/* * Copyright 2007-8 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher */ #include "drmP.h" #include "radeon_drm.h" #include "radeon.h" #include "atom.h" #include "atom-bits.h" #include "drm_dp_helper.h" /* move these to drm_dp_helper.c/h */ #define DP_LINK_CONFIGURATION_SIZE 9 #define DP_LINK_STATUS_SIZE 6 #define DP_DPCD_SIZE 8 static char *voltage_names[] = { "0.4V", "0.6V", "0.8V", "1.2V" }; static char *pre_emph_names[] = { "0dB", "3.5dB", "6dB", "9.5dB" }; /***** radeon AUX functions *****/ union aux_channel_transaction { PROCESS_AUX_CHANNEL_TRANSACTION_PS_ALLOCATION v1; PROCESS_AUX_CHANNEL_TRANSACTION_PARAMETERS_V2 v2; }; static int radeon_process_aux_ch(struct radeon_i2c_chan *chan, u8 *send, int send_bytes, u8 *recv, int recv_size, u8 delay, u8 *ack) { struct drm_device *dev = chan->dev; struct radeon_device *rdev = dev->dev_private; union aux_channel_transaction args; int index = GetIndexIntoMasterTable(COMMAND, ProcessAuxChannelTransaction); unsigned char *base; int recv_bytes; memset(&args, 0, sizeof(args)); base = (unsigned char *)rdev->mode_info.atom_context->scratch; memcpy(base, send, send_bytes); args.v1.lpAuxRequest = 0; args.v1.lpDataOut = 16; args.v1.ucDataOutLen = 0; args.v1.ucChannelID = chan->rec.i2c_id; args.v1.ucDelay = delay / 10; if (ASIC_IS_DCE4(rdev)) args.v2.ucHPD_ID = chan->rec.hpd; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); *ack = args.v1.ucReplyStatus; /* timeout */ if (args.v1.ucReplyStatus == 1) { DRM_DEBUG_KMS("dp_aux_ch timeout\n"); return -ETIMEDOUT; } /* flags not zero */ if (args.v1.ucReplyStatus == 2) { DRM_DEBUG_KMS("dp_aux_ch flags not zero\n"); return -EBUSY; } /* error */ if (args.v1.ucReplyStatus == 3) { DRM_DEBUG_KMS("dp_aux_ch error\n"); return -EIO; } recv_bytes = args.v1.ucDataOutLen; if (recv_bytes > recv_size) recv_bytes = recv_size; if (recv && recv_size) memcpy(recv, base + 16, recv_bytes); return recv_bytes; } static int radeon_dp_aux_native_write(struct radeon_connector *radeon_connector, u16 address, u8 *send, u8 send_bytes, u8 delay) { struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; int ret; u8 msg[20]; int msg_bytes = send_bytes + 4; u8 ack; unsigned retry; if (send_bytes > 16) return -1; msg[0] = address; msg[1] = address >> 8; msg[2] = AUX_NATIVE_WRITE << 4; msg[3] = (msg_bytes << 4) | (send_bytes - 1); memcpy(&msg[4], send, send_bytes); for (retry = 0; retry < 4; retry++) { ret = radeon_process_aux_ch(dig_connector->dp_i2c_bus, msg, msg_bytes, NULL, 0, delay, &ack); if (ret < 0) return ret; if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) return send_bytes; else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER) udelay(400); else return -EIO; } return -EIO; } static int radeon_dp_aux_native_read(struct radeon_connector *radeon_connector, u16 address, u8 *recv, int recv_bytes, u8 delay) { struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; u8 msg[4]; int msg_bytes = 4; u8 ack; int ret; unsigned retry; msg[0] = address; msg[1] = address >> 8; msg[2] = AUX_NATIVE_READ << 4; msg[3] = (msg_bytes << 4) | (recv_bytes - 1); for (retry = 0; retry < 4; retry++) { ret = radeon_process_aux_ch(dig_connector->dp_i2c_bus, msg, msg_bytes, recv, recv_bytes, delay, &ack); if (ret < 0) return ret; if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) return ret; else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER) udelay(400); else if (ret == 0) return -EPROTO; else return -EIO; } return -EIO; } static void radeon_write_dpcd_reg(struct radeon_connector *radeon_connector, u16 reg, u8 val) { radeon_dp_aux_native_write(radeon_connector, reg, &val, 1, 0); } static u8 radeon_read_dpcd_reg(struct radeon_connector *radeon_connector, u16 reg) { u8 val = 0; radeon_dp_aux_native_read(radeon_connector, reg, &val, 1, 0); return val; } int radeon_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode, u8 write_byte, u8 *read_byte) { struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; struct radeon_i2c_chan *auxch = (struct radeon_i2c_chan *)adapter; u16 address = algo_data->address; u8 msg[5]; u8 reply[2]; unsigned retry; int msg_bytes; int reply_bytes = 1; int ret; u8 ack; /* Set up the command byte */ if (mode & MODE_I2C_READ) msg[2] = AUX_I2C_READ << 4; else msg[2] = AUX_I2C_WRITE << 4; if (!(mode & MODE_I2C_STOP)) msg[2] |= AUX_I2C_MOT << 4; msg[0] = address; msg[1] = address >> 8; switch (mode) { case MODE_I2C_WRITE: msg_bytes = 5; msg[3] = msg_bytes << 4; msg[4] = write_byte; break; case MODE_I2C_READ: msg_bytes = 4; msg[3] = msg_bytes << 4; break; default: msg_bytes = 4; msg[3] = 3 << 4; break; } for (retry = 0; retry < 4; retry++) { ret = radeon_process_aux_ch(auxch, msg, msg_bytes, reply, reply_bytes, 0, &ack); if (ret < 0) { DRM_DEBUG_KMS("aux_ch failed %d\n", ret); return ret; } switch (ack & AUX_NATIVE_REPLY_MASK) { case AUX_NATIVE_REPLY_ACK: /* I2C-over-AUX Reply field is only valid * when paired with AUX ACK. */ break; case AUX_NATIVE_REPLY_NACK: DRM_DEBUG_KMS("aux_ch native nack\n"); return -EREMOTEIO; case AUX_NATIVE_REPLY_DEFER: DRM_DEBUG_KMS("aux_ch native defer\n"); udelay(400); continue; default: DRM_ERROR("aux_ch invalid native reply 0x%02x\n", ack); return -EREMOTEIO; } switch (ack & AUX_I2C_REPLY_MASK) { case AUX_I2C_REPLY_ACK: if (mode == MODE_I2C_READ) *read_byte = reply[0]; return ret; case AUX_I2C_REPLY_NACK: DRM_DEBUG_KMS("aux_i2c nack\n"); return -EREMOTEIO; case AUX_I2C_REPLY_DEFER: DRM_DEBUG_KMS("aux_i2c defer\n"); udelay(400); break; default: DRM_ERROR("aux_i2c invalid reply 0x%02x\n", ack); return -EREMOTEIO; } } DRM_ERROR("aux i2c too many retries, giving up\n"); return -EREMOTEIO; } /***** general DP utility functions *****/ static u8 dp_link_status(u8 link_status[DP_LINK_STATUS_SIZE], int r) { return link_status[r - DP_LANE0_1_STATUS]; } static u8 dp_get_lane_status(u8 link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_LANE0_1_STATUS + (lane >> 1); int s = (lane & 1) * 4; u8 l = dp_link_status(link_status, i); return (l >> s) & 0xf; } static bool dp_clock_recovery_ok(u8 link_status[DP_LINK_STATUS_SIZE], int lane_count) { int lane; u8 lane_status; for (lane = 0; lane < lane_count; lane++) { lane_status = dp_get_lane_status(link_status, lane); if ((lane_status & DP_LANE_CR_DONE) == 0) return false; } return true; } static bool dp_channel_eq_ok(u8 link_status[DP_LINK_STATUS_SIZE], int lane_count) { u8 lane_align; u8 lane_status; int lane; lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED); if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) return false; for (lane = 0; lane < lane_count; lane++) { lane_status = dp_get_lane_status(link_status, lane); if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS) return false; } return true; } static u8 dp_get_adjust_request_voltage(u8 link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); u8 l = dp_link_status(link_status, i); return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; } static u8 dp_get_adjust_request_pre_emphasis(u8 link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); u8 l = dp_link_status(link_status, i); return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; } #define DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200 #define DP_PRE_EMPHASIS_MAX DP_TRAIN_PRE_EMPHASIS_9_5 static void dp_get_adjust_train(u8 link_status[DP_LINK_STATUS_SIZE], int lane_count, u8 train_set[4]) { u8 v = 0; u8 p = 0; int lane; for (lane = 0; lane < lane_count; lane++) { u8 this_v = dp_get_adjust_request_voltage(link_status, lane); u8 this_p = dp_get_adjust_request_pre_emphasis(link_status, lane); DRM_DEBUG_KMS("requested signal parameters: lane %d voltage %s pre_emph %s\n", lane, voltage_names[this_v >> DP_TRAIN_VOLTAGE_SWING_SHIFT], pre_emph_names[this_p >> DP_TRAIN_PRE_EMPHASIS_SHIFT]); if (this_v > v) v = this_v; if (this_p > p) p = this_p; } if (v >= DP_VOLTAGE_MAX) v |= DP_TRAIN_MAX_SWING_REACHED; if (p >= DP_PRE_EMPHASIS_MAX) p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; DRM_DEBUG_KMS("using signal parameters: voltage %s pre_emph %s\n", voltage_names[(v & DP_TRAIN_VOLTAGE_SWING_MASK) >> DP_TRAIN_VOLTAGE_SWING_SHIFT], pre_emph_names[(p & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT]); for (lane = 0; lane < 4; lane++) train_set[lane] = v | p; } /* convert bits per color to bits per pixel */ /* get bpc from the EDID */ static int convert_bpc_to_bpp(int bpc) { if (bpc == 0) return 24; else return bpc * 3; } /* get the max pix clock supported by the link rate and lane num */ static int dp_get_max_dp_pix_clock(int link_rate, int lane_num, int bpp) { return (link_rate * lane_num * 8) / bpp; } static int dp_get_max_link_rate(u8 dpcd[DP_DPCD_SIZE]) { switch (dpcd[DP_MAX_LINK_RATE]) { case DP_LINK_BW_1_62: default: return 162000; case DP_LINK_BW_2_7: return 270000; case DP_LINK_BW_5_4: return 540000; } } static u8 dp_get_max_lane_number(u8 dpcd[DP_DPCD_SIZE]) { return dpcd[DP_MAX_LANE_COUNT] & DP_MAX_LANE_COUNT_MASK; } static u8 dp_get_dp_link_rate_coded(int link_rate) { switch (link_rate) { case 162000: default: return DP_LINK_BW_1_62; case 270000: return DP_LINK_BW_2_7; case 540000: return DP_LINK_BW_5_4; } } /***** radeon specific DP functions *****/ /* First get the min lane# when low rate is used according to pixel clock * (prefer low rate), second check max lane# supported by DP panel, * if the max lane# < low rate lane# then use max lane# instead. */ static int radeon_dp_get_dp_lane_number(struct drm_connector *connector, u8 dpcd[DP_DPCD_SIZE], int pix_clock) { int bpp = convert_bpc_to_bpp(connector->display_info.bpc); int max_link_rate = dp_get_max_link_rate(dpcd); int max_lane_num = dp_get_max_lane_number(dpcd); int lane_num; int max_dp_pix_clock; for (lane_num = 1; lane_num < max_lane_num; lane_num <<= 1) { max_dp_pix_clock = dp_get_max_dp_pix_clock(max_link_rate, lane_num, bpp); if (pix_clock <= max_dp_pix_clock) break; } return lane_num; } static int radeon_dp_get_dp_link_clock(struct drm_connector *connector, u8 dpcd[DP_DPCD_SIZE], int pix_clock) { int bpp = convert_bpc_to_bpp(connector->display_info.bpc); int lane_num, max_pix_clock; if (radeon_connector_encoder_is_dp_bridge(connector)) return 270000; lane_num = radeon_dp_get_dp_lane_number(connector, dpcd, pix_clock); max_pix_clock = dp_get_max_dp_pix_clock(162000, lane_num, bpp); if (pix_clock <= max_pix_clock) return 162000; max_pix_clock = dp_get_max_dp_pix_clock(270000, lane_num, bpp); if (pix_clock <= max_pix_clock) return 270000; if (radeon_connector_is_dp12_capable(connector)) { max_pix_clock = dp_get_max_dp_pix_clock(540000, lane_num, bpp); if (pix_clock <= max_pix_clock) return 540000; } return dp_get_max_link_rate(dpcd); } static u8 radeon_dp_encoder_service(struct radeon_device *rdev, int action, int dp_clock, u8 ucconfig, u8 lane_num) { DP_ENCODER_SERVICE_PARAMETERS args; int index = GetIndexIntoMasterTable(COMMAND, DPEncoderService); memset(&args, 0, sizeof(args)); args.ucLinkClock = dp_clock / 10; args.ucConfig = ucconfig; args.ucAction = action; args.ucLaneNum = lane_num; args.ucStatus = 0; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); return args.ucStatus; } u8 radeon_dp_getsinktype(struct radeon_connector *radeon_connector) { struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; struct drm_device *dev = radeon_connector->base.dev; struct radeon_device *rdev = dev->dev_private; return radeon_dp_encoder_service(rdev, ATOM_DP_ACTION_GET_SINK_TYPE, 0, dig_connector->dp_i2c_bus->rec.i2c_id, 0); } bool radeon_dp_getdpcd(struct radeon_connector *radeon_connector) { struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; u8 msg[25]; int ret, i; ret = radeon_dp_aux_native_read(radeon_connector, DP_DPCD_REV, msg, 8, 0); if (ret > 0) { memcpy(dig_connector->dpcd, msg, 8); DRM_DEBUG_KMS("DPCD: "); for (i = 0; i < 8; i++) DRM_DEBUG_KMS("%02x ", msg[i]); DRM_DEBUG_KMS("\n"); return true; } dig_connector->dpcd[0] = 0; return false; } static void radeon_dp_set_panel_mode(struct drm_encoder *encoder, struct drm_connector *connector) { struct drm_device *dev = encoder->dev; struct radeon_device *rdev = dev->dev_private; int panel_mode = DP_PANEL_MODE_EXTERNAL_DP_MODE; if (!ASIC_IS_DCE4(rdev)) return; if (radeon_connector_encoder_is_dp_bridge(connector)) panel_mode = DP_PANEL_MODE_INTERNAL_DP1_MODE; atombios_dig_encoder_setup(encoder, ATOM_ENCODER_CMD_SETUP_PANEL_MODE, panel_mode); } void radeon_dp_set_link_config(struct drm_connector *connector, struct drm_display_mode *mode) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); struct radeon_connector_atom_dig *dig_connector; if (!radeon_connector->con_priv) return; dig_connector = radeon_connector->con_priv; if ((dig_connector->dp_sink_type == CONNECTOR_OBJECT_ID_DISPLAYPORT) || (dig_connector->dp_sink_type == CONNECTOR_OBJECT_ID_eDP)) { dig_connector->dp_clock = radeon_dp_get_dp_link_clock(connector, dig_connector->dpcd, mode->clock); dig_connector->dp_lane_count = radeon_dp_get_dp_lane_number(connector, dig_connector->dpcd, mode->clock); } } int radeon_dp_mode_valid_helper(struct drm_connector *connector, struct drm_display_mode *mode) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); struct radeon_connector_atom_dig *dig_connector; int dp_clock; if (!radeon_connector->con_priv) return MODE_CLOCK_HIGH; dig_connector = radeon_connector->con_priv; dp_clock = radeon_dp_get_dp_link_clock(connector, dig_connector->dpcd, mode->clock); if ((dp_clock == 540000) && (!radeon_connector_is_dp12_capable(connector))) return MODE_CLOCK_HIGH; return MODE_OK; } static bool radeon_dp_get_link_status(struct radeon_connector *radeon_connector, u8 link_status[DP_LINK_STATUS_SIZE]) { int ret; ret = radeon_dp_aux_native_read(radeon_connector, DP_LANE0_1_STATUS, link_status, DP_LINK_STATUS_SIZE, 100); if (ret <= 0) { DRM_ERROR("displayport link status failed\n"); return false; } DRM_DEBUG_KMS("link status %02x %02x %02x %02x %02x %02x\n", link_status[0], link_status[1], link_status[2], link_status[3], link_status[4], link_status[5]); return true; } bool radeon_dp_needs_link_train(struct radeon_connector *radeon_connector) { u8 link_status[DP_LINK_STATUS_SIZE]; struct radeon_connector_atom_dig *dig = radeon_connector->con_priv; if (!radeon_dp_get_link_status(radeon_connector, link_status)) return false; if (dp_channel_eq_ok(link_status, dig->dp_lane_count)) return false; return true; } struct radeon_dp_link_train_info { struct radeon_device *rdev; struct drm_encoder *encoder; struct drm_connector *connector; struct radeon_connector *radeon_connector; int enc_id; int dp_clock; int dp_lane_count; int rd_interval; bool tp3_supported; u8 dpcd[8]; u8 train_set[4]; u8 link_status[DP_LINK_STATUS_SIZE]; u8 tries; bool use_dpencoder; }; static void radeon_dp_update_vs_emph(struct radeon_dp_link_train_info *dp_info) { /* set the initial vs/emph on the source */ atombios_dig_transmitter_setup(dp_info->encoder, ATOM_TRANSMITTER_ACTION_SETUP_VSEMPH, 0, dp_info->train_set[0]); /* sets all lanes at once */ /* set the vs/emph on the sink */ radeon_dp_aux_native_write(dp_info->radeon_connector, DP_TRAINING_LANE0_SET, dp_info->train_set, dp_info->dp_lane_count, 0); } static void radeon_dp_set_tp(struct radeon_dp_link_train_info *dp_info, int tp) { int rtp = 0; /* set training pattern on the source */ if (ASIC_IS_DCE4(dp_info->rdev) || !dp_info->use_dpencoder) { switch (tp) { case DP_TRAINING_PATTERN_1: rtp = ATOM_ENCODER_CMD_DP_LINK_TRAINING_PATTERN1; break; case DP_TRAINING_PATTERN_2: rtp = ATOM_ENCODER_CMD_DP_LINK_TRAINING_PATTERN2; break; case DP_TRAINING_PATTERN_3: rtp = ATOM_ENCODER_CMD_DP_LINK_TRAINING_PATTERN3; break; } atombios_dig_encoder_setup(dp_info->encoder, rtp, 0); } else { switch (tp) { case DP_TRAINING_PATTERN_1: rtp = 0; break; case DP_TRAINING_PATTERN_2: rtp = 1; break; } radeon_dp_encoder_service(dp_info->rdev, ATOM_DP_ACTION_TRAINING_PATTERN_SEL, dp_info->dp_clock, dp_info->enc_id, rtp); } /* enable training pattern on the sink */ radeon_write_dpcd_reg(dp_info->radeon_connector, DP_TRAINING_PATTERN_SET, tp); } static int radeon_dp_link_train_init(struct radeon_dp_link_train_info *dp_info) { u8 tmp; /* power up the sink */ if (dp_info->dpcd[0] >= 0x11) radeon_write_dpcd_reg(dp_info->radeon_connector, DP_SET_POWER, DP_SET_POWER_D0); /* possibly enable downspread on the sink */ if (dp_info->dpcd[3] & 0x1) radeon_write_dpcd_reg(dp_info->radeon_connector, DP_DOWNSPREAD_CTRL, DP_SPREAD_AMP_0_5); else radeon_write_dpcd_reg(dp_info->radeon_connector, DP_DOWNSPREAD_CTRL, 0); radeon_dp_set_panel_mode(dp_info->encoder, dp_info->connector); /* set the lane count on the sink */ tmp = dp_info->dp_lane_count; if (dp_info->dpcd[0] >= 0x11) tmp |= DP_LANE_COUNT_ENHANCED_FRAME_EN; radeon_write_dpcd_reg(dp_info->radeon_connector, DP_LANE_COUNT_SET, tmp); /* set the link rate on the sink */ tmp = dp_get_dp_link_rate_coded(dp_info->dp_clock); radeon_write_dpcd_reg(dp_info->radeon_connector, DP_LINK_BW_SET, tmp); /* start training on the source */ if (ASIC_IS_DCE4(dp_info->rdev) || !dp_info->use_dpencoder) atombios_dig_encoder_setup(dp_info->encoder, ATOM_ENCODER_CMD_DP_LINK_TRAINING_START, 0); else radeon_dp_encoder_service(dp_info->rdev, ATOM_DP_ACTION_TRAINING_START, dp_info->dp_clock, dp_info->enc_id, 0); /* disable the training pattern on the sink */ radeon_write_dpcd_reg(dp_info->radeon_connector, DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE); return 0; } static int radeon_dp_link_train_finish(struct radeon_dp_link_train_info *dp_info) { udelay(400); /* disable the training pattern on the sink */ radeon_write_dpcd_reg(dp_info->radeon_connector, DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE); /* disable the training pattern on the source */ if (ASIC_IS_DCE4(dp_info->rdev) || !dp_info->use_dpencoder) atombios_dig_encoder_setup(dp_info->encoder, ATOM_ENCODER_CMD_DP_LINK_TRAINING_COMPLETE, 0); else radeon_dp_encoder_service(dp_info->rdev, ATOM_DP_ACTION_TRAINING_COMPLETE, dp_info->dp_clock, dp_info->enc_id, 0); return 0; } static int radeon_dp_link_train_cr(struct radeon_dp_link_train_info *dp_info) { bool clock_recovery; u8 voltage; int i; radeon_dp_set_tp(dp_info, DP_TRAINING_PATTERN_1); memset(dp_info->train_set, 0, 4); radeon_dp_update_vs_emph(dp_info); udelay(400); /* clock recovery loop */ clock_recovery = false; dp_info->tries = 0; voltage = 0xff; while (1) { if (dp_info->rd_interval == 0) udelay(100); else mdelay(dp_info->rd_interval * 4); if (!radeon_dp_get_link_status(dp_info->radeon_connector, dp_info->link_status)) break; if (dp_clock_recovery_ok(dp_info->link_status, dp_info->dp_lane_count)) { clock_recovery = true; break; } for (i = 0; i < dp_info->dp_lane_count; i++) { if ((dp_info->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) break; } if (i == dp_info->dp_lane_count) { DRM_ERROR("clock recovery reached max voltage\n"); break; } if ((dp_info->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { ++dp_info->tries; if (dp_info->tries == 5) { DRM_ERROR("clock recovery tried 5 times\n"); break; } } else dp_info->tries = 0; voltage = dp_info->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; /* Compute new train_set as requested by sink */ dp_get_adjust_train(dp_info->link_status, dp_info->dp_lane_count, dp_info->train_set); radeon_dp_update_vs_emph(dp_info); } if (!clock_recovery) { DRM_ERROR("clock recovery failed\n"); return -1; } else { DRM_DEBUG_KMS("clock recovery at voltage %d pre-emphasis %d\n", dp_info->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK, (dp_info->train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT); return 0; } } static int radeon_dp_link_train_ce(struct radeon_dp_link_train_info *dp_info) { bool channel_eq; if (dp_info->tp3_supported) radeon_dp_set_tp(dp_info, DP_TRAINING_PATTERN_3); else radeon_dp_set_tp(dp_info, DP_TRAINING_PATTERN_2); /* channel equalization loop */ dp_info->tries = 0; channel_eq = false; while (1) { if (dp_info->rd_interval == 0) udelay(400); else mdelay(dp_info->rd_interval * 4); if (!radeon_dp_get_link_status(dp_info->radeon_connector, dp_info->link_status)) break; if (dp_channel_eq_ok(dp_info->link_status, dp_info->dp_lane_count)) { channel_eq = true; break; } /* Try 5 times */ if (dp_info->tries > 5) { DRM_ERROR("channel eq failed: 5 tries\n"); break; } /* Compute new train_set as requested by sink */ dp_get_adjust_train(dp_info->link_status, dp_info->dp_lane_count, dp_info->train_set); radeon_dp_update_vs_emph(dp_info); dp_info->tries++; } if (!channel_eq) { DRM_ERROR("channel eq failed\n"); return -1; } else { DRM_DEBUG_KMS("channel eq at voltage %d pre-emphasis %d\n", dp_info->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK, (dp_info->train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT); return 0; } } void radeon_dp_link_train(struct drm_encoder *encoder, struct drm_connector *connector) { struct drm_device *dev = encoder->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); struct radeon_encoder_atom_dig *dig; struct radeon_connector *radeon_connector; struct radeon_connector_atom_dig *dig_connector; struct radeon_dp_link_train_info dp_info; int index; u8 tmp, frev, crev; if (!radeon_encoder->enc_priv) return; dig = radeon_encoder->enc_priv; radeon_connector = to_radeon_connector(connector); if (!radeon_connector->con_priv) return; dig_connector = radeon_connector->con_priv; if ((dig_connector->dp_sink_type != CONNECTOR_OBJECT_ID_DISPLAYPORT) && (dig_connector->dp_sink_type != CONNECTOR_OBJECT_ID_eDP)) return; /* DPEncoderService newer than 1.1 can't program properly the * training pattern. When facing such version use the * DIGXEncoderControl (X== 1 | 2) */ dp_info.use_dpencoder = true; index = GetIndexIntoMasterTable(COMMAND, DPEncoderService); if (atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) { if (crev > 1) { dp_info.use_dpencoder = false; } } dp_info.enc_id = 0; if (dig->dig_encoder) dp_info.enc_id |= ATOM_DP_CONFIG_DIG2_ENCODER; else dp_info.enc_id |= ATOM_DP_CONFIG_DIG1_ENCODER; if (dig->linkb) dp_info.enc_id |= ATOM_DP_CONFIG_LINK_B; else dp_info.enc_id |= ATOM_DP_CONFIG_LINK_A; dp_info.rd_interval = radeon_read_dpcd_reg(radeon_connector, DP_TRAINING_AUX_RD_INTERVAL); tmp = radeon_read_dpcd_reg(radeon_connector, DP_MAX_LANE_COUNT); if (ASIC_IS_DCE5(rdev) && (tmp & DP_TPS3_SUPPORTED)) dp_info.tp3_supported = true; else dp_info.tp3_supported = false; memcpy(dp_info.dpcd, dig_connector->dpcd, 8); dp_info.rdev = rdev; dp_info.encoder = encoder; dp_info.connector = connector; dp_info.radeon_connector = radeon_connector; dp_info.dp_lane_count = dig_connector->dp_lane_count; dp_info.dp_clock = dig_connector->dp_clock; if (radeon_dp_link_train_init(&dp_info)) goto done; if (radeon_dp_link_train_cr(&dp_info)) goto done; if (radeon_dp_link_train_ce(&dp_info)) goto done; done: if (radeon_dp_link_train_finish(&dp_info)) return; }