/* * Copyright (c) 2010-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "hw.h" #include "ar9003_phy.h" static const int firstep_table[] = /* level: 0 1 2 3 4 5 6 7 8 */ { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */ static const int cycpwrThr1_table[] = /* level: 0 1 2 3 4 5 6 7 8 */ { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */ /* * register values to turn OFDM weak signal detection OFF */ static const int m1ThreshLow_off = 127; static const int m2ThreshLow_off = 127; static const int m1Thresh_off = 127; static const int m2Thresh_off = 127; static const int m2CountThr_off = 31; static const int m2CountThrLow_off = 63; static const int m1ThreshLowExt_off = 127; static const int m2ThreshLowExt_off = 127; static const int m1ThreshExt_off = 127; static const int m2ThreshExt_off = 127; /** * ar9003_hw_set_channel - set channel on single-chip device * @ah: atheros hardware structure * @chan: * * This is the function to change channel on single-chip devices, that is * for AR9300 family of chipsets. * * This function takes the channel value in MHz and sets * hardware channel value. Assumes writes have been enabled to analog bus. * * Actual Expression, * * For 2GHz channel, * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) * (freq_ref = 40MHz) * * For 5GHz channel, * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10) * (freq_ref = 40MHz/(24>>amodeRefSel)) * * For 5GHz channels which are 5MHz spaced, * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) * (freq_ref = 40MHz) */ static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan) { u16 bMode, fracMode = 0, aModeRefSel = 0; u32 freq, channelSel = 0, reg32 = 0; struct chan_centers centers; int loadSynthChannel; ath9k_hw_get_channel_centers(ah, chan, ¢ers); freq = centers.synth_center; if (freq < 4800) { /* 2 GHz, fractional mode */ if (AR_SREV_9330(ah)) { u32 chan_frac; u32 div; if (ah->is_clk_25mhz) div = 75; else div = 120; channelSel = (freq * 4) / div; chan_frac = (((freq * 4) % div) * 0x20000) / div; channelSel = (channelSel << 17) | chan_frac; } else if (AR_SREV_9485(ah)) { u32 chan_frac; /* * freq_ref = 40 / (refdiva >> amoderefsel); where refdiva=1 and amoderefsel=0 * ndiv = ((chan_mhz * 4) / 3) / freq_ref; * chansel = int(ndiv), chanfrac = (ndiv - chansel) * 0x20000 */ channelSel = (freq * 4) / 120; chan_frac = (((freq * 4) % 120) * 0x20000) / 120; channelSel = (channelSel << 17) | chan_frac; } else if (AR_SREV_9340(ah)) { if (ah->is_clk_25mhz) { u32 chan_frac; channelSel = (freq * 2) / 75; chan_frac = (((freq * 2) % 75) * 0x20000) / 75; channelSel = (channelSel << 17) | chan_frac; } else channelSel = CHANSEL_2G(freq) >> 1; } else channelSel = CHANSEL_2G(freq); /* Set to 2G mode */ bMode = 1; } else { if (AR_SREV_9340(ah) && ah->is_clk_25mhz) { u32 chan_frac; channelSel = (freq * 2) / 75; chan_frac = (((freq * 2) % 75) * 0x20000) / 75; channelSel = (channelSel << 17) | chan_frac; } else { channelSel = CHANSEL_5G(freq); /* Doubler is ON, so, divide channelSel by 2. */ channelSel >>= 1; } /* Set to 5G mode */ bMode = 0; } /* Enable fractional mode for all channels */ fracMode = 1; aModeRefSel = 0; loadSynthChannel = 0; reg32 = (bMode << 29); REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32); /* Enable Long shift Select for Synthesizer */ REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4, AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1); /* Program Synth. setting */ reg32 = (channelSel << 2) | (fracMode << 30) | (aModeRefSel << 28) | (loadSynthChannel << 31); REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32); /* Toggle Load Synth channel bit */ loadSynthChannel = 1; reg32 = (channelSel << 2) | (fracMode << 30) | (aModeRefSel << 28) | (loadSynthChannel << 31); REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32); ah->curchan = chan; ah->curchan_rad_index = -1; return 0; } /** * ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency * @ah: atheros hardware structure * @chan: * * For single-chip solutions. Converts to baseband spur frequency given the * input channel frequency and compute register settings below. * * Spur mitigation for MRC CCK */ static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah, struct ath9k_channel *chan) { static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 }; int cur_bb_spur, negative = 0, cck_spur_freq; int i; int range, max_spur_cnts, synth_freq; u8 *spur_fbin_ptr = NULL; /* * Need to verify range +/- 10 MHz in control channel, otherwise spur * is out-of-band and can be ignored. */ if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah)) { spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah, IS_CHAN_2GHZ(chan)); if (spur_fbin_ptr[0] == 0) /* No spur */ return; max_spur_cnts = 5; if (IS_CHAN_HT40(chan)) { range = 19; if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) == 0) synth_freq = chan->channel + 10; else synth_freq = chan->channel - 10; } else { range = 10; synth_freq = chan->channel; } } else { range = AR_SREV_9462(ah) ? 5 : 10; max_spur_cnts = 4; synth_freq = chan->channel; } for (i = 0; i < max_spur_cnts; i++) { if (AR_SREV_9462(ah) && (i == 0 || i == 3)) continue; negative = 0; if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah)) cur_bb_spur = FBIN2FREQ(spur_fbin_ptr[i], IS_CHAN_2GHZ(chan)) - synth_freq; else cur_bb_spur = spur_freq[i] - synth_freq; if (cur_bb_spur < 0) { negative = 1; cur_bb_spur = -cur_bb_spur; } if (cur_bb_spur < range) { cck_spur_freq = (int)((cur_bb_spur << 19) / 11); if (negative == 1) cck_spur_freq = -cck_spur_freq; cck_spur_freq = cck_spur_freq & 0xfffff; REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7); REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f); REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE, 0x2); REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x1); REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, cck_spur_freq); return; } } REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5); REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0); REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0); } /* Clean all spur register fields */ static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah) { REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0); REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_FREQ_SD, 0); REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0); REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0); REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0); REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0); REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0); REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0); REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0); REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0); REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0); REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0); REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0); REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0); REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0); REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0); REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0); REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0); REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0); } static void ar9003_hw_spur_ofdm(struct ath_hw *ah, int freq_offset, int spur_freq_sd, int spur_delta_phase, int spur_subchannel_sd) { int mask_index = 0; /* OFDM Spur mitigation */ REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1); REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd); REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase); REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd); REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1); REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1); REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1); REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34); REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1); if (REG_READ_FIELD(ah, AR_PHY_MODE, AR_PHY_MODE_DYNAMIC) == 0x1) REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1); mask_index = (freq_offset << 4) / 5; if (mask_index < 0) mask_index = mask_index - 1; mask_index = mask_index & 0x7f; REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1); REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1); REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1); REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index); REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index); REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index); REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc); REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc); REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0); REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff); } static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah, struct ath9k_channel *chan, int freq_offset) { int spur_freq_sd = 0; int spur_subchannel_sd = 0; int spur_delta_phase = 0; if (IS_CHAN_HT40(chan)) { if (freq_offset < 0) { if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) == 0x0) spur_subchannel_sd = 1; else spur_subchannel_sd = 0; spur_freq_sd = (freq_offset << 9) / 11; } else { if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) == 0x0) spur_subchannel_sd = 0; else spur_subchannel_sd = 1; spur_freq_sd = (freq_offset << 9) / 11; } spur_delta_phase = (freq_offset << 17) / 5; } else { spur_subchannel_sd = 0; spur_freq_sd = (freq_offset << 9) /11; spur_delta_phase = (freq_offset << 18) / 5; } spur_freq_sd = spur_freq_sd & 0x3ff; spur_delta_phase = spur_delta_phase & 0xfffff; ar9003_hw_spur_ofdm(ah, freq_offset, spur_freq_sd, spur_delta_phase, spur_subchannel_sd); } /* Spur mitigation for OFDM */ static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah, struct ath9k_channel *chan) { int synth_freq; int range = 10; int freq_offset = 0; int mode; u8* spurChansPtr; unsigned int i; struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep; if (IS_CHAN_5GHZ(chan)) { spurChansPtr = &(eep->modalHeader5G.spurChans[0]); mode = 0; } else { spurChansPtr = &(eep->modalHeader2G.spurChans[0]); mode = 1; } if (spurChansPtr[0] == 0) return; /* No spur in the mode */ if (IS_CHAN_HT40(chan)) { range = 19; if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) == 0x0) synth_freq = chan->channel - 10; else synth_freq = chan->channel + 10; } else { range = 10; synth_freq = chan->channel; } ar9003_hw_spur_ofdm_clear(ah); for (i = 0; i < AR_EEPROM_MODAL_SPURS && spurChansPtr[i]; i++) { freq_offset = FBIN2FREQ(spurChansPtr[i], mode) - synth_freq; if (abs(freq_offset) < range) { ar9003_hw_spur_ofdm_work(ah, chan, freq_offset); break; } } } static void ar9003_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan) { ar9003_hw_spur_mitigate_mrc_cck(ah, chan); ar9003_hw_spur_mitigate_ofdm(ah, chan); } static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah, struct ath9k_channel *chan) { u32 pll; pll = SM(0x5, AR_RTC_9300_PLL_REFDIV); if (chan && IS_CHAN_HALF_RATE(chan)) pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL); else if (chan && IS_CHAN_QUARTER_RATE(chan)) pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL); pll |= SM(0x2c, AR_RTC_9300_PLL_DIV); return pll; } static void ar9003_hw_set_channel_regs(struct ath_hw *ah, struct ath9k_channel *chan) { u32 phymode; u32 enableDacFifo = 0; enableDacFifo = (REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO); /* Enable 11n HT, 20 MHz */ phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_SHORT_GI_40 | enableDacFifo; /* Configure baseband for dynamic 20/40 operation */ if (IS_CHAN_HT40(chan)) { phymode |= AR_PHY_GC_DYN2040_EN; /* Configure control (primary) channel at +-10MHz */ if ((chan->chanmode == CHANNEL_A_HT40PLUS) || (chan->chanmode == CHANNEL_G_HT40PLUS)) phymode |= AR_PHY_GC_DYN2040_PRI_CH; } /* make sure we preserve INI settings */ phymode |= REG_READ(ah, AR_PHY_GEN_CTRL); /* turn off Green Field detection for STA for now */ phymode &= ~AR_PHY_GC_GF_DETECT_EN; REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode); /* Configure MAC for 20/40 operation */ ath9k_hw_set11nmac2040(ah); /* global transmit timeout (25 TUs default)*/ REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S); /* carrier sense timeout */ REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); } static void ar9003_hw_init_bb(struct ath_hw *ah, struct ath9k_channel *chan) { u32 synthDelay; /* * Wait for the frequency synth to settle (synth goes on * via AR_PHY_ACTIVE_EN). Read the phy active delay register. * Value is in 100ns increments. */ synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; if (IS_CHAN_B(chan)) synthDelay = (4 * synthDelay) / 22; else synthDelay /= 10; /* Activate the PHY (includes baseband activate + synthesizer on) */ REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); /* * There is an issue if the AP starts the calibration before * the base band timeout completes. This could result in the * rx_clear false triggering. As a workaround we add delay an * extra BASE_ACTIVATE_DELAY usecs to ensure this condition * does not happen. */ udelay(synthDelay + BASE_ACTIVATE_DELAY); } static void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx) { switch (rx) { case 0x5: REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); case 0x3: case 0x1: case 0x2: case 0x7: REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx); REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx); break; default: break; } if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7)) REG_WRITE(ah, AR_SELFGEN_MASK, 0x3); else if (AR_SREV_9462(ah)) /* xxx only when MCI support is enabled */ REG_WRITE(ah, AR_SELFGEN_MASK, 0x3); else REG_WRITE(ah, AR_SELFGEN_MASK, tx); if (tx == 0x5) { REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); } } /* * Override INI values with chip specific configuration. */ static void ar9003_hw_override_ini(struct ath_hw *ah) { u32 val; /* * Set the RX_ABORT and RX_DIS and clear it only after * RXE is set for MAC. This prevents frames with * corrupted descriptor status. */ REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); /* * For AR9280 and above, there is a new feature that allows * Multicast search based on both MAC Address and Key ID. By default, * this feature is enabled. But since the driver is not using this * feature, we switch it off; otherwise multicast search based on * MAC addr only will fail. */ val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE); REG_WRITE(ah, AR_PCU_MISC_MODE2, val | AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE); REG_SET_BIT(ah, AR_PHY_CCK_DETECT, AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); } static void ar9003_hw_prog_ini(struct ath_hw *ah, struct ar5416IniArray *iniArr, int column) { unsigned int i, regWrites = 0; /* New INI format: Array may be undefined (pre, core, post arrays) */ if (!iniArr->ia_array) return; /* * New INI format: Pre, core, and post arrays for a given subsystem * may be modal (> 2 columns) or non-modal (2 columns). Determine if * the array is non-modal and force the column to 1. */ if (column >= iniArr->ia_columns) column = 1; for (i = 0; i < iniArr->ia_rows; i++) { u32 reg = INI_RA(iniArr, i, 0); u32 val = INI_RA(iniArr, i, column); REG_WRITE(ah, reg, val); DO_DELAY(regWrites); } } static int ar9003_hw_process_ini(struct ath_hw *ah, struct ath9k_channel *chan) { unsigned int regWrites = 0, i; u32 modesIndex; switch (chan->chanmode) { case CHANNEL_A: case CHANNEL_A_HT20: modesIndex = 1; break; case CHANNEL_A_HT40PLUS: case CHANNEL_A_HT40MINUS: modesIndex = 2; break; case CHANNEL_G: case CHANNEL_G_HT20: case CHANNEL_B: modesIndex = 4; break; case CHANNEL_G_HT40PLUS: case CHANNEL_G_HT40MINUS: modesIndex = 3; break; default: return -EINVAL; } for (i = 0; i < ATH_INI_NUM_SPLIT; i++) { ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex); ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex); ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex); ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex); if (i == ATH_INI_POST && AR_SREV_9462_20(ah)) ar9003_hw_prog_ini(ah, &ah->ini_radio_post_sys2ant, modesIndex); } REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites); REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites); /* * For 5GHz channels requiring Fast Clock, apply * different modal values. */ if (IS_CHAN_A_FAST_CLOCK(ah, chan)) REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex, regWrites); REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites); if (AR_SREV_9462(ah)) ar9003_hw_prog_ini(ah, &ah->ini_BTCOEX_MAX_TXPWR, 1); if (chan->channel == 2484) ar9003_hw_prog_ini(ah, &ah->ini_japan2484, 1); ah->modes_index = modesIndex; ar9003_hw_override_ini(ah); ar9003_hw_set_channel_regs(ah, chan); ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask); ath9k_hw_apply_txpower(ah, chan); if (AR_SREV_9462(ah)) { if (REG_READ_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_0, AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL)) ah->enabled_cals |= TX_IQ_CAL; else ah->enabled_cals &= ~TX_IQ_CAL; if (REG_READ(ah, AR_PHY_CL_CAL_CTL) & AR_PHY_CL_CAL_ENABLE) ah->enabled_cals |= TX_CL_CAL; else ah->enabled_cals &= ~TX_CL_CAL; } return 0; } static void ar9003_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan) { u32 rfMode = 0; if (chan == NULL) return; rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan)) ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; if (IS_CHAN_A_FAST_CLOCK(ah, chan)) rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE); REG_WRITE(ah, AR_PHY_MODE, rfMode); } static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah) { REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); } static void ar9003_hw_set_delta_slope(struct ath_hw *ah, struct ath9k_channel *chan) { u32 coef_scaled, ds_coef_exp, ds_coef_man; u32 clockMhzScaled = 0x64000000; struct chan_centers centers; /* * half and quarter rate can divide the scaled clock by 2 or 4 * scale for selected channel bandwidth */ if (IS_CHAN_HALF_RATE(chan)) clockMhzScaled = clockMhzScaled >> 1; else if (IS_CHAN_QUARTER_RATE(chan)) clockMhzScaled = clockMhzScaled >> 2; /* * ALGO -> coef = 1e8/fcarrier*fclock/40; * scaled coef to provide precision for this floating calculation */ ath9k_hw_get_channel_centers(ah, chan, ¢ers); coef_scaled = clockMhzScaled / centers.synth_center; ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_MAN, ds_coef_man); REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); /* * For Short GI, * scaled coeff is 9/10 that of normal coeff */ coef_scaled = (9 * coef_scaled) / 10; ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); /* for short gi */ REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA, AR_PHY_SGI_DSC_MAN, ds_coef_man); REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA, AR_PHY_SGI_DSC_EXP, ds_coef_exp); } static bool ar9003_hw_rfbus_req(struct ath_hw *ah) { REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT); } /* * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN). * Read the phy active delay register. Value is in 100ns increments. */ static void ar9003_hw_rfbus_done(struct ath_hw *ah) { u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; if (IS_CHAN_B(ah->curchan)) synthDelay = (4 * synthDelay) / 22; else synthDelay /= 10; udelay(synthDelay + BASE_ACTIVATE_DELAY); REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); } static bool ar9003_hw_ani_control(struct ath_hw *ah, enum ath9k_ani_cmd cmd, int param) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_channel *chan = ah->curchan; struct ar5416AniState *aniState = &chan->ani; s32 value, value2; switch (cmd & ah->ani_function) { case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{ /* * on == 1 means ofdm weak signal detection is ON * on == 1 is the default, for less noise immunity * * on == 0 means ofdm weak signal detection is OFF * on == 0 means more noise imm */ u32 on = param ? 1 : 0; if (on) REG_SET_BIT(ah, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); else REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); if (!on != aniState->ofdmWeakSigDetectOff) { ath_dbg(common, ANI, "** ch %d: ofdm weak signal: %s=>%s\n", chan->channel, !aniState->ofdmWeakSigDetectOff ? "on" : "off", on ? "on" : "off"); if (on) ah->stats.ast_ani_ofdmon++; else ah->stats.ast_ani_ofdmoff++; aniState->ofdmWeakSigDetectOff = !on; } break; } case ATH9K_ANI_FIRSTEP_LEVEL:{ u32 level = param; if (level >= ARRAY_SIZE(firstep_table)) { ath_dbg(common, ANI, "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n", level, ARRAY_SIZE(firstep_table)); return false; } /* * make register setting relative to default * from INI file & cap value */ value = firstep_table[level] - firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] + aniState->iniDef.firstep; if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN) value = ATH9K_SIG_FIRSTEP_SETTING_MIN; if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX) value = ATH9K_SIG_FIRSTEP_SETTING_MAX; REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_FIRSTEP, value); /* * we need to set first step low register too * make register setting relative to default * from INI file & cap value */ value2 = firstep_table[level] - firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] + aniState->iniDef.firstepLow; if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN) value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN; if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX) value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX; REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2); if (level != aniState->firstepLevel) { ath_dbg(common, ANI, "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n", chan->channel, aniState->firstepLevel, level, ATH9K_ANI_FIRSTEP_LVL_NEW, value, aniState->iniDef.firstep); ath_dbg(common, ANI, "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n", chan->channel, aniState->firstepLevel, level, ATH9K_ANI_FIRSTEP_LVL_NEW, value2, aniState->iniDef.firstepLow); if (level > aniState->firstepLevel) ah->stats.ast_ani_stepup++; else if (level < aniState->firstepLevel) ah->stats.ast_ani_stepdown++; aniState->firstepLevel = level; } break; } case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{ u32 level = param; if (level >= ARRAY_SIZE(cycpwrThr1_table)) { ath_dbg(common, ANI, "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n", level, ARRAY_SIZE(cycpwrThr1_table)); return false; } /* * make register setting relative to default * from INI file & cap value */ value = cycpwrThr1_table[level] - cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] + aniState->iniDef.cycpwrThr1; if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN) value = ATH9K_SIG_SPUR_IMM_SETTING_MIN; if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX) value = ATH9K_SIG_SPUR_IMM_SETTING_MAX; REG_RMW_FIELD(ah, AR_PHY_TIMING5, AR_PHY_TIMING5_CYCPWR_THR1, value); /* * set AR_PHY_EXT_CCA for extension channel * make register setting relative to default * from INI file & cap value */ value2 = cycpwrThr1_table[level] - cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] + aniState->iniDef.cycpwrThr1Ext; if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN) value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN; if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX) value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX; REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CYCPWR_THR1, value2); if (level != aniState->spurImmunityLevel) { ath_dbg(common, ANI, "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n", chan->channel, aniState->spurImmunityLevel, level, ATH9K_ANI_SPUR_IMMUNE_LVL_NEW, value, aniState->iniDef.cycpwrThr1); ath_dbg(common, ANI, "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n", chan->channel, aniState->spurImmunityLevel, level, ATH9K_ANI_SPUR_IMMUNE_LVL_NEW, value2, aniState->iniDef.cycpwrThr1Ext); if (level > aniState->spurImmunityLevel) ah->stats.ast_ani_spurup++; else if (level < aniState->spurImmunityLevel) ah->stats.ast_ani_spurdown++; aniState->spurImmunityLevel = level; } break; } case ATH9K_ANI_MRC_CCK:{ /* * is_on == 1 means MRC CCK ON (default, less noise imm) * is_on == 0 means MRC CCK is OFF (more noise imm) */ bool is_on = param ? 1 : 0; REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL, AR_PHY_MRC_CCK_ENABLE, is_on); REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL, AR_PHY_MRC_CCK_MUX_REG, is_on); if (!is_on != aniState->mrcCCKOff) { ath_dbg(common, ANI, "** ch %d: MRC CCK: %s=>%s\n", chan->channel, !aniState->mrcCCKOff ? "on" : "off", is_on ? "on" : "off"); if (is_on) ah->stats.ast_ani_ccklow++; else ah->stats.ast_ani_cckhigh++; aniState->mrcCCKOff = !is_on; } break; } case ATH9K_ANI_PRESENT: break; default: ath_dbg(common, ANI, "invalid cmd %u\n", cmd); return false; } ath_dbg(common, ANI, "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n", aniState->spurImmunityLevel, !aniState->ofdmWeakSigDetectOff ? "on" : "off", aniState->firstepLevel, !aniState->mrcCCKOff ? "on" : "off", aniState->listenTime, aniState->ofdmPhyErrCount, aniState->cckPhyErrCount); return true; } static void ar9003_hw_do_getnf(struct ath_hw *ah, int16_t nfarray[NUM_NF_READINGS]) { #define AR_PHY_CH_MINCCA_PWR 0x1FF00000 #define AR_PHY_CH_MINCCA_PWR_S 20 #define AR_PHY_CH_EXT_MINCCA_PWR 0x01FF0000 #define AR_PHY_CH_EXT_MINCCA_PWR_S 16 int16_t nf; int i; for (i = 0; i < AR9300_MAX_CHAINS; i++) { if (ah->rxchainmask & BIT(i)) { nf = MS(REG_READ(ah, ah->nf_regs[i]), AR_PHY_CH_MINCCA_PWR); nfarray[i] = sign_extend32(nf, 8); if (IS_CHAN_HT40(ah->curchan)) { u8 ext_idx = AR9300_MAX_CHAINS + i; nf = MS(REG_READ(ah, ah->nf_regs[ext_idx]), AR_PHY_CH_EXT_MINCCA_PWR); nfarray[ext_idx] = sign_extend32(nf, 8); } } } } static void ar9003_hw_set_nf_limits(struct ath_hw *ah) { ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ; ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ; ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ; ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ; ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ; ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ; if (AR_SREV_9330(ah)) ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9330_2GHZ; if (AR_SREV_9462(ah)) { ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_2GHZ; ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9462_2GHZ; ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_5GHZ; ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9462_5GHZ; } } /* * Initialize the ANI register values with default (ini) values. * This routine is called during a (full) hardware reset after * all the registers are initialised from the INI. */ static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah) { struct ar5416AniState *aniState; struct ath_common *common = ath9k_hw_common(ah); struct ath9k_channel *chan = ah->curchan; struct ath9k_ani_default *iniDef; u32 val; aniState = &ah->curchan->ani; iniDef = &aniState->iniDef; ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz/0x%x\n", ah->hw_version.macVersion, ah->hw_version.macRev, ah->opmode, chan->channel, chan->channelFlags); val = REG_READ(ah, AR_PHY_SFCORR); iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH); iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH); iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR); val = REG_READ(ah, AR_PHY_SFCORR_LOW); iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW); iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW); iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW); val = REG_READ(ah, AR_PHY_SFCORR_EXT); iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH); iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH); iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW); iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW); iniDef->firstep = REG_READ_FIELD(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_FIRSTEP); iniDef->firstepLow = REG_READ_FIELD(ah, AR_PHY_FIND_SIG_LOW, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW); iniDef->cycpwrThr1 = REG_READ_FIELD(ah, AR_PHY_TIMING5, AR_PHY_TIMING5_CYCPWR_THR1); iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CYCPWR_THR1); /* these levels just got reset to defaults by the INI */ aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_NEW; aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_NEW; aniState->ofdmWeakSigDetectOff = !ATH9K_ANI_USE_OFDM_WEAK_SIG; aniState->mrcCCKOff = !ATH9K_ANI_ENABLE_MRC_CCK; } static void ar9003_hw_set_radar_params(struct ath_hw *ah, struct ath_hw_radar_conf *conf) { u32 radar_0 = 0, radar_1 = 0; if (!conf) { REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA); return; } radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA; radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR); radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI); radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT); radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI); radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND); radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI; radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK; radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN); radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH); radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH); REG_WRITE(ah, AR_PHY_RADAR_0, radar_0); REG_WRITE(ah, AR_PHY_RADAR_1, radar_1); if (conf->ext_channel) REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA); else REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA); } static void ar9003_hw_set_radar_conf(struct ath_hw *ah) { struct ath_hw_radar_conf *conf = &ah->radar_conf; conf->fir_power = -28; conf->radar_rssi = 0; conf->pulse_height = 10; conf->pulse_rssi = 24; conf->pulse_inband = 8; conf->pulse_maxlen = 255; conf->pulse_inband_step = 12; conf->radar_inband = 8; } static void ar9003_hw_antdiv_comb_conf_get(struct ath_hw *ah, struct ath_hw_antcomb_conf *antconf) { u32 regval; regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); antconf->main_lna_conf = (regval & AR_PHY_9485_ANT_DIV_MAIN_LNACONF) >> AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S; antconf->alt_lna_conf = (regval & AR_PHY_9485_ANT_DIV_ALT_LNACONF) >> AR_PHY_9485_ANT_DIV_ALT_LNACONF_S; antconf->fast_div_bias = (regval & AR_PHY_9485_ANT_FAST_DIV_BIAS) >> AR_PHY_9485_ANT_FAST_DIV_BIAS_S; if (AR_SREV_9330_11(ah)) { antconf->lna1_lna2_delta = -9; antconf->div_group = 1; } else if (AR_SREV_9485(ah)) { antconf->lna1_lna2_delta = -9; antconf->div_group = 2; } else { antconf->lna1_lna2_delta = -3; antconf->div_group = 0; } } static void ar9003_hw_antdiv_comb_conf_set(struct ath_hw *ah, struct ath_hw_antcomb_conf *antconf) { u32 regval; regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL); regval &= ~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF | AR_PHY_9485_ANT_DIV_ALT_LNACONF | AR_PHY_9485_ANT_FAST_DIV_BIAS | AR_PHY_9485_ANT_DIV_MAIN_GAINTB | AR_PHY_9485_ANT_DIV_ALT_GAINTB); regval |= ((antconf->main_lna_conf << AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S) & AR_PHY_9485_ANT_DIV_MAIN_LNACONF); regval |= ((antconf->alt_lna_conf << AR_PHY_9485_ANT_DIV_ALT_LNACONF_S) & AR_PHY_9485_ANT_DIV_ALT_LNACONF); regval |= ((antconf->fast_div_bias << AR_PHY_9485_ANT_FAST_DIV_BIAS_S) & AR_PHY_9485_ANT_FAST_DIV_BIAS); regval |= ((antconf->main_gaintb << AR_PHY_9485_ANT_DIV_MAIN_GAINTB_S) & AR_PHY_9485_ANT_DIV_MAIN_GAINTB); regval |= ((antconf->alt_gaintb << AR_PHY_9485_ANT_DIV_ALT_GAINTB_S) & AR_PHY_9485_ANT_DIV_ALT_GAINTB); REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); } static int ar9003_hw_fast_chan_change(struct ath_hw *ah, struct ath9k_channel *chan, u8 *ini_reloaded) { unsigned int regWrites = 0; u32 modesIndex; switch (chan->chanmode) { case CHANNEL_A: case CHANNEL_A_HT20: modesIndex = 1; break; case CHANNEL_A_HT40PLUS: case CHANNEL_A_HT40MINUS: modesIndex = 2; break; case CHANNEL_G: case CHANNEL_G_HT20: case CHANNEL_B: modesIndex = 4; break; case CHANNEL_G_HT40PLUS: case CHANNEL_G_HT40MINUS: modesIndex = 3; break; default: return -EINVAL; } if (modesIndex == ah->modes_index) { *ini_reloaded = false; goto set_rfmode; } ar9003_hw_prog_ini(ah, &ah->iniSOC[ATH_INI_POST], modesIndex); ar9003_hw_prog_ini(ah, &ah->iniMac[ATH_INI_POST], modesIndex); ar9003_hw_prog_ini(ah, &ah->iniBB[ATH_INI_POST], modesIndex); ar9003_hw_prog_ini(ah, &ah->iniRadio[ATH_INI_POST], modesIndex); if (AR_SREV_9462_20(ah)) ar9003_hw_prog_ini(ah, &ah->ini_radio_post_sys2ant, modesIndex); REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites); /* * For 5GHz channels requiring Fast Clock, apply * different modal values. */ if (IS_CHAN_A_FAST_CLOCK(ah, chan)) REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex, regWrites); REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites); ah->modes_index = modesIndex; *ini_reloaded = true; set_rfmode: ar9003_hw_set_rfmode(ah, chan); return 0; } void ar9003_hw_attach_phy_ops(struct ath_hw *ah) { struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah); struct ath_hw_ops *ops = ath9k_hw_ops(ah); static const u32 ar9300_cca_regs[6] = { AR_PHY_CCA_0, AR_PHY_CCA_1, AR_PHY_CCA_2, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_1, AR_PHY_EXT_CCA_2, }; priv_ops->rf_set_freq = ar9003_hw_set_channel; priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate; priv_ops->compute_pll_control = ar9003_hw_compute_pll_control; priv_ops->set_channel_regs = ar9003_hw_set_channel_regs; priv_ops->init_bb = ar9003_hw_init_bb; priv_ops->process_ini = ar9003_hw_process_ini; priv_ops->set_rfmode = ar9003_hw_set_rfmode; priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive; priv_ops->set_delta_slope = ar9003_hw_set_delta_slope; priv_ops->rfbus_req = ar9003_hw_rfbus_req; priv_ops->rfbus_done = ar9003_hw_rfbus_done; priv_ops->ani_control = ar9003_hw_ani_control; priv_ops->do_getnf = ar9003_hw_do_getnf; priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs; priv_ops->set_radar_params = ar9003_hw_set_radar_params; priv_ops->fast_chan_change = ar9003_hw_fast_chan_change; ops->antdiv_comb_conf_get = ar9003_hw_antdiv_comb_conf_get; ops->antdiv_comb_conf_set = ar9003_hw_antdiv_comb_conf_set; ar9003_hw_set_nf_limits(ah); ar9003_hw_set_radar_conf(ah); memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs)); } void ar9003_hw_bb_watchdog_config(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms; u32 val, idle_count; if (!idle_tmo_ms) { /* disable IRQ, disable chip-reset for BB panic */ REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2, REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & ~(AR_PHY_WATCHDOG_RST_ENABLE | AR_PHY_WATCHDOG_IRQ_ENABLE)); /* disable watchdog in non-IDLE mode, disable in IDLE mode */ REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1, REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) & ~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE | AR_PHY_WATCHDOG_IDLE_ENABLE)); ath_dbg(common, RESET, "Disabled BB Watchdog\n"); return; } /* enable IRQ, disable chip-reset for BB watchdog */ val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK; REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2, (val | AR_PHY_WATCHDOG_IRQ_ENABLE) & ~AR_PHY_WATCHDOG_RST_ENABLE); /* bound limit to 10 secs */ if (idle_tmo_ms > 10000) idle_tmo_ms = 10000; /* * The time unit for watchdog event is 2^15 44/88MHz cycles. * * For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick * For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick * * Given we use fast clock now in 5 GHz, these time units should * be common for both 2 GHz and 5 GHz. */ idle_count = (100 * idle_tmo_ms) / 74; if (ah->curchan && IS_CHAN_HT40(ah->curchan)) idle_count = (100 * idle_tmo_ms) / 37; /* * enable watchdog in non-IDLE mode, disable in IDLE mode, * set idle time-out. */ REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1, AR_PHY_WATCHDOG_NON_IDLE_ENABLE | AR_PHY_WATCHDOG_IDLE_MASK | (AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2))); ath_dbg(common, RESET, "Enabled BB Watchdog timeout (%u ms)\n", idle_tmo_ms); } void ar9003_hw_bb_watchdog_read(struct ath_hw *ah) { /* * we want to avoid printing in ISR context so we save the * watchdog status to be printed later in bottom half context. */ ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS); /* * the watchdog timer should reset on status read but to be sure * sure we write 0 to the watchdog status bit. */ REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS, ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR); } void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); u32 status; if (likely(!(common->debug_mask & ATH_DBG_RESET))) return; status = ah->bb_watchdog_last_status; ath_dbg(common, RESET, "\n==== BB update: BB status=0x%08x ====\n", status); ath_dbg(common, RESET, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n", MS(status, AR_PHY_WATCHDOG_INFO), MS(status, AR_PHY_WATCHDOG_DET_HANG), MS(status, AR_PHY_WATCHDOG_RADAR_SM), MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM), MS(status, AR_PHY_WATCHDOG_RX_CCK_SM), MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM), MS(status, AR_PHY_WATCHDOG_TX_CCK_SM), MS(status, AR_PHY_WATCHDOG_AGC_SM), MS(status, AR_PHY_WATCHDOG_SRCH_SM)); ath_dbg(common, RESET, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n", REG_READ(ah, AR_PHY_WATCHDOG_CTL_1), REG_READ(ah, AR_PHY_WATCHDOG_CTL_2)); ath_dbg(common, RESET, "** BB mode: BB_gen_controls=0x%08x **\n", REG_READ(ah, AR_PHY_GEN_CTRL)); #define PCT(_field) (common->cc_survey._field * 100 / common->cc_survey.cycles) if (common->cc_survey.cycles) ath_dbg(common, RESET, "** BB busy times: rx_clear=%d%%, rx_frame=%d%%, tx_frame=%d%% **\n", PCT(rx_busy), PCT(rx_frame), PCT(tx_frame)); ath_dbg(common, RESET, "==== BB update: done ====\n\n"); } EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info); void ar9003_hw_disable_phy_restart(struct ath_hw *ah) { u32 val; /* While receiving unsupported rate frame rx state machine * gets into a state 0xb and if phy_restart happens in that * state, BB would go hang. If RXSM is in 0xb state after * first bb panic, ensure to disable the phy_restart. */ if (!((MS(ah->bb_watchdog_last_status, AR_PHY_WATCHDOG_RX_OFDM_SM) == 0xb) || ah->bb_hang_rx_ofdm)) return; ah->bb_hang_rx_ofdm = true; val = REG_READ(ah, AR_PHY_RESTART); val &= ~AR_PHY_RESTART_ENA; REG_WRITE(ah, AR_PHY_RESTART, val); } EXPORT_SYMBOL(ar9003_hw_disable_phy_restart);