/* * Copyright © 2006-2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "intel_drv.h" /** * DOC: Display PLLs * * Display PLLs used for driving outputs vary by platform. While some have * per-pipe or per-encoder dedicated PLLs, others allow the use of any PLL * from a pool. In the latter scenario, it is possible that multiple pipes * share a PLL if their configurations match. * * This file provides an abstraction over display PLLs. The function * intel_shared_dpll_init() initializes the PLLs for the given platform. The * users of a PLL are tracked and that tracking is integrated with the atomic * modest interface. During an atomic operation, a PLL can be requested for a * given CRTC and encoder configuration by calling intel_get_shared_dpll() and * a previously used PLL can be released with intel_release_shared_dpll(). * Changes to the users are first staged in the atomic state, and then made * effective by calling intel_shared_dpll_swap_state() during the atomic * commit phase. */ static void intel_atomic_duplicate_dpll_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll_state *shared_dpll) { enum intel_dpll_id i; /* Copy shared dpll state */ for (i = 0; i < dev_priv->num_shared_dpll; i++) { struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; shared_dpll[i] = pll->state; } } static struct intel_shared_dpll_state * intel_atomic_get_shared_dpll_state(struct drm_atomic_state *s) { struct intel_atomic_state *state = to_intel_atomic_state(s); WARN_ON(!drm_modeset_is_locked(&s->dev->mode_config.connection_mutex)); if (!state->dpll_set) { state->dpll_set = true; intel_atomic_duplicate_dpll_state(to_i915(s->dev), state->shared_dpll); } return state->shared_dpll; } /** * intel_get_shared_dpll_by_id - get a DPLL given its id * @dev_priv: i915 device instance * @id: pll id * * Returns: * A pointer to the DPLL with @id */ struct intel_shared_dpll * intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv, enum intel_dpll_id id) { return &dev_priv->shared_dplls[id]; } /** * intel_get_shared_dpll_id - get the id of a DPLL * @dev_priv: i915 device instance * @pll: the DPLL * * Returns: * The id of @pll */ enum intel_dpll_id intel_get_shared_dpll_id(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { if (WARN_ON(pll < dev_priv->shared_dplls|| pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll])) return -1; return (enum intel_dpll_id) (pll - dev_priv->shared_dplls); } /* For ILK+ */ void assert_shared_dpll(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, bool state) { bool cur_state; struct intel_dpll_hw_state hw_state; if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state))) return; cur_state = pll->info->funcs->get_hw_state(dev_priv, pll, &hw_state); I915_STATE_WARN(cur_state != state, "%s assertion failure (expected %s, current %s)\n", pll->info->name, onoff(state), onoff(cur_state)); } /** * intel_prepare_shared_dpll - call a dpll's prepare hook * @crtc: CRTC which has a shared dpll * * This calls the PLL's prepare hook if it has one and if the PLL is not * already enabled. The prepare hook is platform specific. */ void intel_prepare_shared_dpll(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_shared_dpll *pll = crtc->config->shared_dpll; if (WARN_ON(pll == NULL)) return; mutex_lock(&dev_priv->dpll_lock); WARN_ON(!pll->state.crtc_mask); if (!pll->active_mask) { DRM_DEBUG_DRIVER("setting up %s\n", pll->info->name); WARN_ON(pll->on); assert_shared_dpll_disabled(dev_priv, pll); pll->info->funcs->prepare(dev_priv, pll); } mutex_unlock(&dev_priv->dpll_lock); } /** * intel_enable_shared_dpll - enable a CRTC's shared DPLL * @crtc: CRTC which has a shared DPLL * * Enable the shared DPLL used by @crtc. */ void intel_enable_shared_dpll(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_shared_dpll *pll = crtc->config->shared_dpll; unsigned int crtc_mask = drm_crtc_mask(&crtc->base); unsigned int old_mask; if (WARN_ON(pll == NULL)) return; mutex_lock(&dev_priv->dpll_lock); old_mask = pll->active_mask; if (WARN_ON(!(pll->state.crtc_mask & crtc_mask)) || WARN_ON(pll->active_mask & crtc_mask)) goto out; pll->active_mask |= crtc_mask; DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n", pll->info->name, pll->active_mask, pll->on, crtc->base.base.id); if (old_mask) { WARN_ON(!pll->on); assert_shared_dpll_enabled(dev_priv, pll); goto out; } WARN_ON(pll->on); DRM_DEBUG_KMS("enabling %s\n", pll->info->name); pll->info->funcs->enable(dev_priv, pll); pll->on = true; out: mutex_unlock(&dev_priv->dpll_lock); } /** * intel_disable_shared_dpll - disable a CRTC's shared DPLL * @crtc: CRTC which has a shared DPLL * * Disable the shared DPLL used by @crtc. */ void intel_disable_shared_dpll(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_shared_dpll *pll = crtc->config->shared_dpll; unsigned int crtc_mask = drm_crtc_mask(&crtc->base); /* PCH only available on ILK+ */ if (INTEL_GEN(dev_priv) < 5) return; if (pll == NULL) return; mutex_lock(&dev_priv->dpll_lock); if (WARN_ON(!(pll->active_mask & crtc_mask))) goto out; DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n", pll->info->name, pll->active_mask, pll->on, crtc->base.base.id); assert_shared_dpll_enabled(dev_priv, pll); WARN_ON(!pll->on); pll->active_mask &= ~crtc_mask; if (pll->active_mask) goto out; DRM_DEBUG_KMS("disabling %s\n", pll->info->name); pll->info->funcs->disable(dev_priv, pll); pll->on = false; out: mutex_unlock(&dev_priv->dpll_lock); } static struct intel_shared_dpll * intel_find_shared_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, enum intel_dpll_id range_min, enum intel_dpll_id range_max) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_shared_dpll *pll; struct intel_shared_dpll_state *shared_dpll; enum intel_dpll_id i; shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state); for (i = range_min; i <= range_max; i++) { pll = &dev_priv->shared_dplls[i]; /* Only want to check enabled timings first */ if (shared_dpll[i].crtc_mask == 0) continue; if (memcmp(&crtc_state->dpll_hw_state, &shared_dpll[i].hw_state, sizeof(crtc_state->dpll_hw_state)) == 0) { DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n", crtc->base.base.id, crtc->base.name, pll->info->name, shared_dpll[i].crtc_mask, pll->active_mask); return pll; } } /* Ok no matching timings, maybe there's a free one? */ for (i = range_min; i <= range_max; i++) { pll = &dev_priv->shared_dplls[i]; if (shared_dpll[i].crtc_mask == 0) { DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n", crtc->base.base.id, crtc->base.name, pll->info->name); return pll; } } return NULL; } static void intel_reference_shared_dpll(struct intel_shared_dpll *pll, struct intel_crtc_state *crtc_state) { struct intel_shared_dpll_state *shared_dpll; struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); const enum intel_dpll_id id = pll->info->id; shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state); if (shared_dpll[id].crtc_mask == 0) shared_dpll[id].hw_state = crtc_state->dpll_hw_state; crtc_state->shared_dpll = pll; DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->info->name, pipe_name(crtc->pipe)); shared_dpll[id].crtc_mask |= 1 << crtc->pipe; } /** * intel_shared_dpll_swap_state - make atomic DPLL configuration effective * @state: atomic state * * This is the dpll version of drm_atomic_helper_swap_state() since the * helper does not handle driver-specific global state. * * For consistency with atomic helpers this function does a complete swap, * i.e. it also puts the current state into @state, even though there is no * need for that at this moment. */ void intel_shared_dpll_swap_state(struct drm_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->dev); struct intel_shared_dpll_state *shared_dpll; struct intel_shared_dpll *pll; enum intel_dpll_id i; if (!to_intel_atomic_state(state)->dpll_set) return; shared_dpll = to_intel_atomic_state(state)->shared_dpll; for (i = 0; i < dev_priv->num_shared_dpll; i++) { struct intel_shared_dpll_state tmp; pll = &dev_priv->shared_dplls[i]; tmp = pll->state; pll->state = shared_dpll[i]; shared_dpll[i] = tmp; } } static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { const enum intel_dpll_id id = pll->info->id; uint32_t val; if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; val = I915_READ(PCH_DPLL(id)); hw_state->dpll = val; hw_state->fp0 = I915_READ(PCH_FP0(id)); hw_state->fp1 = I915_READ(PCH_FP1(id)); intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); return val & DPLL_VCO_ENABLE; } static void ibx_pch_dpll_prepare(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; I915_WRITE(PCH_FP0(id), pll->state.hw_state.fp0); I915_WRITE(PCH_FP1(id), pll->state.hw_state.fp1); } static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv) { u32 val; bool enabled; I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); val = I915_READ(PCH_DREF_CONTROL); enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK | DREF_SUPERSPREAD_SOURCE_MASK)); I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n"); } static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; /* PCH refclock must be enabled first */ ibx_assert_pch_refclk_enabled(dev_priv); I915_WRITE(PCH_DPLL(id), pll->state.hw_state.dpll); /* Wait for the clocks to stabilize. */ POSTING_READ(PCH_DPLL(id)); udelay(150); /* The pixel multiplier can only be updated once the * DPLL is enabled and the clocks are stable. * * So write it again. */ I915_WRITE(PCH_DPLL(id), pll->state.hw_state.dpll); POSTING_READ(PCH_DPLL(id)); udelay(200); } static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; struct drm_device *dev = &dev_priv->drm; struct intel_crtc *crtc; /* Make sure no transcoder isn't still depending on us. */ for_each_intel_crtc(dev, crtc) { if (crtc->config->shared_dpll == pll) assert_pch_transcoder_disabled(dev_priv, crtc->pipe); } I915_WRITE(PCH_DPLL(id), 0); POSTING_READ(PCH_DPLL(id)); udelay(200); } static struct intel_shared_dpll * ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_shared_dpll *pll; enum intel_dpll_id i; if (HAS_PCH_IBX(dev_priv)) { /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */ i = (enum intel_dpll_id) crtc->pipe; pll = &dev_priv->shared_dplls[i]; DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n", crtc->base.base.id, crtc->base.name, pll->info->name); } else { pll = intel_find_shared_dpll(crtc, crtc_state, DPLL_ID_PCH_PLL_A, DPLL_ID_PCH_PLL_B); } if (!pll) return NULL; /* reference the pll */ intel_reference_shared_dpll(pll, crtc_state); return pll; } static void ibx_dump_hw_state(struct drm_i915_private *dev_priv, struct intel_dpll_hw_state *hw_state) { DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, " "fp0: 0x%x, fp1: 0x%x\n", hw_state->dpll, hw_state->dpll_md, hw_state->fp0, hw_state->fp1); } static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = { .prepare = ibx_pch_dpll_prepare, .enable = ibx_pch_dpll_enable, .disable = ibx_pch_dpll_disable, .get_hw_state = ibx_pch_dpll_get_hw_state, }; static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; I915_WRITE(WRPLL_CTL(id), pll->state.hw_state.wrpll); POSTING_READ(WRPLL_CTL(id)); udelay(20); } static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { I915_WRITE(SPLL_CTL, pll->state.hw_state.spll); POSTING_READ(SPLL_CTL); udelay(20); } static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; uint32_t val; val = I915_READ(WRPLL_CTL(id)); I915_WRITE(WRPLL_CTL(id), val & ~WRPLL_PLL_ENABLE); POSTING_READ(WRPLL_CTL(id)); } static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { uint32_t val; val = I915_READ(SPLL_CTL); I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE); POSTING_READ(SPLL_CTL); } static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { const enum intel_dpll_id id = pll->info->id; uint32_t val; if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; val = I915_READ(WRPLL_CTL(id)); hw_state->wrpll = val; intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); return val & WRPLL_PLL_ENABLE; } static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { uint32_t val; if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; val = I915_READ(SPLL_CTL); hw_state->spll = val; intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); return val & SPLL_PLL_ENABLE; } #define LC_FREQ 2700 #define LC_FREQ_2K U64_C(LC_FREQ * 2000) #define P_MIN 2 #define P_MAX 64 #define P_INC 2 /* Constraints for PLL good behavior */ #define REF_MIN 48 #define REF_MAX 400 #define VCO_MIN 2400 #define VCO_MAX 4800 struct hsw_wrpll_rnp { unsigned p, n2, r2; }; static unsigned hsw_wrpll_get_budget_for_freq(int clock) { unsigned budget; switch (clock) { case 25175000: case 25200000: case 27000000: case 27027000: case 37762500: case 37800000: case 40500000: case 40541000: case 54000000: case 54054000: case 59341000: case 59400000: case 72000000: case 74176000: case 74250000: case 81000000: case 81081000: case 89012000: case 89100000: case 108000000: case 108108000: case 111264000: case 111375000: case 148352000: case 148500000: case 162000000: case 162162000: case 222525000: case 222750000: case 296703000: case 297000000: budget = 0; break; case 233500000: case 245250000: case 247750000: case 253250000: case 298000000: budget = 1500; break; case 169128000: case 169500000: case 179500000: case 202000000: budget = 2000; break; case 256250000: case 262500000: case 270000000: case 272500000: case 273750000: case 280750000: case 281250000: case 286000000: case 291750000: budget = 4000; break; case 267250000: case 268500000: budget = 5000; break; default: budget = 1000; break; } return budget; } static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget, unsigned r2, unsigned n2, unsigned p, struct hsw_wrpll_rnp *best) { uint64_t a, b, c, d, diff, diff_best; /* No best (r,n,p) yet */ if (best->p == 0) { best->p = p; best->n2 = n2; best->r2 = r2; return; } /* * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to * freq2k. * * delta = 1e6 * * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) / * freq2k; * * and we would like delta <= budget. * * If the discrepancy is above the PPM-based budget, always prefer to * improve upon the previous solution. However, if you're within the * budget, try to maximize Ref * VCO, that is N / (P * R^2). */ a = freq2k * budget * p * r2; b = freq2k * budget * best->p * best->r2; diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2); diff_best = abs_diff(freq2k * best->p * best->r2, LC_FREQ_2K * best->n2); c = 1000000 * diff; d = 1000000 * diff_best; if (a < c && b < d) { /* If both are above the budget, pick the closer */ if (best->p * best->r2 * diff < p * r2 * diff_best) { best->p = p; best->n2 = n2; best->r2 = r2; } } else if (a >= c && b < d) { /* If A is below the threshold but B is above it? Update. */ best->p = p; best->n2 = n2; best->r2 = r2; } else if (a >= c && b >= d) { /* Both are below the limit, so pick the higher n2/(r2*r2) */ if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) { best->p = p; best->n2 = n2; best->r2 = r2; } } /* Otherwise a < c && b >= d, do nothing */ } static void hsw_ddi_calculate_wrpll(int clock /* in Hz */, unsigned *r2_out, unsigned *n2_out, unsigned *p_out) { uint64_t freq2k; unsigned p, n2, r2; struct hsw_wrpll_rnp best = { 0, 0, 0 }; unsigned budget; freq2k = clock / 100; budget = hsw_wrpll_get_budget_for_freq(clock); /* Special case handling for 540 pixel clock: bypass WR PLL entirely * and directly pass the LC PLL to it. */ if (freq2k == 5400000) { *n2_out = 2; *p_out = 1; *r2_out = 2; return; } /* * Ref = LC_FREQ / R, where Ref is the actual reference input seen by * the WR PLL. * * We want R so that REF_MIN <= Ref <= REF_MAX. * Injecting R2 = 2 * R gives: * REF_MAX * r2 > LC_FREQ * 2 and * REF_MIN * r2 < LC_FREQ * 2 * * Which means the desired boundaries for r2 are: * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN * */ for (r2 = LC_FREQ * 2 / REF_MAX + 1; r2 <= LC_FREQ * 2 / REF_MIN; r2++) { /* * VCO = N * Ref, that is: VCO = N * LC_FREQ / R * * Once again we want VCO_MIN <= VCO <= VCO_MAX. * Injecting R2 = 2 * R and N2 = 2 * N, we get: * VCO_MAX * r2 > n2 * LC_FREQ and * VCO_MIN * r2 < n2 * LC_FREQ) * * Which means the desired boundaries for n2 are: * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ */ for (n2 = VCO_MIN * r2 / LC_FREQ + 1; n2 <= VCO_MAX * r2 / LC_FREQ; n2++) { for (p = P_MIN; p <= P_MAX; p += P_INC) hsw_wrpll_update_rnp(freq2k, budget, r2, n2, p, &best); } } *n2_out = best.n2; *p_out = best.p; *r2_out = best.r2; } static struct intel_shared_dpll *hsw_ddi_hdmi_get_dpll(int clock, struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct intel_shared_dpll *pll; uint32_t val; unsigned int p, n2, r2; hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p); val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL | WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) | WRPLL_DIVIDER_POST(p); crtc_state->dpll_hw_state.wrpll = val; pll = intel_find_shared_dpll(crtc, crtc_state, DPLL_ID_WRPLL1, DPLL_ID_WRPLL2); if (!pll) return NULL; return pll; } static struct intel_shared_dpll * hsw_ddi_dp_get_dpll(struct intel_encoder *encoder, int clock) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_shared_dpll *pll; enum intel_dpll_id pll_id; switch (clock / 2) { case 81000: pll_id = DPLL_ID_LCPLL_810; break; case 135000: pll_id = DPLL_ID_LCPLL_1350; break; case 270000: pll_id = DPLL_ID_LCPLL_2700; break; default: DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock); return NULL; } pll = intel_get_shared_dpll_by_id(dev_priv, pll_id); if (!pll) return NULL; return pll; } static struct intel_shared_dpll * hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { struct intel_shared_dpll *pll; int clock = crtc_state->port_clock; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { pll = hsw_ddi_hdmi_get_dpll(clock, crtc, crtc_state); } else if (intel_crtc_has_dp_encoder(crtc_state)) { pll = hsw_ddi_dp_get_dpll(encoder, clock); } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { if (WARN_ON(crtc_state->port_clock / 2 != 135000)) return NULL; crtc_state->dpll_hw_state.spll = SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC; pll = intel_find_shared_dpll(crtc, crtc_state, DPLL_ID_SPLL, DPLL_ID_SPLL); } else { return NULL; } if (!pll) return NULL; intel_reference_shared_dpll(pll, crtc_state); return pll; } static void hsw_dump_hw_state(struct drm_i915_private *dev_priv, struct intel_dpll_hw_state *hw_state) { DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n", hw_state->wrpll, hw_state->spll); } static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = { .enable = hsw_ddi_wrpll_enable, .disable = hsw_ddi_wrpll_disable, .get_hw_state = hsw_ddi_wrpll_get_hw_state, }; static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = { .enable = hsw_ddi_spll_enable, .disable = hsw_ddi_spll_disable, .get_hw_state = hsw_ddi_spll_get_hw_state, }; static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { } static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { } static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { return true; } static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = { .enable = hsw_ddi_lcpll_enable, .disable = hsw_ddi_lcpll_disable, .get_hw_state = hsw_ddi_lcpll_get_hw_state, }; struct skl_dpll_regs { i915_reg_t ctl, cfgcr1, cfgcr2; }; /* this array is indexed by the *shared* pll id */ static const struct skl_dpll_regs skl_dpll_regs[4] = { { /* DPLL 0 */ .ctl = LCPLL1_CTL, /* DPLL 0 doesn't support HDMI mode */ }, { /* DPLL 1 */ .ctl = LCPLL2_CTL, .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1), .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1), }, { /* DPLL 2 */ .ctl = WRPLL_CTL(0), .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2), .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2), }, { /* DPLL 3 */ .ctl = WRPLL_CTL(1), .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3), .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3), }, }; static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; uint32_t val; val = I915_READ(DPLL_CTRL1); val &= ~(DPLL_CTRL1_HDMI_MODE(id) | DPLL_CTRL1_SSC(id) | DPLL_CTRL1_LINK_RATE_MASK(id)); val |= pll->state.hw_state.ctrl1 << (id * 6); I915_WRITE(DPLL_CTRL1, val); POSTING_READ(DPLL_CTRL1); } static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { const struct skl_dpll_regs *regs = skl_dpll_regs; const enum intel_dpll_id id = pll->info->id; skl_ddi_pll_write_ctrl1(dev_priv, pll); I915_WRITE(regs[id].cfgcr1, pll->state.hw_state.cfgcr1); I915_WRITE(regs[id].cfgcr2, pll->state.hw_state.cfgcr2); POSTING_READ(regs[id].cfgcr1); POSTING_READ(regs[id].cfgcr2); /* the enable bit is always bit 31 */ I915_WRITE(regs[id].ctl, I915_READ(regs[id].ctl) | LCPLL_PLL_ENABLE); if (intel_wait_for_register(dev_priv, DPLL_STATUS, DPLL_LOCK(id), DPLL_LOCK(id), 5)) DRM_ERROR("DPLL %d not locked\n", id); } static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { skl_ddi_pll_write_ctrl1(dev_priv, pll); } static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { const struct skl_dpll_regs *regs = skl_dpll_regs; const enum intel_dpll_id id = pll->info->id; /* the enable bit is always bit 31 */ I915_WRITE(regs[id].ctl, I915_READ(regs[id].ctl) & ~LCPLL_PLL_ENABLE); POSTING_READ(regs[id].ctl); } static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { } static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { uint32_t val; const struct skl_dpll_regs *regs = skl_dpll_regs; const enum intel_dpll_id id = pll->info->id; bool ret; if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; ret = false; val = I915_READ(regs[id].ctl); if (!(val & LCPLL_PLL_ENABLE)) goto out; val = I915_READ(DPLL_CTRL1); hw_state->ctrl1 = (val >> (id * 6)) & 0x3f; /* avoid reading back stale values if HDMI mode is not enabled */ if (val & DPLL_CTRL1_HDMI_MODE(id)) { hw_state->cfgcr1 = I915_READ(regs[id].cfgcr1); hw_state->cfgcr2 = I915_READ(regs[id].cfgcr2); } ret = true; out: intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); return ret; } static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { uint32_t val; const struct skl_dpll_regs *regs = skl_dpll_regs; const enum intel_dpll_id id = pll->info->id; bool ret; if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; ret = false; /* DPLL0 is always enabled since it drives CDCLK */ val = I915_READ(regs[id].ctl); if (WARN_ON(!(val & LCPLL_PLL_ENABLE))) goto out; val = I915_READ(DPLL_CTRL1); hw_state->ctrl1 = (val >> (id * 6)) & 0x3f; ret = true; out: intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); return ret; } struct skl_wrpll_context { uint64_t min_deviation; /* current minimal deviation */ uint64_t central_freq; /* chosen central freq */ uint64_t dco_freq; /* chosen dco freq */ unsigned int p; /* chosen divider */ }; static void skl_wrpll_context_init(struct skl_wrpll_context *ctx) { memset(ctx, 0, sizeof(*ctx)); ctx->min_deviation = U64_MAX; } /* DCO freq must be within +1%/-6% of the DCO central freq */ #define SKL_DCO_MAX_PDEVIATION 100 #define SKL_DCO_MAX_NDEVIATION 600 static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx, uint64_t central_freq, uint64_t dco_freq, unsigned int divider) { uint64_t deviation; deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq), central_freq); /* positive deviation */ if (dco_freq >= central_freq) { if (deviation < SKL_DCO_MAX_PDEVIATION && deviation < ctx->min_deviation) { ctx->min_deviation = deviation; ctx->central_freq = central_freq; ctx->dco_freq = dco_freq; ctx->p = divider; } /* negative deviation */ } else if (deviation < SKL_DCO_MAX_NDEVIATION && deviation < ctx->min_deviation) { ctx->min_deviation = deviation; ctx->central_freq = central_freq; ctx->dco_freq = dco_freq; ctx->p = divider; } } static void skl_wrpll_get_multipliers(unsigned int p, unsigned int *p0 /* out */, unsigned int *p1 /* out */, unsigned int *p2 /* out */) { /* even dividers */ if (p % 2 == 0) { unsigned int half = p / 2; if (half == 1 || half == 2 || half == 3 || half == 5) { *p0 = 2; *p1 = 1; *p2 = half; } else if (half % 2 == 0) { *p0 = 2; *p1 = half / 2; *p2 = 2; } else if (half % 3 == 0) { *p0 = 3; *p1 = half / 3; *p2 = 2; } else if (half % 7 == 0) { *p0 = 7; *p1 = half / 7; *p2 = 2; } } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */ *p0 = 3; *p1 = 1; *p2 = p / 3; } else if (p == 5 || p == 7) { *p0 = p; *p1 = 1; *p2 = 1; } else if (p == 15) { *p0 = 3; *p1 = 1; *p2 = 5; } else if (p == 21) { *p0 = 7; *p1 = 1; *p2 = 3; } else if (p == 35) { *p0 = 7; *p1 = 1; *p2 = 5; } } struct skl_wrpll_params { uint32_t dco_fraction; uint32_t dco_integer; uint32_t qdiv_ratio; uint32_t qdiv_mode; uint32_t kdiv; uint32_t pdiv; uint32_t central_freq; }; static void skl_wrpll_params_populate(struct skl_wrpll_params *params, uint64_t afe_clock, uint64_t central_freq, uint32_t p0, uint32_t p1, uint32_t p2) { uint64_t dco_freq; switch (central_freq) { case 9600000000ULL: params->central_freq = 0; break; case 9000000000ULL: params->central_freq = 1; break; case 8400000000ULL: params->central_freq = 3; } switch (p0) { case 1: params->pdiv = 0; break; case 2: params->pdiv = 1; break; case 3: params->pdiv = 2; break; case 7: params->pdiv = 4; break; default: WARN(1, "Incorrect PDiv\n"); } switch (p2) { case 5: params->kdiv = 0; break; case 2: params->kdiv = 1; break; case 3: params->kdiv = 2; break; case 1: params->kdiv = 3; break; default: WARN(1, "Incorrect KDiv\n"); } params->qdiv_ratio = p1; params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1; dco_freq = p0 * p1 * p2 * afe_clock; /* * Intermediate values are in Hz. * Divide by MHz to match bsepc */ params->dco_integer = div_u64(dco_freq, 24 * MHz(1)); params->dco_fraction = div_u64((div_u64(dco_freq, 24) - params->dco_integer * MHz(1)) * 0x8000, MHz(1)); } static bool skl_ddi_calculate_wrpll(int clock /* in Hz */, struct skl_wrpll_params *wrpll_params) { uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */ uint64_t dco_central_freq[3] = {8400000000ULL, 9000000000ULL, 9600000000ULL}; static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48, 52, 54, 56, 60, 64, 66, 68, 70, 72, 76, 78, 80, 84, 88, 90, 92, 96, 98 }; static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 }; static const struct { const int *list; int n_dividers; } dividers[] = { { even_dividers, ARRAY_SIZE(even_dividers) }, { odd_dividers, ARRAY_SIZE(odd_dividers) }, }; struct skl_wrpll_context ctx; unsigned int dco, d, i; unsigned int p0, p1, p2; skl_wrpll_context_init(&ctx); for (d = 0; d < ARRAY_SIZE(dividers); d++) { for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) { for (i = 0; i < dividers[d].n_dividers; i++) { unsigned int p = dividers[d].list[i]; uint64_t dco_freq = p * afe_clock; skl_wrpll_try_divider(&ctx, dco_central_freq[dco], dco_freq, p); /* * Skip the remaining dividers if we're sure to * have found the definitive divider, we can't * improve a 0 deviation. */ if (ctx.min_deviation == 0) goto skip_remaining_dividers; } } skip_remaining_dividers: /* * If a solution is found with an even divider, prefer * this one. */ if (d == 0 && ctx.p) break; } if (!ctx.p) { DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock); return false; } /* * gcc incorrectly analyses that these can be used without being * initialized. To be fair, it's hard to guess. */ p0 = p1 = p2 = 0; skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2); skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq, p0, p1, p2); return true; } static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, int clock) { uint32_t ctrl1, cfgcr1, cfgcr2; struct skl_wrpll_params wrpll_params = { 0, }; /* * See comment in intel_dpll_hw_state to understand why we always use 0 * as the DPLL id in this function. */ ctrl1 = DPLL_CTRL1_OVERRIDE(0); ctrl1 |= DPLL_CTRL1_HDMI_MODE(0); if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params)) return false; cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE | DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) | wrpll_params.dco_integer; cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) | DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) | DPLL_CFGCR2_KDIV(wrpll_params.kdiv) | DPLL_CFGCR2_PDIV(wrpll_params.pdiv) | wrpll_params.central_freq; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); crtc_state->dpll_hw_state.ctrl1 = ctrl1; crtc_state->dpll_hw_state.cfgcr1 = cfgcr1; crtc_state->dpll_hw_state.cfgcr2 = cfgcr2; return true; } static bool skl_ddi_dp_set_dpll_hw_state(int clock, struct intel_dpll_hw_state *dpll_hw_state) { uint32_t ctrl1; /* * See comment in intel_dpll_hw_state to understand why we always use 0 * as the DPLL id in this function. */ ctrl1 = DPLL_CTRL1_OVERRIDE(0); switch (clock / 2) { case 81000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0); break; case 135000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0); break; case 270000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0); break; /* eDP 1.4 rates */ case 162000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0); break; case 108000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0); break; case 216000: ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0); break; } dpll_hw_state->ctrl1 = ctrl1; return true; } static struct intel_shared_dpll * skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { struct intel_shared_dpll *pll; int clock = crtc_state->port_clock; bool bret; struct intel_dpll_hw_state dpll_hw_state; memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { bret = skl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock); if (!bret) { DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n"); return NULL; } } else if (intel_crtc_has_dp_encoder(crtc_state)) { bret = skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state); if (!bret) { DRM_DEBUG_KMS("Could not set DP dpll HW state.\n"); return NULL; } crtc_state->dpll_hw_state = dpll_hw_state; } else { return NULL; } if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) pll = intel_find_shared_dpll(crtc, crtc_state, DPLL_ID_SKL_DPLL0, DPLL_ID_SKL_DPLL0); else pll = intel_find_shared_dpll(crtc, crtc_state, DPLL_ID_SKL_DPLL1, DPLL_ID_SKL_DPLL3); if (!pll) return NULL; intel_reference_shared_dpll(pll, crtc_state); return pll; } static void skl_dump_hw_state(struct drm_i915_private *dev_priv, struct intel_dpll_hw_state *hw_state) { DRM_DEBUG_KMS("dpll_hw_state: " "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n", hw_state->ctrl1, hw_state->cfgcr1, hw_state->cfgcr2); } static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = { .enable = skl_ddi_pll_enable, .disable = skl_ddi_pll_disable, .get_hw_state = skl_ddi_pll_get_hw_state, }; static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = { .enable = skl_ddi_dpll0_enable, .disable = skl_ddi_dpll0_disable, .get_hw_state = skl_ddi_dpll0_get_hw_state, }; static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { uint32_t temp; enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */ enum dpio_phy phy; enum dpio_channel ch; bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); /* Non-SSC reference */ temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); temp |= PORT_PLL_REF_SEL; I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); if (IS_GEMINILAKE(dev_priv)) { temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); temp |= PORT_PLL_POWER_ENABLE; I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_POWER_STATE), 200)) DRM_ERROR("Power state not set for PLL:%d\n", port); } /* Disable 10 bit clock */ temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch)); temp &= ~PORT_PLL_10BIT_CLK_ENABLE; I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp); /* Write P1 & P2 */ temp = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch)); temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK); temp |= pll->state.hw_state.ebb0; I915_WRITE(BXT_PORT_PLL_EBB_0(phy, ch), temp); /* Write M2 integer */ temp = I915_READ(BXT_PORT_PLL(phy, ch, 0)); temp &= ~PORT_PLL_M2_MASK; temp |= pll->state.hw_state.pll0; I915_WRITE(BXT_PORT_PLL(phy, ch, 0), temp); /* Write N */ temp = I915_READ(BXT_PORT_PLL(phy, ch, 1)); temp &= ~PORT_PLL_N_MASK; temp |= pll->state.hw_state.pll1; I915_WRITE(BXT_PORT_PLL(phy, ch, 1), temp); /* Write M2 fraction */ temp = I915_READ(BXT_PORT_PLL(phy, ch, 2)); temp &= ~PORT_PLL_M2_FRAC_MASK; temp |= pll->state.hw_state.pll2; I915_WRITE(BXT_PORT_PLL(phy, ch, 2), temp); /* Write M2 fraction enable */ temp = I915_READ(BXT_PORT_PLL(phy, ch, 3)); temp &= ~PORT_PLL_M2_FRAC_ENABLE; temp |= pll->state.hw_state.pll3; I915_WRITE(BXT_PORT_PLL(phy, ch, 3), temp); /* Write coeff */ temp = I915_READ(BXT_PORT_PLL(phy, ch, 6)); temp &= ~PORT_PLL_PROP_COEFF_MASK; temp &= ~PORT_PLL_INT_COEFF_MASK; temp &= ~PORT_PLL_GAIN_CTL_MASK; temp |= pll->state.hw_state.pll6; I915_WRITE(BXT_PORT_PLL(phy, ch, 6), temp); /* Write calibration val */ temp = I915_READ(BXT_PORT_PLL(phy, ch, 8)); temp &= ~PORT_PLL_TARGET_CNT_MASK; temp |= pll->state.hw_state.pll8; I915_WRITE(BXT_PORT_PLL(phy, ch, 8), temp); temp = I915_READ(BXT_PORT_PLL(phy, ch, 9)); temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK; temp |= pll->state.hw_state.pll9; I915_WRITE(BXT_PORT_PLL(phy, ch, 9), temp); temp = I915_READ(BXT_PORT_PLL(phy, ch, 10)); temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H; temp &= ~PORT_PLL_DCO_AMP_MASK; temp |= pll->state.hw_state.pll10; I915_WRITE(BXT_PORT_PLL(phy, ch, 10), temp); /* Recalibrate with new settings */ temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch)); temp |= PORT_PLL_RECALIBRATE; I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp); temp &= ~PORT_PLL_10BIT_CLK_ENABLE; temp |= pll->state.hw_state.ebb4; I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp); /* Enable PLL */ temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); temp |= PORT_PLL_ENABLE; I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); POSTING_READ(BXT_PORT_PLL_ENABLE(port)); if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK), 200)) DRM_ERROR("PLL %d not locked\n", port); if (IS_GEMINILAKE(dev_priv)) { temp = I915_READ(BXT_PORT_TX_DW5_LN0(phy, ch)); temp |= DCC_DELAY_RANGE_2; I915_WRITE(BXT_PORT_TX_DW5_GRP(phy, ch), temp); } /* * While we write to the group register to program all lanes at once we * can read only lane registers and we pick lanes 0/1 for that. */ temp = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch)); temp &= ~LANE_STAGGER_MASK; temp &= ~LANESTAGGER_STRAP_OVRD; temp |= pll->state.hw_state.pcsdw12; I915_WRITE(BXT_PORT_PCS_DW12_GRP(phy, ch), temp); } static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */ uint32_t temp; temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); temp &= ~PORT_PLL_ENABLE; I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); POSTING_READ(BXT_PORT_PLL_ENABLE(port)); if (IS_GEMINILAKE(dev_priv)) { temp = I915_READ(BXT_PORT_PLL_ENABLE(port)); temp &= ~PORT_PLL_POWER_ENABLE; I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp); if (wait_for_us(!(I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_POWER_STATE), 200)) DRM_ERROR("Power state not reset for PLL:%d\n", port); } } static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */ uint32_t val; bool ret; enum dpio_phy phy; enum dpio_channel ch; bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; ret = false; val = I915_READ(BXT_PORT_PLL_ENABLE(port)); if (!(val & PORT_PLL_ENABLE)) goto out; hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch)); hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK; hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch)); hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE; hw_state->pll0 = I915_READ(BXT_PORT_PLL(phy, ch, 0)); hw_state->pll0 &= PORT_PLL_M2_MASK; hw_state->pll1 = I915_READ(BXT_PORT_PLL(phy, ch, 1)); hw_state->pll1 &= PORT_PLL_N_MASK; hw_state->pll2 = I915_READ(BXT_PORT_PLL(phy, ch, 2)); hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK; hw_state->pll3 = I915_READ(BXT_PORT_PLL(phy, ch, 3)); hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE; hw_state->pll6 = I915_READ(BXT_PORT_PLL(phy, ch, 6)); hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK | PORT_PLL_INT_COEFF_MASK | PORT_PLL_GAIN_CTL_MASK; hw_state->pll8 = I915_READ(BXT_PORT_PLL(phy, ch, 8)); hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK; hw_state->pll9 = I915_READ(BXT_PORT_PLL(phy, ch, 9)); hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK; hw_state->pll10 = I915_READ(BXT_PORT_PLL(phy, ch, 10)); hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H | PORT_PLL_DCO_AMP_MASK; /* * While we write to the group register to program all lanes at once we * can read only lane registers. We configure all lanes the same way, so * here just read out lanes 0/1 and output a note if lanes 2/3 differ. */ hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch)); if (I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12) DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n", hw_state->pcsdw12, I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch))); hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD; ret = true; out: intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); return ret; } /* bxt clock parameters */ struct bxt_clk_div { int clock; uint32_t p1; uint32_t p2; uint32_t m2_int; uint32_t m2_frac; bool m2_frac_en; uint32_t n; int vco; }; /* pre-calculated values for DP linkrates */ static const struct bxt_clk_div bxt_dp_clk_val[] = { {162000, 4, 2, 32, 1677722, 1, 1}, {270000, 4, 1, 27, 0, 0, 1}, {540000, 2, 1, 27, 0, 0, 1}, {216000, 3, 2, 32, 1677722, 1, 1}, {243000, 4, 1, 24, 1258291, 1, 1}, {324000, 4, 1, 32, 1677722, 1, 1}, {432000, 3, 1, 32, 1677722, 1, 1} }; static bool bxt_ddi_hdmi_pll_dividers(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state, int clock, struct bxt_clk_div *clk_div) { struct dpll best_clock; /* Calculate HDMI div */ /* * FIXME: tie the following calculation into * i9xx_crtc_compute_clock */ if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) { DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n", clock, pipe_name(intel_crtc->pipe)); return false; } clk_div->p1 = best_clock.p1; clk_div->p2 = best_clock.p2; WARN_ON(best_clock.m1 != 2); clk_div->n = best_clock.n; clk_div->m2_int = best_clock.m2 >> 22; clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1); clk_div->m2_frac_en = clk_div->m2_frac != 0; clk_div->vco = best_clock.vco; return true; } static void bxt_ddi_dp_pll_dividers(int clock, struct bxt_clk_div *clk_div) { int i; *clk_div = bxt_dp_clk_val[0]; for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) { if (bxt_dp_clk_val[i].clock == clock) { *clk_div = bxt_dp_clk_val[i]; break; } } clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2; } static bool bxt_ddi_set_dpll_hw_state(int clock, struct bxt_clk_div *clk_div, struct intel_dpll_hw_state *dpll_hw_state) { int vco = clk_div->vco; uint32_t prop_coef, int_coef, gain_ctl, targ_cnt; uint32_t lanestagger; if (vco >= 6200000 && vco <= 6700000) { prop_coef = 4; int_coef = 9; gain_ctl = 3; targ_cnt = 8; } else if ((vco > 5400000 && vco < 6200000) || (vco >= 4800000 && vco < 5400000)) { prop_coef = 5; int_coef = 11; gain_ctl = 3; targ_cnt = 9; } else if (vco == 5400000) { prop_coef = 3; int_coef = 8; gain_ctl = 1; targ_cnt = 9; } else { DRM_ERROR("Invalid VCO\n"); return false; } if (clock > 270000) lanestagger = 0x18; else if (clock > 135000) lanestagger = 0x0d; else if (clock > 67000) lanestagger = 0x07; else if (clock > 33000) lanestagger = 0x04; else lanestagger = 0x02; dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2); dpll_hw_state->pll0 = clk_div->m2_int; dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n); dpll_hw_state->pll2 = clk_div->m2_frac; if (clk_div->m2_frac_en) dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE; dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef); dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl); dpll_hw_state->pll8 = targ_cnt; dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT; dpll_hw_state->pll10 = PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT) | PORT_PLL_DCO_AMP_OVR_EN_H; dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE; dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger; return true; } static bool bxt_ddi_dp_set_dpll_hw_state(int clock, struct intel_dpll_hw_state *dpll_hw_state) { struct bxt_clk_div clk_div = {0}; bxt_ddi_dp_pll_dividers(clock, &clk_div); return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state); } static bool bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state, int clock, struct intel_dpll_hw_state *dpll_hw_state) { struct bxt_clk_div clk_div = { }; bxt_ddi_hdmi_pll_dividers(intel_crtc, crtc_state, clock, &clk_div); return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state); } static struct intel_shared_dpll * bxt_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { struct intel_dpll_hw_state dpll_hw_state = { }; struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_shared_dpll *pll; int i, clock = crtc_state->port_clock; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) && !bxt_ddi_hdmi_set_dpll_hw_state(crtc, crtc_state, clock, &dpll_hw_state)) return NULL; if (intel_crtc_has_dp_encoder(crtc_state) && !bxt_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state)) return NULL; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); crtc_state->dpll_hw_state = dpll_hw_state; /* 1:1 mapping between ports and PLLs */ i = (enum intel_dpll_id) encoder->port; pll = intel_get_shared_dpll_by_id(dev_priv, i); DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n", crtc->base.base.id, crtc->base.name, pll->info->name); intel_reference_shared_dpll(pll, crtc_state); return pll; } static void bxt_dump_hw_state(struct drm_i915_private *dev_priv, struct intel_dpll_hw_state *hw_state) { DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x," "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, " "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n", hw_state->ebb0, hw_state->ebb4, hw_state->pll0, hw_state->pll1, hw_state->pll2, hw_state->pll3, hw_state->pll6, hw_state->pll8, hw_state->pll9, hw_state->pll10, hw_state->pcsdw12); } static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = { .enable = bxt_ddi_pll_enable, .disable = bxt_ddi_pll_disable, .get_hw_state = bxt_ddi_pll_get_hw_state, }; static void intel_ddi_pll_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); if (INTEL_GEN(dev_priv) < 9) { uint32_t val = I915_READ(LCPLL_CTL); /* * The LCPLL register should be turned on by the BIOS. For now * let's just check its state and print errors in case * something is wrong. Don't even try to turn it on. */ if (val & LCPLL_CD_SOURCE_FCLK) DRM_ERROR("CDCLK source is not LCPLL\n"); if (val & LCPLL_PLL_DISABLE) DRM_ERROR("LCPLL is disabled\n"); } } struct intel_dpll_mgr { const struct dpll_info *dpll_info; struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *encoder); void (*dump_hw_state)(struct drm_i915_private *dev_priv, struct intel_dpll_hw_state *hw_state); }; static const struct dpll_info pch_plls[] = { { "PCH DPLL A", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_A, 0 }, { "PCH DPLL B", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_B, 0 }, { }, }; static const struct intel_dpll_mgr pch_pll_mgr = { .dpll_info = pch_plls, .get_dpll = ibx_get_dpll, .dump_hw_state = ibx_dump_hw_state, }; static const struct dpll_info hsw_plls[] = { { "WRPLL 1", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL1, 0 }, { "WRPLL 2", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL2, 0 }, { "SPLL", &hsw_ddi_spll_funcs, DPLL_ID_SPLL, 0 }, { "LCPLL 810", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_810, INTEL_DPLL_ALWAYS_ON }, { "LCPLL 1350", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_1350, INTEL_DPLL_ALWAYS_ON }, { "LCPLL 2700", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_2700, INTEL_DPLL_ALWAYS_ON }, { }, }; static const struct intel_dpll_mgr hsw_pll_mgr = { .dpll_info = hsw_plls, .get_dpll = hsw_get_dpll, .dump_hw_state = hsw_dump_hw_state, }; static const struct dpll_info skl_plls[] = { { "DPLL 0", &skl_ddi_dpll0_funcs, DPLL_ID_SKL_DPLL0, INTEL_DPLL_ALWAYS_ON }, { "DPLL 1", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 }, { "DPLL 2", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 }, { "DPLL 3", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL3, 0 }, { }, }; static const struct intel_dpll_mgr skl_pll_mgr = { .dpll_info = skl_plls, .get_dpll = skl_get_dpll, .dump_hw_state = skl_dump_hw_state, }; static const struct dpll_info bxt_plls[] = { { "PORT PLL A", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 }, { "PORT PLL B", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 }, { "PORT PLL C", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 }, { }, }; static const struct intel_dpll_mgr bxt_pll_mgr = { .dpll_info = bxt_plls, .get_dpll = bxt_get_dpll, .dump_hw_state = bxt_dump_hw_state, }; static void cnl_ddi_pll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; uint32_t val; /* 1. Enable DPLL power in DPLL_ENABLE. */ val = I915_READ(CNL_DPLL_ENABLE(id)); val |= PLL_POWER_ENABLE; I915_WRITE(CNL_DPLL_ENABLE(id), val); /* 2. Wait for DPLL power state enabled in DPLL_ENABLE. */ if (intel_wait_for_register(dev_priv, CNL_DPLL_ENABLE(id), PLL_POWER_STATE, PLL_POWER_STATE, 5)) DRM_ERROR("PLL %d Power not enabled\n", id); /* * 3. Configure DPLL_CFGCR0 to set SSC enable/disable, * select DP mode, and set DP link rate. */ val = pll->state.hw_state.cfgcr0; I915_WRITE(CNL_DPLL_CFGCR0(id), val); /* 4. Reab back to ensure writes completed */ POSTING_READ(CNL_DPLL_CFGCR0(id)); /* 3. Configure DPLL_CFGCR0 */ /* Avoid touch CFGCR1 if HDMI mode is not enabled */ if (pll->state.hw_state.cfgcr0 & DPLL_CFGCR0_HDMI_MODE) { val = pll->state.hw_state.cfgcr1; I915_WRITE(CNL_DPLL_CFGCR1(id), val); /* 4. Reab back to ensure writes completed */ POSTING_READ(CNL_DPLL_CFGCR1(id)); } /* * 5. If the frequency will result in a change to the voltage * requirement, follow the Display Voltage Frequency Switching * Sequence Before Frequency Change * * Note: DVFS is actually handled via the cdclk code paths, * hence we do nothing here. */ /* 6. Enable DPLL in DPLL_ENABLE. */ val = I915_READ(CNL_DPLL_ENABLE(id)); val |= PLL_ENABLE; I915_WRITE(CNL_DPLL_ENABLE(id), val); /* 7. Wait for PLL lock status in DPLL_ENABLE. */ if (intel_wait_for_register(dev_priv, CNL_DPLL_ENABLE(id), PLL_LOCK, PLL_LOCK, 5)) DRM_ERROR("PLL %d not locked\n", id); /* * 8. If the frequency will result in a change to the voltage * requirement, follow the Display Voltage Frequency Switching * Sequence After Frequency Change * * Note: DVFS is actually handled via the cdclk code paths, * hence we do nothing here. */ /* * 9. turn on the clock for the DDI and map the DPLL to the DDI * Done at intel_ddi_clk_select */ } static void cnl_ddi_pll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; uint32_t val; /* * 1. Configure DPCLKA_CFGCR0 to turn off the clock for the DDI. * Done at intel_ddi_post_disable */ /* * 2. If the frequency will result in a change to the voltage * requirement, follow the Display Voltage Frequency Switching * Sequence Before Frequency Change * * Note: DVFS is actually handled via the cdclk code paths, * hence we do nothing here. */ /* 3. Disable DPLL through DPLL_ENABLE. */ val = I915_READ(CNL_DPLL_ENABLE(id)); val &= ~PLL_ENABLE; I915_WRITE(CNL_DPLL_ENABLE(id), val); /* 4. Wait for PLL not locked status in DPLL_ENABLE. */ if (intel_wait_for_register(dev_priv, CNL_DPLL_ENABLE(id), PLL_LOCK, 0, 5)) DRM_ERROR("PLL %d locked\n", id); /* * 5. If the frequency will result in a change to the voltage * requirement, follow the Display Voltage Frequency Switching * Sequence After Frequency Change * * Note: DVFS is actually handled via the cdclk code paths, * hence we do nothing here. */ /* 6. Disable DPLL power in DPLL_ENABLE. */ val = I915_READ(CNL_DPLL_ENABLE(id)); val &= ~PLL_POWER_ENABLE; I915_WRITE(CNL_DPLL_ENABLE(id), val); /* 7. Wait for DPLL power state disabled in DPLL_ENABLE. */ if (intel_wait_for_register(dev_priv, CNL_DPLL_ENABLE(id), PLL_POWER_STATE, 0, 5)) DRM_ERROR("PLL %d Power not disabled\n", id); } static bool cnl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { const enum intel_dpll_id id = pll->info->id; uint32_t val; bool ret; if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; ret = false; val = I915_READ(CNL_DPLL_ENABLE(id)); if (!(val & PLL_ENABLE)) goto out; val = I915_READ(CNL_DPLL_CFGCR0(id)); hw_state->cfgcr0 = val; /* avoid reading back stale values if HDMI mode is not enabled */ if (val & DPLL_CFGCR0_HDMI_MODE) { hw_state->cfgcr1 = I915_READ(CNL_DPLL_CFGCR1(id)); } ret = true; out: intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); return ret; } static void cnl_wrpll_get_multipliers(int bestdiv, int *pdiv, int *qdiv, int *kdiv) { /* even dividers */ if (bestdiv % 2 == 0) { if (bestdiv == 2) { *pdiv = 2; *qdiv = 1; *kdiv = 1; } else if (bestdiv % 4 == 0) { *pdiv = 2; *qdiv = bestdiv / 4; *kdiv = 2; } else if (bestdiv % 6 == 0) { *pdiv = 3; *qdiv = bestdiv / 6; *kdiv = 2; } else if (bestdiv % 5 == 0) { *pdiv = 5; *qdiv = bestdiv / 10; *kdiv = 2; } else if (bestdiv % 14 == 0) { *pdiv = 7; *qdiv = bestdiv / 14; *kdiv = 2; } } else { if (bestdiv == 3 || bestdiv == 5 || bestdiv == 7) { *pdiv = bestdiv; *qdiv = 1; *kdiv = 1; } else { /* 9, 15, 21 */ *pdiv = bestdiv / 3; *qdiv = 1; *kdiv = 3; } } } static void cnl_wrpll_params_populate(struct skl_wrpll_params *params, u32 dco_freq, u32 ref_freq, int pdiv, int qdiv, int kdiv) { u32 dco; switch (kdiv) { case 1: params->kdiv = 1; break; case 2: params->kdiv = 2; break; case 3: params->kdiv = 4; break; default: WARN(1, "Incorrect KDiv\n"); } switch (pdiv) { case 2: params->pdiv = 1; break; case 3: params->pdiv = 2; break; case 5: params->pdiv = 4; break; case 7: params->pdiv = 8; break; default: WARN(1, "Incorrect PDiv\n"); } WARN_ON(kdiv != 2 && qdiv != 1); params->qdiv_ratio = qdiv; params->qdiv_mode = (qdiv == 1) ? 0 : 1; dco = div_u64((u64)dco_freq << 15, ref_freq); params->dco_integer = dco >> 15; params->dco_fraction = dco & 0x7fff; } static bool cnl_ddi_calculate_wrpll(int clock, struct drm_i915_private *dev_priv, struct skl_wrpll_params *wrpll_params) { u32 afe_clock = clock * 5; uint32_t ref_clock; u32 dco_min = 7998000; u32 dco_max = 10000000; u32 dco_mid = (dco_min + dco_max) / 2; static const int dividers[] = { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48, 50, 52, 54, 56, 60, 64, 66, 68, 70, 72, 76, 78, 80, 84, 88, 90, 92, 96, 98, 100, 102, 3, 5, 7, 9, 15, 21 }; u32 dco, best_dco = 0, dco_centrality = 0; u32 best_dco_centrality = U32_MAX; /* Spec meaning of 999999 MHz */ int d, best_div = 0, pdiv = 0, qdiv = 0, kdiv = 0; for (d = 0; d < ARRAY_SIZE(dividers); d++) { dco = afe_clock * dividers[d]; if ((dco <= dco_max) && (dco >= dco_min)) { dco_centrality = abs(dco - dco_mid); if (dco_centrality < best_dco_centrality) { best_dco_centrality = dco_centrality; best_div = dividers[d]; best_dco = dco; } } } if (best_div == 0) return false; cnl_wrpll_get_multipliers(best_div, &pdiv, &qdiv, &kdiv); ref_clock = dev_priv->cdclk.hw.ref; /* * For ICL, the spec states: if reference frequency is 38.4, use 19.2 * because the DPLL automatically divides that by 2. */ if (IS_ICELAKE(dev_priv) && ref_clock == 38400) ref_clock = 19200; cnl_wrpll_params_populate(wrpll_params, best_dco, ref_clock, pdiv, qdiv, kdiv); return true; } static bool cnl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, int clock) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); uint32_t cfgcr0, cfgcr1; struct skl_wrpll_params wrpll_params = { 0, }; cfgcr0 = DPLL_CFGCR0_HDMI_MODE; if (!cnl_ddi_calculate_wrpll(clock, dev_priv, &wrpll_params)) return false; cfgcr0 |= DPLL_CFGCR0_DCO_FRACTION(wrpll_params.dco_fraction) | wrpll_params.dco_integer; cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(wrpll_params.qdiv_ratio) | DPLL_CFGCR1_QDIV_MODE(wrpll_params.qdiv_mode) | DPLL_CFGCR1_KDIV(wrpll_params.kdiv) | DPLL_CFGCR1_PDIV(wrpll_params.pdiv) | DPLL_CFGCR1_CENTRAL_FREQ; memset(&crtc_state->dpll_hw_state, 0, sizeof(crtc_state->dpll_hw_state)); crtc_state->dpll_hw_state.cfgcr0 = cfgcr0; crtc_state->dpll_hw_state.cfgcr1 = cfgcr1; return true; } static bool cnl_ddi_dp_set_dpll_hw_state(int clock, struct intel_dpll_hw_state *dpll_hw_state) { uint32_t cfgcr0; cfgcr0 = DPLL_CFGCR0_SSC_ENABLE; switch (clock / 2) { case 81000: cfgcr0 |= DPLL_CFGCR0_LINK_RATE_810; break; case 135000: cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1350; break; case 270000: cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2700; break; /* eDP 1.4 rates */ case 162000: cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1620; break; case 108000: cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1080; break; case 216000: cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2160; break; case 324000: /* Some SKUs may require elevated I/O voltage to support this */ cfgcr0 |= DPLL_CFGCR0_LINK_RATE_3240; break; case 405000: /* Some SKUs may require elevated I/O voltage to support this */ cfgcr0 |= DPLL_CFGCR0_LINK_RATE_4050; break; } dpll_hw_state->cfgcr0 = cfgcr0; return true; } static struct intel_shared_dpll * cnl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { struct intel_shared_dpll *pll; int clock = crtc_state->port_clock; bool bret; struct intel_dpll_hw_state dpll_hw_state; memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { bret = cnl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock); if (!bret) { DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n"); return NULL; } } else if (intel_crtc_has_dp_encoder(crtc_state)) { bret = cnl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state); if (!bret) { DRM_DEBUG_KMS("Could not set DP dpll HW state.\n"); return NULL; } crtc_state->dpll_hw_state = dpll_hw_state; } else { DRM_DEBUG_KMS("Skip DPLL setup for output_types 0x%x\n", crtc_state->output_types); return NULL; } pll = intel_find_shared_dpll(crtc, crtc_state, DPLL_ID_SKL_DPLL0, DPLL_ID_SKL_DPLL2); if (!pll) { DRM_DEBUG_KMS("No PLL selected\n"); return NULL; } intel_reference_shared_dpll(pll, crtc_state); return pll; } static void cnl_dump_hw_state(struct drm_i915_private *dev_priv, struct intel_dpll_hw_state *hw_state) { DRM_DEBUG_KMS("dpll_hw_state: " "cfgcr0: 0x%x, cfgcr1: 0x%x\n", hw_state->cfgcr0, hw_state->cfgcr1); } static const struct intel_shared_dpll_funcs cnl_ddi_pll_funcs = { .enable = cnl_ddi_pll_enable, .disable = cnl_ddi_pll_disable, .get_hw_state = cnl_ddi_pll_get_hw_state, }; static const struct dpll_info cnl_plls[] = { { "DPLL 0", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 }, { "DPLL 1", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 }, { "DPLL 2", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 }, { }, }; static const struct intel_dpll_mgr cnl_pll_mgr = { .dpll_info = cnl_plls, .get_dpll = cnl_get_dpll, .dump_hw_state = cnl_dump_hw_state, }; /* * These values alrea already adjusted: they're the bits we write to the * registers, not the logical values. */ static const struct skl_wrpll_params icl_dp_combo_pll_24MHz_values[] = { { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [0]: 5.4 */ .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0}, { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [1]: 2.7 */ .pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0}, { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [2]: 1.62 */ .pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0}, { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [3]: 3.24 */ .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0}, { .dco_integer = 0x168, .dco_fraction = 0x0000, /* [4]: 2.16 */ .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2}, { .dco_integer = 0x168, .dco_fraction = 0x0000, /* [5]: 4.32 */ .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0}, { .dco_integer = 0x195, .dco_fraction = 0x0000, /* [6]: 6.48 */ .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0}, { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [7]: 8.1 */ .pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0}, }; /* Also used for 38.4 MHz values. */ static const struct skl_wrpll_params icl_dp_combo_pll_19_2MHz_values[] = { { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [0]: 5.4 */ .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0}, { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [1]: 2.7 */ .pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0}, { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [2]: 1.62 */ .pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0}, { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [3]: 3.24 */ .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0}, { .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [4]: 2.16 */ .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2}, { .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [5]: 4.32 */ .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0}, { .dco_integer = 0x1FA, .dco_fraction = 0x2000, /* [6]: 6.48 */ .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0}, { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [7]: 8.1 */ .pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0}, }; static bool icl_calc_dp_combo_pll(struct drm_i915_private *dev_priv, int clock, struct skl_wrpll_params *pll_params) { const struct skl_wrpll_params *params; params = dev_priv->cdclk.hw.ref == 24000 ? icl_dp_combo_pll_24MHz_values : icl_dp_combo_pll_19_2MHz_values; switch (clock) { case 540000: *pll_params = params[0]; break; case 270000: *pll_params = params[1]; break; case 162000: *pll_params = params[2]; break; case 324000: *pll_params = params[3]; break; case 216000: *pll_params = params[4]; break; case 432000: *pll_params = params[5]; break; case 648000: *pll_params = params[6]; break; case 810000: *pll_params = params[7]; break; default: MISSING_CASE(clock); return false; } return true; } static bool icl_calc_dpll_state(struct intel_crtc_state *crtc_state, struct intel_encoder *encoder, int clock, struct intel_dpll_hw_state *pll_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); uint32_t cfgcr0, cfgcr1; struct skl_wrpll_params pll_params = { 0 }; bool ret; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) ret = cnl_ddi_calculate_wrpll(clock, dev_priv, &pll_params); else ret = icl_calc_dp_combo_pll(dev_priv, clock, &pll_params); if (!ret) return false; cfgcr0 = DPLL_CFGCR0_DCO_FRACTION(pll_params.dco_fraction) | pll_params.dco_integer; cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(pll_params.qdiv_ratio) | DPLL_CFGCR1_QDIV_MODE(pll_params.qdiv_mode) | DPLL_CFGCR1_KDIV(pll_params.kdiv) | DPLL_CFGCR1_PDIV(pll_params.pdiv) | DPLL_CFGCR1_CENTRAL_FREQ_8400; pll_state->cfgcr0 = cfgcr0; pll_state->cfgcr1 = cfgcr1; return true; } int icl_calc_dp_combo_pll_link(struct drm_i915_private *dev_priv, uint32_t pll_id) { uint32_t cfgcr0, cfgcr1; uint32_t pdiv, kdiv, qdiv_mode, qdiv_ratio, dco_integer, dco_fraction; const struct skl_wrpll_params *params; int index, n_entries, link_clock; /* Read back values from DPLL CFGCR registers */ cfgcr0 = I915_READ(ICL_DPLL_CFGCR0(pll_id)); cfgcr1 = I915_READ(ICL_DPLL_CFGCR1(pll_id)); dco_integer = cfgcr0 & DPLL_CFGCR0_DCO_INTEGER_MASK; dco_fraction = (cfgcr0 & DPLL_CFGCR0_DCO_FRACTION_MASK) >> DPLL_CFGCR0_DCO_FRACTION_SHIFT; pdiv = (cfgcr1 & DPLL_CFGCR1_PDIV_MASK) >> DPLL_CFGCR1_PDIV_SHIFT; kdiv = (cfgcr1 & DPLL_CFGCR1_KDIV_MASK) >> DPLL_CFGCR1_KDIV_SHIFT; qdiv_mode = (cfgcr1 & DPLL_CFGCR1_QDIV_MODE(1)) >> DPLL_CFGCR1_QDIV_MODE_SHIFT; qdiv_ratio = (cfgcr1 & DPLL_CFGCR1_QDIV_RATIO_MASK) >> DPLL_CFGCR1_QDIV_RATIO_SHIFT; params = dev_priv->cdclk.hw.ref == 24000 ? icl_dp_combo_pll_24MHz_values : icl_dp_combo_pll_19_2MHz_values; n_entries = ARRAY_SIZE(icl_dp_combo_pll_24MHz_values); for (index = 0; index < n_entries; index++) { if (dco_integer == params[index].dco_integer && dco_fraction == params[index].dco_fraction && pdiv == params[index].pdiv && kdiv == params[index].kdiv && qdiv_mode == params[index].qdiv_mode && qdiv_ratio == params[index].qdiv_ratio) break; } /* Map PLL Index to Link Clock */ switch (index) { default: MISSING_CASE(index); case 0: link_clock = 540000; break; case 1: link_clock = 270000; break; case 2: link_clock = 162000; break; case 3: link_clock = 324000; break; case 4: link_clock = 216000; break; case 5: link_clock = 432000; break; case 6: link_clock = 648000; break; case 7: link_clock = 810000; break; } return link_clock; } static enum port icl_mg_pll_id_to_port(enum intel_dpll_id id) { return id - DPLL_ID_ICL_MGPLL1 + PORT_C; } static enum intel_dpll_id icl_port_to_mg_pll_id(enum port port) { return port - PORT_C + DPLL_ID_ICL_MGPLL1; } static bool icl_mg_pll_find_divisors(int clock_khz, bool is_dp, bool use_ssc, uint32_t *target_dco_khz, struct intel_dpll_hw_state *state) { uint32_t dco_min_freq, dco_max_freq; int div1_vals[] = {7, 5, 3, 2}; unsigned int i; int div2; dco_min_freq = is_dp ? 8100000 : use_ssc ? 8000000 : 7992000; dco_max_freq = is_dp ? 8100000 : 10000000; for (i = 0; i < ARRAY_SIZE(div1_vals); i++) { int div1 = div1_vals[i]; for (div2 = 10; div2 > 0; div2--) { int dco = div1 * div2 * clock_khz * 5; int a_divratio, tlinedrv, inputsel, hsdiv; if (dco < dco_min_freq || dco > dco_max_freq) continue; if (div2 >= 2) { a_divratio = is_dp ? 10 : 5; tlinedrv = 2; } else { a_divratio = 5; tlinedrv = 0; } inputsel = is_dp ? 0 : 1; switch (div1) { default: MISSING_CASE(div1); case 2: hsdiv = 0; break; case 3: hsdiv = 1; break; case 5: hsdiv = 2; break; case 7: hsdiv = 3; break; } *target_dco_khz = dco; state->mg_refclkin_ctl = MG_REFCLKIN_CTL_OD_2_MUX(1); state->mg_clktop2_coreclkctl1 = MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO(a_divratio); state->mg_clktop2_hsclkctl = MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL(tlinedrv) | MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL(inputsel) | MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO(hsdiv) | MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO(div2); return true; } } return false; } /* * The specification for this function uses real numbers, so the math had to be * adapted to integer-only calculation, that's why it looks so different. */ static bool icl_calc_mg_pll_state(struct intel_crtc_state *crtc_state, struct intel_encoder *encoder, int clock, struct intel_dpll_hw_state *pll_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); int refclk_khz = dev_priv->cdclk.hw.ref; uint32_t dco_khz, m1div, m2div_int, m2div_rem, m2div_frac; uint32_t iref_ndiv, iref_trim, iref_pulse_w; uint32_t prop_coeff, int_coeff; uint32_t tdc_targetcnt, feedfwgain; uint64_t ssc_stepsize, ssc_steplen, ssc_steplog; uint64_t tmp; bool use_ssc = false; bool is_dp = !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI); if (!icl_mg_pll_find_divisors(clock, is_dp, use_ssc, &dco_khz, pll_state)) { DRM_DEBUG_KMS("Failed to find divisors for clock %d\n", clock); return false; } m1div = 2; m2div_int = dco_khz / (refclk_khz * m1div); if (m2div_int > 255) { m1div = 4; m2div_int = dco_khz / (refclk_khz * m1div); if (m2div_int > 255) { DRM_DEBUG_KMS("Failed to find mdiv for clock %d\n", clock); return false; } } m2div_rem = dco_khz % (refclk_khz * m1div); tmp = (uint64_t)m2div_rem * (1 << 22); do_div(tmp, refclk_khz * m1div); m2div_frac = tmp; switch (refclk_khz) { case 19200: iref_ndiv = 1; iref_trim = 28; iref_pulse_w = 1; break; case 24000: iref_ndiv = 1; iref_trim = 25; iref_pulse_w = 2; break; case 38400: iref_ndiv = 2; iref_trim = 28; iref_pulse_w = 1; break; default: MISSING_CASE(refclk_khz); return false; } /* * tdc_res = 0.000003 * tdc_targetcnt = int(2 / (tdc_res * 8 * 50 * 1.1) / refclk_mhz + 0.5) * * The multiplication by 1000 is due to refclk MHz to KHz conversion. It * was supposed to be a division, but we rearranged the operations of * the formula to avoid early divisions so we don't multiply the * rounding errors. * * 0.000003 * 8 * 50 * 1.1 = 0.00132, also known as 132 / 100000, which * we also rearrange to work with integers. * * The 0.5 transformed to 5 results in a multiplication by 10 and the * last division by 10. */ tdc_targetcnt = (2 * 1000 * 100000 * 10 / (132 * refclk_khz) + 5) / 10; /* * Here we divide dco_khz by 10 in order to allow the dividend to fit in * 32 bits. That's not a problem since we round the division down * anyway. */ feedfwgain = (use_ssc || m2div_rem > 0) ? m1div * 1000000 * 100 / (dco_khz * 3 / 10) : 0; if (dco_khz >= 9000000) { prop_coeff = 5; int_coeff = 10; } else { prop_coeff = 4; int_coeff = 8; } if (use_ssc) { tmp = (uint64_t)dco_khz * 47 * 32; do_div(tmp, refclk_khz * m1div * 10000); ssc_stepsize = tmp; tmp = (uint64_t)dco_khz * 1000; ssc_steplen = DIV_ROUND_UP_ULL(tmp, 32 * 2 * 32); } else { ssc_stepsize = 0; ssc_steplen = 0; } ssc_steplog = 4; pll_state->mg_pll_div0 = (m2div_rem > 0 ? MG_PLL_DIV0_FRACNEN_H : 0) | MG_PLL_DIV0_FBDIV_FRAC(m2div_frac) | MG_PLL_DIV0_FBDIV_INT(m2div_int); pll_state->mg_pll_div1 = MG_PLL_DIV1_IREF_NDIVRATIO(iref_ndiv) | MG_PLL_DIV1_DITHER_DIV_2 | MG_PLL_DIV1_NDIVRATIO(1) | MG_PLL_DIV1_FBPREDIV(m1div); pll_state->mg_pll_lf = MG_PLL_LF_TDCTARGETCNT(tdc_targetcnt) | MG_PLL_LF_AFCCNTSEL_512 | MG_PLL_LF_GAINCTRL(1) | MG_PLL_LF_INT_COEFF(int_coeff) | MG_PLL_LF_PROP_COEFF(prop_coeff); pll_state->mg_pll_frac_lock = MG_PLL_FRAC_LOCK_TRUELOCK_CRIT_32 | MG_PLL_FRAC_LOCK_EARLYLOCK_CRIT_32 | MG_PLL_FRAC_LOCK_LOCKTHRESH(10) | MG_PLL_FRAC_LOCK_DCODITHEREN | MG_PLL_FRAC_LOCK_FEEDFWRDGAIN(feedfwgain); if (use_ssc || m2div_rem > 0) pll_state->mg_pll_frac_lock |= MG_PLL_FRAC_LOCK_FEEDFWRDCAL_EN; pll_state->mg_pll_ssc = (use_ssc ? MG_PLL_SSC_EN : 0) | MG_PLL_SSC_TYPE(2) | MG_PLL_SSC_STEPLENGTH(ssc_steplen) | MG_PLL_SSC_STEPNUM(ssc_steplog) | MG_PLL_SSC_FLLEN | MG_PLL_SSC_STEPSIZE(ssc_stepsize); pll_state->mg_pll_tdc_coldst_bias = MG_PLL_TDC_COLDST_COLDSTART; if (refclk_khz != 38400) { pll_state->mg_pll_tdc_coldst_bias |= MG_PLL_TDC_COLDST_IREFINT_EN | MG_PLL_TDC_COLDST_REFBIAS_START_PULSE_W(iref_pulse_w) | MG_PLL_TDC_COLDST_COLDSTART | MG_PLL_TDC_TDCOVCCORR_EN | MG_PLL_TDC_TDCSEL(3); pll_state->mg_pll_bias = MG_PLL_BIAS_BIAS_GB_SEL(3) | MG_PLL_BIAS_INIT_DCOAMP(0x3F) | MG_PLL_BIAS_BIAS_BONUS(10) | MG_PLL_BIAS_BIASCAL_EN | MG_PLL_BIAS_CTRIM(12) | MG_PLL_BIAS_VREF_RDAC(4) | MG_PLL_BIAS_IREFTRIM(iref_trim); } return true; } static struct intel_shared_dpll * icl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { struct intel_shared_dpll *pll; struct intel_dpll_hw_state pll_state = {}; enum port port = encoder->port; enum intel_dpll_id min, max; int clock = crtc_state->port_clock; bool ret; switch (port) { case PORT_A: case PORT_B: min = DPLL_ID_ICL_DPLL0; max = DPLL_ID_ICL_DPLL1; ret = icl_calc_dpll_state(crtc_state, encoder, clock, &pll_state); break; case PORT_C: case PORT_D: case PORT_E: case PORT_F: if (0 /* TODO: TBT PLLs */) { min = DPLL_ID_ICL_TBTPLL; max = min; ret = icl_calc_dpll_state(crtc_state, encoder, clock, &pll_state); } else { min = icl_port_to_mg_pll_id(port); max = min; ret = icl_calc_mg_pll_state(crtc_state, encoder, clock, &pll_state); } break; default: MISSING_CASE(port); return NULL; } if (!ret) { DRM_DEBUG_KMS("Could not calculate PLL state.\n"); return NULL; } crtc_state->dpll_hw_state = pll_state; pll = intel_find_shared_dpll(crtc, crtc_state, min, max); if (!pll) { DRM_DEBUG_KMS("No PLL selected\n"); return NULL; } intel_reference_shared_dpll(pll, crtc_state); return pll; } static i915_reg_t icl_pll_id_to_enable_reg(enum intel_dpll_id id) { switch (id) { default: MISSING_CASE(id); case DPLL_ID_ICL_DPLL0: case DPLL_ID_ICL_DPLL1: return CNL_DPLL_ENABLE(id); case DPLL_ID_ICL_TBTPLL: return TBT_PLL_ENABLE; case DPLL_ID_ICL_MGPLL1: case DPLL_ID_ICL_MGPLL2: case DPLL_ID_ICL_MGPLL3: case DPLL_ID_ICL_MGPLL4: return MG_PLL_ENABLE(icl_mg_pll_id_to_port(id)); } } static bool icl_pll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { const enum intel_dpll_id id = pll->info->id; uint32_t val; enum port port; bool ret = false; if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; val = I915_READ(icl_pll_id_to_enable_reg(id)); if (!(val & PLL_ENABLE)) goto out; switch (id) { case DPLL_ID_ICL_DPLL0: case DPLL_ID_ICL_DPLL1: case DPLL_ID_ICL_TBTPLL: hw_state->cfgcr0 = I915_READ(ICL_DPLL_CFGCR0(id)); hw_state->cfgcr1 = I915_READ(ICL_DPLL_CFGCR1(id)); break; case DPLL_ID_ICL_MGPLL1: case DPLL_ID_ICL_MGPLL2: case DPLL_ID_ICL_MGPLL3: case DPLL_ID_ICL_MGPLL4: port = icl_mg_pll_id_to_port(id); hw_state->mg_refclkin_ctl = I915_READ(MG_REFCLKIN_CTL(port)); hw_state->mg_clktop2_coreclkctl1 = I915_READ(MG_CLKTOP2_CORECLKCTL1(port)); hw_state->mg_clktop2_hsclkctl = I915_READ(MG_CLKTOP2_HSCLKCTL(port)); hw_state->mg_pll_div0 = I915_READ(MG_PLL_DIV0(port)); hw_state->mg_pll_div1 = I915_READ(MG_PLL_DIV1(port)); hw_state->mg_pll_lf = I915_READ(MG_PLL_LF(port)); hw_state->mg_pll_frac_lock = I915_READ(MG_PLL_FRAC_LOCK(port)); hw_state->mg_pll_ssc = I915_READ(MG_PLL_SSC(port)); hw_state->mg_pll_bias = I915_READ(MG_PLL_BIAS(port)); hw_state->mg_pll_tdc_coldst_bias = I915_READ(MG_PLL_TDC_COLDST_BIAS(port)); break; default: MISSING_CASE(id); } ret = true; out: intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); return ret; } static void icl_dpll_write(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { struct intel_dpll_hw_state *hw_state = &pll->state.hw_state; const enum intel_dpll_id id = pll->info->id; I915_WRITE(ICL_DPLL_CFGCR0(id), hw_state->cfgcr0); I915_WRITE(ICL_DPLL_CFGCR1(id), hw_state->cfgcr1); POSTING_READ(ICL_DPLL_CFGCR1(id)); } static void icl_mg_pll_write(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { struct intel_dpll_hw_state *hw_state = &pll->state.hw_state; enum port port = icl_mg_pll_id_to_port(pll->info->id); I915_WRITE(MG_REFCLKIN_CTL(port), hw_state->mg_refclkin_ctl); I915_WRITE(MG_CLKTOP2_CORECLKCTL1(port), hw_state->mg_clktop2_coreclkctl1); I915_WRITE(MG_CLKTOP2_HSCLKCTL(port), hw_state->mg_clktop2_hsclkctl); I915_WRITE(MG_PLL_DIV0(port), hw_state->mg_pll_div0); I915_WRITE(MG_PLL_DIV1(port), hw_state->mg_pll_div1); I915_WRITE(MG_PLL_LF(port), hw_state->mg_pll_lf); I915_WRITE(MG_PLL_FRAC_LOCK(port), hw_state->mg_pll_frac_lock); I915_WRITE(MG_PLL_SSC(port), hw_state->mg_pll_ssc); I915_WRITE(MG_PLL_BIAS(port), hw_state->mg_pll_bias); I915_WRITE(MG_PLL_TDC_COLDST_BIAS(port), hw_state->mg_pll_tdc_coldst_bias); POSTING_READ(MG_PLL_TDC_COLDST_BIAS(port)); } static void icl_pll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; i915_reg_t enable_reg = icl_pll_id_to_enable_reg(id); uint32_t val; val = I915_READ(enable_reg); val |= PLL_POWER_ENABLE; I915_WRITE(enable_reg, val); /* * The spec says we need to "wait" but it also says it should be * immediate. */ if (intel_wait_for_register(dev_priv, enable_reg, PLL_POWER_STATE, PLL_POWER_STATE, 1)) DRM_ERROR("PLL %d Power not enabled\n", id); switch (id) { case DPLL_ID_ICL_DPLL0: case DPLL_ID_ICL_DPLL1: case DPLL_ID_ICL_TBTPLL: icl_dpll_write(dev_priv, pll); break; case DPLL_ID_ICL_MGPLL1: case DPLL_ID_ICL_MGPLL2: case DPLL_ID_ICL_MGPLL3: case DPLL_ID_ICL_MGPLL4: icl_mg_pll_write(dev_priv, pll); break; default: MISSING_CASE(id); } /* * DVFS pre sequence would be here, but in our driver the cdclk code * paths should already be setting the appropriate voltage, hence we do * nothign here. */ val = I915_READ(enable_reg); val |= PLL_ENABLE; I915_WRITE(enable_reg, val); if (intel_wait_for_register(dev_priv, enable_reg, PLL_LOCK, PLL_LOCK, 1)) /* 600us actually. */ DRM_ERROR("PLL %d not locked\n", id); /* DVFS post sequence would be here. See the comment above. */ } static void icl_pll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { const enum intel_dpll_id id = pll->info->id; i915_reg_t enable_reg = icl_pll_id_to_enable_reg(id); uint32_t val; /* The first steps are done by intel_ddi_post_disable(). */ /* * DVFS pre sequence would be here, but in our driver the cdclk code * paths should already be setting the appropriate voltage, hence we do * nothign here. */ val = I915_READ(enable_reg); val &= ~PLL_ENABLE; I915_WRITE(enable_reg, val); /* Timeout is actually 1us. */ if (intel_wait_for_register(dev_priv, enable_reg, PLL_LOCK, 0, 1)) DRM_ERROR("PLL %d locked\n", id); /* DVFS post sequence would be here. See the comment above. */ val = I915_READ(enable_reg); val &= ~PLL_POWER_ENABLE; I915_WRITE(enable_reg, val); /* * The spec says we need to "wait" but it also says it should be * immediate. */ if (intel_wait_for_register(dev_priv, enable_reg, PLL_POWER_STATE, 0, 1)) DRM_ERROR("PLL %d Power not disabled\n", id); } static void icl_dump_hw_state(struct drm_i915_private *dev_priv, struct intel_dpll_hw_state *hw_state) { DRM_DEBUG_KMS("dpll_hw_state: cfgcr0: 0x%x, cfgcr1: 0x%x, " "mg_refclkin_ctl: 0x%x, hg_clktop2_coreclkctl1: 0x%x, " "mg_clktop2_hsclkctl: 0x%x, mg_pll_div0: 0x%x, " "mg_pll_div2: 0x%x, mg_pll_lf: 0x%x, " "mg_pll_frac_lock: 0x%x, mg_pll_ssc: 0x%x, " "mg_pll_bias: 0x%x, mg_pll_tdc_coldst_bias: 0x%x\n", hw_state->cfgcr0, hw_state->cfgcr1, hw_state->mg_refclkin_ctl, hw_state->mg_clktop2_coreclkctl1, hw_state->mg_clktop2_hsclkctl, hw_state->mg_pll_div0, hw_state->mg_pll_div1, hw_state->mg_pll_lf, hw_state->mg_pll_frac_lock, hw_state->mg_pll_ssc, hw_state->mg_pll_bias, hw_state->mg_pll_tdc_coldst_bias); } static const struct intel_shared_dpll_funcs icl_pll_funcs = { .enable = icl_pll_enable, .disable = icl_pll_disable, .get_hw_state = icl_pll_get_hw_state, }; static const struct dpll_info icl_plls[] = { { "DPLL 0", &icl_pll_funcs, DPLL_ID_ICL_DPLL0, 0 }, { "DPLL 1", &icl_pll_funcs, DPLL_ID_ICL_DPLL1, 0 }, { "TBT PLL", &icl_pll_funcs, DPLL_ID_ICL_TBTPLL, 0 }, { "MG PLL 1", &icl_pll_funcs, DPLL_ID_ICL_MGPLL1, 0 }, { "MG PLL 2", &icl_pll_funcs, DPLL_ID_ICL_MGPLL2, 0 }, { "MG PLL 3", &icl_pll_funcs, DPLL_ID_ICL_MGPLL3, 0 }, { "MG PLL 4", &icl_pll_funcs, DPLL_ID_ICL_MGPLL4, 0 }, { }, }; static const struct intel_dpll_mgr icl_pll_mgr = { .dpll_info = icl_plls, .get_dpll = icl_get_dpll, .dump_hw_state = icl_dump_hw_state, }; /** * intel_shared_dpll_init - Initialize shared DPLLs * @dev: drm device * * Initialize shared DPLLs for @dev. */ void intel_shared_dpll_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); const struct intel_dpll_mgr *dpll_mgr = NULL; const struct dpll_info *dpll_info; int i; if (IS_ICELAKE(dev_priv)) dpll_mgr = &icl_pll_mgr; else if (IS_CANNONLAKE(dev_priv)) dpll_mgr = &cnl_pll_mgr; else if (IS_GEN9_BC(dev_priv)) dpll_mgr = &skl_pll_mgr; else if (IS_GEN9_LP(dev_priv)) dpll_mgr = &bxt_pll_mgr; else if (HAS_DDI(dev_priv)) dpll_mgr = &hsw_pll_mgr; else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) dpll_mgr = &pch_pll_mgr; if (!dpll_mgr) { dev_priv->num_shared_dpll = 0; return; } dpll_info = dpll_mgr->dpll_info; for (i = 0; dpll_info[i].name; i++) { WARN_ON(i != dpll_info[i].id); dev_priv->shared_dplls[i].info = &dpll_info[i]; } dev_priv->dpll_mgr = dpll_mgr; dev_priv->num_shared_dpll = i; mutex_init(&dev_priv->dpll_lock); BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS); /* FIXME: Move this to a more suitable place */ if (HAS_DDI(dev_priv)) intel_ddi_pll_init(dev); } /** * intel_get_shared_dpll - get a shared DPLL for CRTC and encoder combination * @crtc: CRTC * @crtc_state: atomic state for @crtc * @encoder: encoder * * Find an appropriate DPLL for the given CRTC and encoder combination. A * reference from the @crtc to the returned pll is registered in the atomic * state. That configuration is made effective by calling * intel_shared_dpll_swap_state(). The reference should be released by calling * intel_release_shared_dpll(). * * Returns: * A shared DPLL to be used by @crtc and @encoder with the given @crtc_state. */ struct intel_shared_dpll * intel_get_shared_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr; if (WARN_ON(!dpll_mgr)) return NULL; return dpll_mgr->get_dpll(crtc, crtc_state, encoder); } /** * intel_release_shared_dpll - end use of DPLL by CRTC in atomic state * @dpll: dpll in use by @crtc * @crtc: crtc * @state: atomic state * * This function releases the reference from @crtc to @dpll from the * atomic @state. The new configuration is made effective by calling * intel_shared_dpll_swap_state(). */ void intel_release_shared_dpll(struct intel_shared_dpll *dpll, struct intel_crtc *crtc, struct drm_atomic_state *state) { struct intel_shared_dpll_state *shared_dpll_state; shared_dpll_state = intel_atomic_get_shared_dpll_state(state); shared_dpll_state[dpll->info->id].crtc_mask &= ~(1 << crtc->pipe); } /** * intel_shared_dpll_dump_hw_state - write hw_state to dmesg * @dev_priv: i915 drm device * @hw_state: hw state to be written to the log * * Write the relevant values in @hw_state to dmesg using DRM_DEBUG_KMS. */ void intel_dpll_dump_hw_state(struct drm_i915_private *dev_priv, struct intel_dpll_hw_state *hw_state) { if (dev_priv->dpll_mgr) { dev_priv->dpll_mgr->dump_hw_state(dev_priv, hw_state); } else { /* fallback for platforms that don't use the shared dpll * infrastructure */ DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, " "fp0: 0x%x, fp1: 0x%x\n", hw_state->dpll, hw_state->dpll_md, hw_state->fp0, hw_state->fp1); } }