curchan, &sc->sc_ani.sc_caldone); if (sc->sc_ani.sc_caldone) sc->sc_ani.sc_resetcal_timer = timestamp; } } /* Verify whether we must check ANI */ if ((timestamp - sc->sc_ani.sc_checkani_timer) >= ATH_ANI_POLLINTERVAL) { aniflag = true; sc->sc_ani.sc_checkani_timer = timestamp; } /* Skip all processing if there's nothing to do. */ if (longcal || shortcal || aniflag) { /* Call ANI routine if necessary */ if (aniflag) ath9k_hw_ani_monitor(ah, &sc->sc_halstats, ah->ah_curchan); /* Perform calibration if necessary */ if (longcal || shortcal) { bool iscaldone = false; if (ath9k_hw_calibrate(ah, ah->ah_curchan, sc->sc_rx_chainmask, longcal, &iscaldone)) { if (longcal) sc->sc_ani.sc_noise_floor = ath9k_hw_getchan_noise(ah, ah->ah_curchan); DPRINTF(sc, ATH_DBG_ANI, "%s: calibrate chan %u/%x nf: %d\n", __func__, ah->ah_curchan->channel, ah->ah_curchan->channelFlags, sc->sc_ani.sc_noise_floor); } else { DPRINTF(sc, ATH_DBG_ANY, "%s: calibrate chan %u/%x failed\n", __func__, ah->ah_curchan->channel, ah->ah_curchan->channelFlags); } sc->sc_ani.sc_caldone = iscaldone; } } /* * Set timer interval based on previous results. * The interval must be the shortest necessary to satisfy ANI, * short calibration and long calibration. */ cal_interval = ATH_ANI_POLLINTERVAL; if (!sc->sc_ani.sc_caldone) cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL); mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval)); } /******************/ /* VAP management */ /******************/ int ath_vap_attach(struct ath_softc *sc, int if_id, struct ieee80211_vif *if_data, enum ath9k_opmode opmode) { struct ath_vap *avp; if (if_id >= ATH_BCBUF || sc->sc_vaps[if_id] != NULL) { DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid interface id = %u\n", __func__, if_id); return -EINVAL; } switch (opmode) { case ATH9K_M_STA: case ATH9K_M_IBSS: case ATH9K_M_MONITOR: break; case ATH9K_M_HOSTAP: /* XXX not right, beacon buffer is allocated on RUN trans */ if (list_empty(&sc->sc_bbuf)) return -ENOMEM; break; default: return -EINVAL; } /* create ath_vap */ avp = kmalloc(sizeof(struct ath_vap), GFP_KERNEL); if (avp == NULL) return -ENOMEM; memset(avp, 0, sizeof(struct ath_vap)); avp->av_if_data = if_data; /* Set the VAP opmode */ avp->av_opmode = opmode; avp->av_bslot = -1; if (opmode == ATH9K_M_HOSTAP) ath9k_hw_set_tsfadjust(sc->sc_ah, 1); sc->sc_vaps[if_id] = avp; sc->sc_nvaps++; /* Set the device opmode */ sc->sc_ah->ah_opmode = opmode; /* default VAP configuration */ avp->av_config.av_fixed_rateset = IEEE80211_FIXED_RATE_NONE; avp->av_config.av_fixed_retryset = 0x03030303; return 0; } int ath_vap_detach(struct ath_softc *sc, int if_id) { struct ath_hal *ah = sc->sc_ah; struct ath_vap *avp; avp = sc->sc_vaps[if_id]; if (avp == NULL) { DPRINTF(sc, ATH_DBG_FATAL, "%s: invalid interface id %u\n", __func__, if_id); return -EINVAL; } /* * Quiesce the hardware while we remove the vap. In * particular we need to reclaim all references to the * vap state by any frames pending on the tx queues. * * XXX can we do this w/o affecting other vap's? */ ath9k_hw_set_interrupts(ah, 0); /* disable interrupts */ ath_draintxq(sc, false); /* stop xmit side */ ath_stoprecv(sc); /* stop recv side */ ath_flushrecv(sc); /* flush recv queue */ kfree(avp); sc->sc_vaps[if_id] = NULL; sc->sc_nvaps--; return 0; } int ath_vap_config(struct ath_softc *sc, int if_id, struct ath_vap_config *if_config) { struct ath_vap *avp; if (if_id >= ATH_BCBUF) { DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid interface id = %u\n", __func__, if_id); return -EINVAL; } avp = sc->sc_vaps[if_id]; ASSERT(avp != NULL); if (avp) memcpy(&avp->av_config, if_config, sizeof(avp->av_config)); return 0; } /********/ /* Core */ /********/ int ath_open(struct ath_softc *sc, struct ath9k_channel *initial_chan) { struct ath_hal *ah = sc->sc_ah; int status; int error = 0; DPRINTF(sc, ATH_DBG_CONFIG, "%s: mode %d\n", __func__, sc->sc_ah->ah_opmode); /* * Stop anything previously setup. This is safe * whether this is the first time through or not. */ ath_stop(sc); /* Initialize chanmask selection */ sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask; sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask; /* Reset SERDES registers */ ath9k_hw_configpcipowersave(ah, 0); /* * The basic interface to setting the hardware in a good * state is ``reset''. On return the hardware is known to * be powered up and with interrupts disabled. This must * be followed by initialization of the appropriate bits * and then setup of the interrupt mask. */ spin_lock_bh(&sc->sc_resetlock); if (!ath9k_hw_reset(ah, initial_chan, sc->sc_ht_info.tx_chan_width, sc->sc_tx_chainmask, sc->sc_rx_chainmask, sc->sc_ht_extprotspacing, false, &status)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to reset hardware; hal status %u " "(freq %u flags 0x%x)\n", __func__, status, initial_chan->channel, initial_chan->channelFlags); error = -EIO; spin_unlock_bh(&sc->sc_resetlock); goto done; } spin_unlock_bh(&sc->sc_resetlock); /* * This is needed only to setup initial state * but it's best done after a reset. */ ath_update_txpow(sc); /* * Setup the hardware after reset: * The receive engine is set going. * Frame transmit is handled entirely * in the frame output path; there's nothing to do * here except setup the interrupt mask. */ if (ath_startrecv(sc) != 0) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to start recv logic\n", __func__); error = -EIO; goto done; } /* Setup our intr mask. */ sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL; if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT) sc->sc_imask |= ATH9K_INT_GTT; if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) sc->sc_imask |= ATH9K_INT_CST; /* * Enable MIB interrupts when there are hardware phy counters. * Note we only do this (at the moment) for station mode. */ if (ath9k_hw_phycounters(ah) && ((sc->sc_ah->ah_opmode == ATH9K_M_STA) || (sc->sc_ah->ah_opmode == ATH9K_M_IBSS))) sc->sc_imask |= ATH9K_INT_MIB; /* * Some hardware processes the TIM IE and fires an * interrupt when the TIM bit is set. For hardware * that does, if not overridden by configuration, * enable the TIM interrupt when operating as station. */ if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) && (sc->sc_ah->ah_opmode == ATH9K_M_STA) && !sc->sc_config.swBeaconProcess) sc->sc_imask |= ATH9K_INT_TIM; /* * Don't enable interrupts here as we've not yet built our * vap and node data structures, which will be needed as soon * as we start receiving. */ ath_setcurmode(sc, ath_chan2mode(initial_chan)); /* XXX: we must make sure h/w is ready and clear invalid flag * before turning on interrupt. */ sc->sc_flags &= ~SC_OP_INVALID; done: return error; } int ath_reset(struct ath_softc *sc, bool retry_tx) { struct ath_hal *ah = sc->sc_ah; int status; int error = 0; ath9k_hw_set_interrupts(ah, 0); /* disable interrupts */ ath_draintxq(sc, retry_tx); /* stop xmit */ ath_stoprecv(sc); /* stop recv */ ath_flushrecv(sc); /* flush recv queue */ /* Reset chip */ spin_lock_bh(&sc->sc_resetlock); if (!ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, sc->sc_ht_info.tx_chan_width, sc->sc_tx_chainmask, sc->sc_rx_chainmask, sc->sc_ht_extprotspacing, false, &status)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to reset hardware; hal status %u\n", __func__, status); error = -EIO; } spin_unlock_bh(&sc->sc_resetlock); if (ath_startrecv(sc) != 0) /* restart recv */ DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to start recv logic\n", __func__); /* * We may be doing a reset in response to a request * that changes the channel so update any state that * might change as a result. */ ath_setcurmode(sc, ath_chan2mode(sc->sc_ah->ah_curchan)); ath_update_txpow(sc); if (sc->sc_flags & SC_OP_BEACONS) ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */ ath9k_hw_set_interrupts(ah, sc->sc_imask); /* Restart the txq */ if (retry_tx) { int i; for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i)) { spin_lock_bh(&sc->sc_txq[i].axq_lock); ath_txq_schedule(sc, &sc->sc_txq[i]); spin_unlock_bh(&sc->sc_txq[i].axq_lock); } } } return error; } int ath_suspend(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; /* No I/O if device has been surprise removed */ if (sc->sc_flags & SC_OP_INVALID) return -EIO; /* Shut off the interrupt before setting sc->sc_invalid to '1' */ ath9k_hw_set_interrupts(ah, 0); /* XXX: we must make sure h/w will not generate any interrupt * before setting the invalid flag. */ sc->sc_flags |= SC_OP_INVALID; /* disable HAL and put h/w to sleep */ ath9k_hw_disable(sc->sc_ah); ath9k_hw_configpcipowersave(sc->sc_ah, 1); return 0; } /* Interrupt handler. Most of the actual processing is deferred. * It's the caller's responsibility to ensure the chip is awake. */ irqreturn_t ath_isr(int irq, void *dev) { struct ath_softc *sc = dev; struct ath_hal *ah = sc->sc_ah; enum ath9k_int status; bool sched = false; do { if (sc->sc_flags & SC_OP_INVALID) { /* * The hardware is not ready/present, don't * touch anything. Note this can happen early * on if the IRQ is shared. */ return IRQ_NONE; } if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */ return IRQ_NONE; } /* * Figure out the reason(s) for the interrupt. Note * that the hal returns a pseudo-ISR that may include * bits we haven't explicitly enabled so we mask the * value to insure we only process bits we requested. */ ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */ status &= sc->sc_imask; /* discard unasked-for bits */ /* * If there are no status bits set, then this interrupt was not * for me (should have been caught above). */ if (!status) return IRQ_NONE; sc->sc_intrstatus = status; if (status & ATH9K_INT_FATAL) { /* need a chip reset */ sched = true; } else if (status & ATH9K_INT_RXORN) { /* need a chip reset */ sched = true; } else { if (status & ATH9K_INT_SWBA) { /* schedule a tasklet for beacon handling */ tasklet_schedule(&sc->bcon_tasklet); } if (status & ATH9K_INT_RXEOL) { /* * NB: the hardware should re-read the link when * RXE bit is written, but it doesn't work * at least on older hardware revs. */ sched = true; } if (status & ATH9K_INT_TXURN) /* bump tx trigger level */ ath9k_hw_updatetxtriglevel(ah, true); /* XXX: optimize this */ if (status & ATH9K_INT_RX) sched = true; if (status & ATH9K_INT_TX) sched = true; if (status & ATH9K_INT_BMISS) sched = true; /* carrier sense timeout */ if (status & ATH9K_INT_CST) sched = true; if (status & ATH9K_INT_MIB) { /* * Disable interrupts until we service the MIB * interrupt; otherwise it will continue to * fire. */ ath9k_hw_set_interrupts(ah, 0); /* * Let the hal handle the event. We assume * it will clear whatever condition caused * the interrupt. */ ath9k_hw_procmibevent(ah, &sc->sc_halstats); ath9k_hw_set_interrupts(ah, sc->sc_imask); } if (status & ATH9K_INT_TIM_TIMER) { if (!(ah->ah_caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { /* Clear RxAbort bit so that we can * receive frames */ ath9k_hw_setrxabort(ah, 0); sched = true; } } } } while (0); if (sched) { /* turn off every interrupt except SWBA */ ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA)); tasklet_schedule(&sc->intr_tq); } return IRQ_HANDLED; } /* Deferred interrupt processing */ static void ath9k_tasklet(unsigned long data) { struct ath_softc *sc = (struct ath_softc *)data; u32 status = sc->sc_intrstatus; if (status & ATH9K_INT_FATAL) { /* need a chip reset */ ath_reset(sc, false); return; } else { if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) { /* XXX: fill me in */ /* if (status & ATH9K_INT_RXORN) { } if (status & ATH9K_INT_RXEOL) { } */ spin_lock_bh(&sc->sc_rxflushlock); ath_rx_tasklet(sc, 0); spin_unlock_bh(&sc->sc_rxflushlock); } /* XXX: optimize this */ if (status & ATH9K_INT_TX) ath_tx_tasklet(sc); /* XXX: fill me in */ /* if (status & ATH9K_INT_BMISS) { } if (status & (ATH9K_INT_TIM | ATH9K_INT_DTIMSYNC)) { if (status & ATH9K_INT_TIM) { } if (status & ATH9K_INT_DTIMSYNC) { } } */ } /* re-enable hardware interrupt */ ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask); } int ath_init(u16 devid, struct ath_softc *sc) { struct ath_hal *ah = NULL; int status; int error = 0, i; int csz = 0; /* XXX: hardware will not be ready until ath_open() being called */ sc->sc_flags |= SC_OP_INVALID; sc->sc_debug = DBG_DEFAULT; DPRINTF(sc, ATH_DBG_CONFIG, "%s: devid 0x%x\n", __func__, devid); /* Initialize tasklet */ tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc); tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet, (unsigned long)sc); /* * Cache line size is used to size and align various * structures used to communicate with the hardware. */ bus_read_cachesize(sc, &csz); /* XXX assert csz is non-zero */ sc->sc_cachelsz = csz << 2; /* convert to bytes */ spin_lock_init(&sc->sc_resetlock); ah = ath9k_hw_attach(devid, sc, sc->mem, &status); if (ah == NULL) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to attach hardware; HAL status %u\n", __func__, status); error = -ENXIO; goto bad; } sc->sc_ah = ah; /* Initializes the noise floor to a reasonable default value. * Later on this will be updated during ANI processing. */ sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR; /* Get the hardware key cache size. */ sc->sc_keymax = ah->ah_caps.keycache_size; if (sc->sc_keymax > ATH_KEYMAX) { DPRINTF(sc, ATH_DBG_KEYCACHE, "%s: Warning, using only %u entries in %u key cache\n", __func__, ATH_KEYMAX, sc->sc_keymax); sc->sc_keymax = ATH_KEYMAX; } /* * Reset the key cache since some parts do not * reset the contents on initial power up. */ for (i = 0; i < sc->sc_keymax; i++) ath9k_hw_keyreset(ah, (u16) i); /* * Mark key cache slots associated with global keys * as in use. If we knew TKIP was not to be used we * could leave the +32, +64, and +32+64 slots free. * XXX only for splitmic. */ for (i = 0; i < IEEE80211_WEP_NKID; i++) { set_bit(i, sc->sc_keymap); set_bit(i + 32, sc->sc_keymap); set_bit(i + 64, sc->sc_keymap); set_bit(i + 32 + 64, sc->sc_keymap); } /* * Collect the channel list using the default country * code and including outdoor channels. The 802.11 layer * is resposible for filtering this list based on settings * like the phy mode. */ error = ath_setup_channels(sc); if (error) goto bad; /* default to STA mode */ sc->sc_ah->ah_opmode = ATH9K_M_MONITOR; /* Setup rate tables */ ath_setup_rates(sc, IEEE80211_BAND_2GHZ); ath_setup_rates(sc, IEEE80211_BAND_5GHZ); /* NB: setup here so ath_rate_update is happy */ ath_setcurmode(sc, ATH9K_MODE_11A); /* * Allocate hardware transmit queues: one queue for * beacon frames and one data queue for each QoS * priority. Note that the hal handles reseting * these queues at the needed time. */ sc->sc_bhalq = ath_beaconq_setup(ah); if (sc->sc_bhalq == -1) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to setup a beacon xmit queue\n", __func__); error = -EIO; goto bad2; } sc->sc_cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0); if (sc->sc_cabq == NULL) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to setup CAB xmit queue\n", __func__); error = -EIO; goto bad2; } sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME; ath_cabq_update(sc); for (i = 0; i < ARRAY_SIZE(sc->sc_haltype2q); i++) sc->sc_haltype2q[i] = -1; /* Setup data queues */ /* NB: ensure BK queue is the lowest priority h/w queue */ if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to setup xmit queue for BK traffic\n", __func__); error = -EIO; goto bad2; } if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to setup xmit queue for BE traffic\n", __func__); error = -EIO; goto bad2; } if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to setup xmit queue for VI traffic\n", __func__); error = -EIO; goto bad2; } if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to setup xmit queue for VO traffic\n", __func__); error = -EIO; goto bad2; } setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc); sc->sc_rc = ath_rate_attach(ah); if (sc->sc_rc == NULL) { error = -EIO; goto bad2; } if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER, ATH9K_CIPHER_TKIP, NULL)) { /* * Whether we should enable h/w TKIP MIC. * XXX: if we don't support WME TKIP MIC, then we wouldn't * report WMM capable, so it's always safe to turn on * TKIP MIC in this case. */ ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC, 0, 1, NULL); } /* * Check whether the separate key cache entries * are required to handle both tx+rx MIC keys. * With split mic keys the number of stations is limited * to 27 otherwise 59. */ if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER, ATH9K_CIPHER_TKIP, NULL) && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER, ATH9K_CIPHER_MIC, NULL) && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT, 0, NULL)) sc->sc_splitmic = 1; /* turn on mcast key search if possible */ if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL)) (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1, 1, NULL); sc->sc_config.txpowlimit = ATH_TXPOWER_MAX; sc->sc_config.txpowlimit_override = 0; /* 11n Capabilities */ if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) { sc->sc_flags |= SC_OP_TXAGGR; sc->sc_flags |= SC_OP_RXAGGR; } sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask; sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask; ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL); sc->sc_defant = ath9k_hw_getdefantenna(ah); ath9k_hw_getmac(ah, sc->sc_myaddr); if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) { ath9k_hw_getbssidmask(ah, sc->sc_bssidmask); ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask); ath9k_hw_setbssidmask(ah, sc->sc_bssidmask); } sc->sc_slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */ /* initialize beacon slots */ for (i = 0; i < ARRAY_SIZE(sc->sc_bslot); i++) sc->sc_bslot[i] = ATH_IF_ID_ANY; /* save MISC configurations */ sc->sc_config.swBeaconProcess = 1; #ifdef CONFIG_SLOW_ANT_DIV /* range is 40 - 255, we use something in the middle */ ath_slow_ant_div_init(&sc->sc_antdiv, sc, 0x127); #endif return 0; bad2: /* cleanup tx queues */ for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i)) ath_tx_cleanupq(sc, &sc->sc_txq[i]); bad: if (ah) ath9k_hw_detach(ah); return error; } void ath_deinit(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; int i; DPRINTF(sc, ATH_DBG_CONFIG, "%s\n", __func__); tasklet_kill(&sc->intr_tq); tasklet_kill(&sc->bcon_tasklet); ath_stop(sc); if (!(sc->sc_flags & SC_OP_INVALID)) ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE); ath_rate_detach(sc->sc_rc); /* cleanup tx queues */ for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i)) ath_tx_cleanupq(sc, &sc->sc_txq[i]); ath9k_hw_detach(ah); } /*******************/ /* Node Management */ /*******************/ void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta, int if_id) { struct ath_vap *avp; struct ath_node *an; avp = sc->sc_vaps[if_id]; ASSERT(avp != NULL); an = (struct ath_node *)sta->drv_priv; if (sc->sc_flags & SC_OP_TXAGGR) ath_tx_node_init(sc, an); if (sc->sc_flags & SC_OP_RXAGGR) ath_rx_node_init(sc, an); an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR + sta->ht_cap.ampdu_factor); an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density); ath_chainmask_sel_init(sc, an); ath_chainmask_sel_timerstart(&an->an_chainmask_sel); } void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta) { struct ath_node *an = (struct ath_node *)sta->drv_priv; ath_chainmask_sel_timerstop(&an->an_chainmask_sel); if (sc->sc_flags & SC_OP_TXAGGR) ath_tx_node_cleanup(sc, an); if (sc->sc_flags & SC_OP_RXAGGR) ath_rx_node_cleanup(sc, an); } /* * Set up New Node * * Setup driver-specific state for a newly associated node. This routine * really only applies if compression or XR are enabled, there is no code * covering any other cases. */ void ath_newassoc(struct ath_softc *sc, struct ath_node *an, int isnew, int isuapsd) { int tidno; /* if station reassociates, tear down the aggregation state. */ if (!isnew) { for (tidno = 0; tidno < WME_NUM_TID; tidno++) { if (sc->sc_flags & SC_OP_TXAGGR) ath_tx_aggr_teardown(sc, an, tidno); if (sc->sc_flags & SC_OP_RXAGGR) ath_rx_aggr_teardown(sc, an, tidno); } } } /**************/ /* Encryption */ /**************/ void ath_key_reset(struct ath_softc *sc, u16 keyix, int freeslot) { ath9k_hw_keyreset(sc->sc_ah, keyix); if (freeslot) clear_bit(keyix, sc->sc_keymap); } int ath_keyset(struct ath_softc *sc, u16 keyix, struct ath9k_keyval *hk, const u8 mac[ETH_ALEN]) { bool status; status = ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, mac, false); return status != false; } /***********************/ /* TX Power/Regulatory */ /***********************/ /* * Set Transmit power in HAL * * This routine makes the actual HAL calls to set the new transmit power * limit. */ void ath_update_txpow(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; u32 txpow; if (sc->sc_curtxpow != sc->sc_config.txpowlimit) { ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit); /* read back in case value is clamped */ ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow); sc->sc_curtxpow = txpow; } } /* Return the current country and domain information */ void ath_get_currentCountry(struct ath_softc *sc, struct ath9k_country_entry *ctry) { ath9k_regd_get_current_country(sc->sc_ah, ctry); /* If HAL not specific yet, since it is band dependent, * use the one we passed in. */ if (ctry->countryCode == CTRY_DEFAULT) { ctry->iso[0] = 0; ctry->iso[1] = 0; } else if (ctry->iso[0] && ctry->iso[1]) { if (!ctry->iso[2]) { if (ath_outdoor) ctry->iso[2] = 'O'; else ctry->iso[2] = 'I'; } } } /**************************/ /* Slow Antenna Diversity */ /**************************/ void ath_slow_ant_div_init(struct ath_antdiv *antdiv, struct ath_softc *sc, int32_t rssitrig) { int trig; /* antdivf_rssitrig can range from 40 - 0xff */ trig = (rssitrig > 0xff) ? 0xff : rssitrig; trig = (rssitrig < 40) ? 40 : rssitrig; antdiv->antdiv_sc = sc; antdiv->antdivf_rssitrig = trig; } void ath_slow_ant_div_start(struct ath_antdiv *antdiv, u8 num_antcfg, const u8 *bssid) { antdiv->antdiv_num_antcfg = num_antcfg < ATH_ANT_DIV_MAX_CFG ? num_antcfg : ATH_ANT_DIV_MAX_CFG; antdiv->antdiv_state = ATH_ANT_DIV_IDLE; antdiv->antdiv_curcfg = 0; antdiv->antdiv_bestcfg = 0; antdiv->antdiv_laststatetsf = 0; memcpy(antdiv->antdiv_bssid, bssid, sizeof(antdiv->antdiv_bssid)); antdiv->antdiv_start = 1; } void ath_slow_ant_div_stop(struct ath_antdiv *antdiv) { antdiv->antdiv_start = 0; } static int32_t ath_find_max_val(int32_t *val, u8 num_val, u8 *max_index) { u32 MaxVal = *val++; u32 cur_index = 0; *max_index = 0; while (++cur_index < num_val) { if (*val > MaxVal) { MaxVal = *val; *max_index = cur_index; } val++; } return MaxVal; } void ath_slow_ant_div(struct ath_antdiv *antdiv, struct ieee80211_hdr *hdr, struct ath_rx_status *rx_stats) { struct ath_softc *sc = antdiv->antdiv_sc; struct ath_hal *ah = sc->sc_ah; u64 curtsf = 0; u8 bestcfg, curcfg = antdiv->antdiv_curcfg; __le16 fc = hdr->frame_control; if (antdiv->antdiv_start && ieee80211_is_beacon(fc) && !compare_ether_addr(hdr->addr3, antdiv->antdiv_bssid)) { antdiv->antdiv_lastbrssi[curcfg] = rx_stats->rs_rssi; antdiv->antdiv_lastbtsf[curcfg] = ath9k_hw_gettsf64(sc->sc_ah); curtsf = antdiv->antdiv_lastbtsf[curcfg]; } else { return; } switch (antdiv->antdiv_state) { case ATH_ANT_DIV_IDLE: if ((antdiv->antdiv_lastbrssi[curcfg] < antdiv->antdivf_rssitrig) && ((curtsf - antdiv->antdiv_laststatetsf) > ATH_ANT_DIV_MIN_IDLE_US)) { curcfg++; if (curcfg == antdiv->antdiv_num_antcfg) curcfg = 0; if (!ath9k_hw_select_antconfig(ah, curcfg)) { antdiv->antdiv_bestcfg = antdiv->antdiv_curcfg; antdiv->antdiv_curcfg = curcfg; antdiv->antdiv_laststatetsf = curtsf; antdiv->antdiv_state = ATH_ANT_DIV_SCAN; } } break; case ATH_ANT_DIV_SCAN: if ((curtsf - antdiv->antdiv_laststatetsf) < ATH_ANT_DIV_MIN_SCAN_US) break; curcfg++; if (curcfg == antdiv->antdiv_num_antcfg) curcfg = 0; if (curcfg == antdiv->antdiv_bestcfg) { ath_find_max_val(antdiv->antdiv_lastbrssi, antdiv->antdiv_num_antcfg, &bestcfg); if (!ath9k_hw_select_antconfig(ah, bestcfg)) { antdiv->antdiv_bestcfg = bestcfg; antdiv->antdiv_curcfg = bestcfg; antdiv->antdiv_laststatetsf = curtsf; antdiv->antdiv_state = ATH_ANT_DIV_IDLE; } } else { if (!ath9k_hw_select_antconfig(ah, curcfg)) { antdiv->antdiv_curcfg = curcfg; antdiv->antdiv_laststatetsf = curtsf; antdiv->antdiv_state = ATH_ANT_DIV_SCAN; } } break; } } /***********************/ /* Descriptor Handling */ /***********************/ /* * Set up DMA descriptors * * This function will allocate both the DMA descriptor structure, and the * buffers it contains. These are used to contain the descriptors used * by the system. */ int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd, struct list_head *head, const char *name, int nbuf, int ndesc) { #define DS2PHYS(_dd, _ds) \ ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0) #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096) struct ath_desc *ds; struct ath_buf *bf; int i, bsize, error; DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA: %u buffers %u desc/buf\n", __func__, name, nbuf, ndesc); /* ath_desc must be a multiple of DWORDs */ if ((sizeof(struct ath_desc) % 4) != 0) { DPRINTF(sc, ATH_DBG_FATAL, "%s: ath_desc not DWORD aligned\n", __func__); ASSERT((sizeof(struct ath_desc) % 4) == 0); error = -ENOMEM; goto fail; } dd->dd_name = name; dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; /* * Need additional DMA memory because we can't use * descriptors that cross the 4K page boundary. Assume * one skipped descriptor per 4K page. */ if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) { u32 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len); u32 dma_len; while (ndesc_skipped) { dma_len = ndesc_skipped * sizeof(struct ath_desc); dd->dd_desc_len += dma_len; ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len); }; } /* allocate descriptors */ dd->dd_desc = pci_alloc_consistent(sc->pdev, dd->dd_desc_len, &dd->dd_desc_paddr); if (dd->dd_desc == NULL) { error = -ENOMEM; goto fail; } ds = dd->dd_desc; DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA map: %p (%u) -> %llx (%u)\n", __func__, dd->dd_name, ds, (u32) dd->dd_desc_len, ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len); /* allocate buffers */ bsize = sizeof(struct ath_buf) * nbuf; bf = kmalloc(bsize, GFP_KERNEL); if (bf == NULL) { error = -ENOMEM; goto fail2; } memset(bf, 0, bsize); dd->dd_bufptr = bf; INIT_LIST_HEAD(head); for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(dd, ds); if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) { /* * Skip descriptor addresses which can cause 4KB * boundary crossing (addr + length) with a 32 dword * descriptor fetch. */ while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) { ASSERT((caddr_t) bf->bf_desc < ((caddr_t) dd->dd_desc + dd->dd_desc_len)); ds += ndesc; bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(dd, ds); } } list_add_tail(&bf->list, head); } return 0; fail2: pci_free_consistent(sc->pdev, dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr); fail: memset(dd, 0, sizeof(*dd)); return error; #undef ATH_DESC_4KB_BOUND_CHECK #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED #undef DS2PHYS } /* * Cleanup DMA descriptors * * This function will free the DMA block that was allocated for the descriptor * pool. Since this was allocated as one "chunk", it is freed in the same * manner. */ void ath_descdma_cleanup(struct ath_softc *sc, struct ath_descdma *dd, struct list_head *head) { /* Free memory associated with descriptors */ pci_free_consistent(sc->pdev, dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr); INIT_LIST_HEAD(head); kfree(dd->dd_bufptr); memset(dd, 0, sizeof(*dd)); } /*************/ /* Utilities */ /*************/ int ath_get_hal_qnum(u16 queue, struct ath_softc *sc) { int qnum; switch (queue) { case 0: qnum = sc->sc_haltype2q[ATH9K_WME_AC_VO]; break; case 1: qnum = sc->sc_haltype2q[ATH9K_WME_AC_VI]; break; case 2: qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE]; break; case 3: qnum = sc->sc_haltype2q[ATH9K_WME_AC_BK]; break; default: qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE]; break; } return qnum; } int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc) { int qnum; switch (queue) { case ATH9K_WME_AC_VO: qnum = 0; break; case ATH9K_WME_AC_VI: qnum = 1; break; case ATH9K_WME_AC_BE: qnum = 2; break; case ATH9K_WME_AC_BK: qnum = 3; break; default: qnum = -1; break; } return qnum; } /* * Expand time stamp to TSF * * Extend 15-bit time stamp from rx descriptor to * a full 64-bit TSF using the current h/w TSF. */ u64 ath_extend_tsf(struct ath_softc *sc, u32 rstamp) { u64 tsf; tsf = ath9k_hw_gettsf64(sc->sc_ah); if ((tsf & 0x7fff) < rstamp) tsf -= 0x8000; return (tsf & ~0x7fff) | rstamp; } /* * Set Default Antenna * * Call into the HAL to set the default antenna to use. Not really valid for * MIMO technology. */ void ath_setdefantenna(void *context, u32 antenna) { struct ath_softc *sc = (struct ath_softc *)context; struct ath_hal *ah = sc->sc_ah; /* XXX block beacon interrupts */ ath9k_hw_setantenna(ah, antenna); sc->sc_defant = antenna; sc->sc_rxotherant = 0; } /* * Set Slot Time * * This will wake up the chip if required, and set the slot time for the * frame (maximum transmit time). Slot time is assumed to be already set * in the ATH object member sc_slottime */ void ath_setslottime(struct ath_softc *sc) { ath9k_hw_setslottime(sc->sc_ah, sc->sc_slottime); sc->sc_updateslot = OK; }