/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- */ /* * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include "i915_drv.h" #include "i915_trace.h" #include "intel_drv.h" /** * DOC: interrupt handling * * These functions provide the basic support for enabling and disabling the * interrupt handling support. There's a lot more functionality in i915_irq.c * and related files, but that will be described in separate chapters. */ static const u32 hpd_ilk[HPD_NUM_PINS] = { [HPD_PORT_A] = DE_DP_A_HOTPLUG, }; static const u32 hpd_ivb[HPD_NUM_PINS] = { [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB, }; static const u32 hpd_bdw[HPD_NUM_PINS] = { [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG, }; static const u32 hpd_ibx[HPD_NUM_PINS] = { [HPD_CRT] = SDE_CRT_HOTPLUG, [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, [HPD_PORT_B] = SDE_PORTB_HOTPLUG, [HPD_PORT_C] = SDE_PORTC_HOTPLUG, [HPD_PORT_D] = SDE_PORTD_HOTPLUG }; static const u32 hpd_cpt[HPD_NUM_PINS] = { [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT }; static const u32 hpd_spt[HPD_NUM_PINS] = { [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT, [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT }; static const u32 hpd_mask_i915[HPD_NUM_PINS] = { [HPD_CRT] = CRT_HOTPLUG_INT_EN, [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN }; static const u32 hpd_status_g4x[HPD_NUM_PINS] = { [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS }; static const u32 hpd_status_i915[HPD_NUM_PINS] = { [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS }; /* BXT hpd list */ static const u32 hpd_bxt[HPD_NUM_PINS] = { [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA, [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB, [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC }; /* IIR can theoretically queue up two events. Be paranoid. */ #define GEN8_IRQ_RESET_NDX(type, which) do { \ I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \ POSTING_READ(GEN8_##type##_IMR(which)); \ I915_WRITE(GEN8_##type##_IER(which), 0); \ I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ POSTING_READ(GEN8_##type##_IIR(which)); \ I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ POSTING_READ(GEN8_##type##_IIR(which)); \ } while (0) #define GEN5_IRQ_RESET(type) do { \ I915_WRITE(type##IMR, 0xffffffff); \ POSTING_READ(type##IMR); \ I915_WRITE(type##IER, 0); \ I915_WRITE(type##IIR, 0xffffffff); \ POSTING_READ(type##IIR); \ I915_WRITE(type##IIR, 0xffffffff); \ POSTING_READ(type##IIR); \ } while (0) /* * We should clear IMR at preinstall/uninstall, and just check at postinstall. */ static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv, i915_reg_t reg) { u32 val = I915_READ(reg); if (val == 0) return; WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", i915_mmio_reg_offset(reg), val); I915_WRITE(reg, 0xffffffff); POSTING_READ(reg); I915_WRITE(reg, 0xffffffff); POSTING_READ(reg); } #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \ gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \ I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \ I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \ POSTING_READ(GEN8_##type##_IMR(which)); \ } while (0) #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \ gen5_assert_iir_is_zero(dev_priv, type##IIR); \ I915_WRITE(type##IER, (ier_val)); \ I915_WRITE(type##IMR, (imr_val)); \ POSTING_READ(type##IMR); \ } while (0) static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir); /* For display hotplug interrupt */ static inline void i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv, uint32_t mask, uint32_t bits) { uint32_t val; assert_spin_locked(&dev_priv->irq_lock); WARN_ON(bits & ~mask); val = I915_READ(PORT_HOTPLUG_EN); val &= ~mask; val |= bits; I915_WRITE(PORT_HOTPLUG_EN, val); } /** * i915_hotplug_interrupt_update - update hotplug interrupt enable * @dev_priv: driver private * @mask: bits to update * @bits: bits to enable * NOTE: the HPD enable bits are modified both inside and outside * of an interrupt context. To avoid that read-modify-write cycles * interfer, these bits are protected by a spinlock. Since this * function is usually not called from a context where the lock is * held already, this function acquires the lock itself. A non-locking * version is also available. */ void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, uint32_t mask, uint32_t bits) { spin_lock_irq(&dev_priv->irq_lock); i915_hotplug_interrupt_update_locked(dev_priv, mask, bits); spin_unlock_irq(&dev_priv->irq_lock); } /** * ilk_update_display_irq - update DEIMR * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ void ilk_update_display_irq(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask) { uint32_t new_val; assert_spin_locked(&dev_priv->irq_lock); WARN_ON(enabled_irq_mask & ~interrupt_mask); if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; new_val = dev_priv->irq_mask; new_val &= ~interrupt_mask; new_val |= (~enabled_irq_mask & interrupt_mask); if (new_val != dev_priv->irq_mask) { dev_priv->irq_mask = new_val; I915_WRITE(DEIMR, dev_priv->irq_mask); POSTING_READ(DEIMR); } } /** * ilk_update_gt_irq - update GTIMR * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ static void ilk_update_gt_irq(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask) { assert_spin_locked(&dev_priv->irq_lock); WARN_ON(enabled_irq_mask & ~interrupt_mask); if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; dev_priv->gt_irq_mask &= ~interrupt_mask; dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask); I915_WRITE(GTIMR, dev_priv->gt_irq_mask); } void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) { ilk_update_gt_irq(dev_priv, mask, mask); POSTING_READ_FW(GTIMR); } void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) { ilk_update_gt_irq(dev_priv, mask, 0); } static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv) { return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR; } static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv) { return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR; } static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv) { return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER; } /** * snb_update_pm_irq - update GEN6_PMIMR * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ static void snb_update_pm_irq(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask) { uint32_t new_val; WARN_ON(enabled_irq_mask & ~interrupt_mask); assert_spin_locked(&dev_priv->irq_lock); new_val = dev_priv->pm_imr; new_val &= ~interrupt_mask; new_val |= (~enabled_irq_mask & interrupt_mask); if (new_val != dev_priv->pm_imr) { dev_priv->pm_imr = new_val; I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr); POSTING_READ(gen6_pm_imr(dev_priv)); } } void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) { if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; snb_update_pm_irq(dev_priv, mask, mask); } static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) { snb_update_pm_irq(dev_priv, mask, 0); } void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask) { if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; __gen6_mask_pm_irq(dev_priv, mask); } void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask) { i915_reg_t reg = gen6_pm_iir(dev_priv); assert_spin_locked(&dev_priv->irq_lock); I915_WRITE(reg, reset_mask); I915_WRITE(reg, reset_mask); POSTING_READ(reg); } void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask) { assert_spin_locked(&dev_priv->irq_lock); dev_priv->pm_ier |= enable_mask; I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier); gen6_unmask_pm_irq(dev_priv, enable_mask); /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */ } void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask) { assert_spin_locked(&dev_priv->irq_lock); dev_priv->pm_ier &= ~disable_mask; __gen6_mask_pm_irq(dev_priv, disable_mask); I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier); /* though a barrier is missing here, but don't really need a one */ } void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv) { spin_lock_irq(&dev_priv->irq_lock); gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events); dev_priv->rps.pm_iir = 0; spin_unlock_irq(&dev_priv->irq_lock); } void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv) { if (READ_ONCE(dev_priv->rps.interrupts_enabled)) return; spin_lock_irq(&dev_priv->irq_lock); WARN_ON_ONCE(dev_priv->rps.pm_iir); WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events); dev_priv->rps.interrupts_enabled = true; gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events); spin_unlock_irq(&dev_priv->irq_lock); } u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask) { return (mask & ~dev_priv->rps.pm_intr_keep); } void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv) { if (!READ_ONCE(dev_priv->rps.interrupts_enabled)) return; spin_lock_irq(&dev_priv->irq_lock); dev_priv->rps.interrupts_enabled = false; I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u)); gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events); spin_unlock_irq(&dev_priv->irq_lock); synchronize_irq(dev_priv->drm.irq); /* Now that we will not be generating any more work, flush any * outsanding tasks. As we are called on the RPS idle path, * we will reset the GPU to minimum frequencies, so the current * state of the worker can be discarded. */ cancel_work_sync(&dev_priv->rps.work); gen6_reset_rps_interrupts(dev_priv); } void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv) { spin_lock_irq(&dev_priv->irq_lock); gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events); spin_unlock_irq(&dev_priv->irq_lock); } void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv) { spin_lock_irq(&dev_priv->irq_lock); if (!dev_priv->guc.interrupts_enabled) { WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_guc_events); dev_priv->guc.interrupts_enabled = true; gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events); } spin_unlock_irq(&dev_priv->irq_lock); } void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv) { spin_lock_irq(&dev_priv->irq_lock); dev_priv->guc.interrupts_enabled = false; gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events); spin_unlock_irq(&dev_priv->irq_lock); synchronize_irq(dev_priv->drm.irq); gen9_reset_guc_interrupts(dev_priv); } /** * bdw_update_port_irq - update DE port interrupt * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ static void bdw_update_port_irq(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask) { uint32_t new_val; uint32_t old_val; assert_spin_locked(&dev_priv->irq_lock); WARN_ON(enabled_irq_mask & ~interrupt_mask); if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; old_val = I915_READ(GEN8_DE_PORT_IMR); new_val = old_val; new_val &= ~interrupt_mask; new_val |= (~enabled_irq_mask & interrupt_mask); if (new_val != old_val) { I915_WRITE(GEN8_DE_PORT_IMR, new_val); POSTING_READ(GEN8_DE_PORT_IMR); } } /** * bdw_update_pipe_irq - update DE pipe interrupt * @dev_priv: driver private * @pipe: pipe whose interrupt to update * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, enum pipe pipe, uint32_t interrupt_mask, uint32_t enabled_irq_mask) { uint32_t new_val; assert_spin_locked(&dev_priv->irq_lock); WARN_ON(enabled_irq_mask & ~interrupt_mask); if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; new_val = dev_priv->de_irq_mask[pipe]; new_val &= ~interrupt_mask; new_val |= (~enabled_irq_mask & interrupt_mask); if (new_val != dev_priv->de_irq_mask[pipe]) { dev_priv->de_irq_mask[pipe] = new_val; I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); } } /** * ibx_display_interrupt_update - update SDEIMR * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask) { uint32_t sdeimr = I915_READ(SDEIMR); sdeimr &= ~interrupt_mask; sdeimr |= (~enabled_irq_mask & interrupt_mask); WARN_ON(enabled_irq_mask & ~interrupt_mask); assert_spin_locked(&dev_priv->irq_lock); if (WARN_ON(!intel_irqs_enabled(dev_priv))) return; I915_WRITE(SDEIMR, sdeimr); POSTING_READ(SDEIMR); } static void __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, u32 enable_mask, u32 status_mask) { i915_reg_t reg = PIPESTAT(pipe); u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK; assert_spin_locked(&dev_priv->irq_lock); WARN_ON(!intel_irqs_enabled(dev_priv)); if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK || status_mask & ~PIPESTAT_INT_STATUS_MASK, "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", pipe_name(pipe), enable_mask, status_mask)) return; if ((pipestat & enable_mask) == enable_mask) return; dev_priv->pipestat_irq_mask[pipe] |= status_mask; /* Enable the interrupt, clear any pending status */ pipestat |= enable_mask | status_mask; I915_WRITE(reg, pipestat); POSTING_READ(reg); } static void __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, u32 enable_mask, u32 status_mask) { i915_reg_t reg = PIPESTAT(pipe); u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK; assert_spin_locked(&dev_priv->irq_lock); WARN_ON(!intel_irqs_enabled(dev_priv)); if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK || status_mask & ~PIPESTAT_INT_STATUS_MASK, "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", pipe_name(pipe), enable_mask, status_mask)) return; if ((pipestat & enable_mask) == 0) return; dev_priv->pipestat_irq_mask[pipe] &= ~status_mask; pipestat &= ~enable_mask; I915_WRITE(reg, pipestat); POSTING_READ(reg); } static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask) { u32 enable_mask = status_mask << 16; /* * On pipe A we don't support the PSR interrupt yet, * on pipe B and C the same bit MBZ. */ if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV)) return 0; /* * On pipe B and C we don't support the PSR interrupt yet, on pipe * A the same bit is for perf counters which we don't use either. */ if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV)) return 0; enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS | SPRITE0_FLIP_DONE_INT_EN_VLV | SPRITE1_FLIP_DONE_INT_EN_VLV); if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV) enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV; if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV) enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV; return enable_mask; } void i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, u32 status_mask) { u32 enable_mask; if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm, status_mask); else enable_mask = status_mask << 16; __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask); } void i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, u32 status_mask) { u32 enable_mask; if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm, status_mask); else enable_mask = status_mask << 16; __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask); } /** * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion * @dev_priv: i915 device private */ static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv) { if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv)) return; spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS); if (INTEL_GEN(dev_priv) >= 4) i915_enable_pipestat(dev_priv, PIPE_A, PIPE_LEGACY_BLC_EVENT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); } /* * This timing diagram depicts the video signal in and * around the vertical blanking period. * * Assumptions about the fictitious mode used in this example: * vblank_start >= 3 * vsync_start = vblank_start + 1 * vsync_end = vblank_start + 2 * vtotal = vblank_start + 3 * * start of vblank: * latch double buffered registers * increment frame counter (ctg+) * generate start of vblank interrupt (gen4+) * | * | frame start: * | generate frame start interrupt (aka. vblank interrupt) (gmch) * | may be shifted forward 1-3 extra lines via PIPECONF * | | * | | start of vsync: * | | generate vsync interrupt * | | | * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx * . \hs/ . \hs/ \hs/ \hs/ . \hs/ * ----va---> <-----------------vb--------------------> <--------va------------- * | | <----vs-----> | * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) * | | | * last visible pixel first visible pixel * | increment frame counter (gen3/4) * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) * * x = horizontal active * _ = horizontal blanking * hs = horizontal sync * va = vertical active * vb = vertical blanking * vs = vertical sync * vbs = vblank_start (number) * * Summary: * - most events happen at the start of horizontal sync * - frame start happens at the start of horizontal blank, 1-4 lines * (depending on PIPECONF settings) after the start of vblank * - gen3/4 pixel and frame counter are synchronized with the start * of horizontal active on the first line of vertical active */ /* Called from drm generic code, passed a 'crtc', which * we use as a pipe index */ static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe) { struct drm_i915_private *dev_priv = to_i915(dev); i915_reg_t high_frame, low_frame; u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal; struct intel_crtc *intel_crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); const struct drm_display_mode *mode = &intel_crtc->base.hwmode; htotal = mode->crtc_htotal; hsync_start = mode->crtc_hsync_start; vbl_start = mode->crtc_vblank_start; if (mode->flags & DRM_MODE_FLAG_INTERLACE) vbl_start = DIV_ROUND_UP(vbl_start, 2); /* Convert to pixel count */ vbl_start *= htotal; /* Start of vblank event occurs at start of hsync */ vbl_start -= htotal - hsync_start; high_frame = PIPEFRAME(pipe); low_frame = PIPEFRAMEPIXEL(pipe); /* * High & low register fields aren't synchronized, so make sure * we get a low value that's stable across two reads of the high * register. */ do { high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; low = I915_READ(low_frame); high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; } while (high1 != high2); high1 >>= PIPE_FRAME_HIGH_SHIFT; pixel = low & PIPE_PIXEL_MASK; low >>= PIPE_FRAME_LOW_SHIFT; /* * The frame counter increments at beginning of active. * Cook up a vblank counter by also checking the pixel * counter against vblank start. */ return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff; } static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe) { struct drm_i915_private *dev_priv = to_i915(dev); return I915_READ(PIPE_FRMCOUNT_G4X(pipe)); } /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */ static int __intel_get_crtc_scanline(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); const struct drm_display_mode *mode = &crtc->base.hwmode; enum pipe pipe = crtc->pipe; int position, vtotal; vtotal = mode->crtc_vtotal; if (mode->flags & DRM_MODE_FLAG_INTERLACE) vtotal /= 2; if (IS_GEN2(dev_priv)) position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2; else position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; /* * On HSW, the DSL reg (0x70000) appears to return 0 if we * read it just before the start of vblank. So try it again * so we don't accidentally end up spanning a vblank frame * increment, causing the pipe_update_end() code to squak at us. * * The nature of this problem means we can't simply check the ISR * bit and return the vblank start value; nor can we use the scanline * debug register in the transcoder as it appears to have the same * problem. We may need to extend this to include other platforms, * but so far testing only shows the problem on HSW. */ if (HAS_DDI(dev_priv) && !position) { int i, temp; for (i = 0; i < 100; i++) { udelay(1); temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; if (temp != position) { position = temp; break; } } } /* * See update_scanline_offset() for the details on the * scanline_offset adjustment. */ return (position + crtc->scanline_offset) % vtotal; } static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe, unsigned int flags, int *vpos, int *hpos, ktime_t *stime, ktime_t *etime, const struct drm_display_mode *mode) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int position; int vbl_start, vbl_end, hsync_start, htotal, vtotal; bool in_vbl = true; int ret = 0; unsigned long irqflags; if (WARN_ON(!mode->crtc_clock)) { DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled " "pipe %c\n", pipe_name(pipe)); return 0; } htotal = mode->crtc_htotal; hsync_start = mode->crtc_hsync_start; vtotal = mode->crtc_vtotal; vbl_start = mode->crtc_vblank_start; vbl_end = mode->crtc_vblank_end; if (mode->flags & DRM_MODE_FLAG_INTERLACE) { vbl_start = DIV_ROUND_UP(vbl_start, 2); vbl_end /= 2; vtotal /= 2; } ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE; /* * Lock uncore.lock, as we will do multiple timing critical raw * register reads, potentially with preemption disabled, so the * following code must not block on uncore.lock. */ spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ /* Get optional system timestamp before query. */ if (stime) *stime = ktime_get(); if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) { /* No obvious pixelcount register. Only query vertical * scanout position from Display scan line register. */ position = __intel_get_crtc_scanline(intel_crtc); } else { /* Have access to pixelcount since start of frame. * We can split this into vertical and horizontal * scanout position. */ position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; /* convert to pixel counts */ vbl_start *= htotal; vbl_end *= htotal; vtotal *= htotal; /* * In interlaced modes, the pixel counter counts all pixels, * so one field will have htotal more pixels. In order to avoid * the reported position from jumping backwards when the pixel * counter is beyond the length of the shorter field, just * clamp the position the length of the shorter field. This * matches how the scanline counter based position works since * the scanline counter doesn't count the two half lines. */ if (position >= vtotal) position = vtotal - 1; /* * Start of vblank interrupt is triggered at start of hsync, * just prior to the first active line of vblank. However we * consider lines to start at the leading edge of horizontal * active. So, should we get here before we've crossed into * the horizontal active of the first line in vblank, we would * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, * always add htotal-hsync_start to the current pixel position. */ position = (position + htotal - hsync_start) % vtotal; } /* Get optional system timestamp after query. */ if (etime) *etime = ktime_get(); /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); in_vbl = position >= vbl_start && position < vbl_end; /* * While in vblank, position will be negative * counting up towards 0 at vbl_end. And outside * vblank, position will be positive counting * up since vbl_end. */ if (position >= vbl_start) position -= vbl_end; else position += vtotal - vbl_end; if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) { *vpos = position; *hpos = 0; } else { *vpos = position / htotal; *hpos = position - (*vpos * htotal); } /* In vblank? */ if (in_vbl) ret |= DRM_SCANOUTPOS_IN_VBLANK; return ret; } int intel_get_crtc_scanline(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); unsigned long irqflags; int position; spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); position = __intel_get_crtc_scanline(crtc); spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); return position; } static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe, int *max_error, struct timeval *vblank_time, unsigned flags) { struct drm_crtc *crtc; if (pipe >= INTEL_INFO(dev)->num_pipes) { DRM_ERROR("Invalid crtc %u\n", pipe); return -EINVAL; } /* Get drm_crtc to timestamp: */ crtc = intel_get_crtc_for_pipe(dev, pipe); if (crtc == NULL) { DRM_ERROR("Invalid crtc %u\n", pipe); return -EINVAL; } if (!crtc->hwmode.crtc_clock) { DRM_DEBUG_KMS("crtc %u is disabled\n", pipe); return -EBUSY; } /* Helper routine in DRM core does all the work: */ return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error, vblank_time, flags, &crtc->hwmode); } static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv) { u32 busy_up, busy_down, max_avg, min_avg; u8 new_delay; spin_lock(&mchdev_lock); I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS)); new_delay = dev_priv->ips.cur_delay; I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG); busy_up = I915_READ(RCPREVBSYTUPAVG); busy_down = I915_READ(RCPREVBSYTDNAVG); max_avg = I915_READ(RCBMAXAVG); min_avg = I915_READ(RCBMINAVG); /* Handle RCS change request from hw */ if (busy_up > max_avg) { if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay) new_delay = dev_priv->ips.cur_delay - 1; if (new_delay < dev_priv->ips.max_delay) new_delay = dev_priv->ips.max_delay; } else if (busy_down < min_avg) { if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay) new_delay = dev_priv->ips.cur_delay + 1; if (new_delay > dev_priv->ips.min_delay) new_delay = dev_priv->ips.min_delay; } if (ironlake_set_drps(dev_priv, new_delay)) dev_priv->ips.cur_delay = new_delay; spin_unlock(&mchdev_lock); return; } static void notify_ring(struct intel_engine_cs *engine) { smp_store_mb(engine->breadcrumbs.irq_posted, true); if (intel_engine_wakeup(engine)) trace_i915_gem_request_notify(engine); } static void vlv_c0_read(struct drm_i915_private *dev_priv, struct intel_rps_ei *ei) { ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP); ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT); ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT); } static bool vlv_c0_above(struct drm_i915_private *dev_priv, const struct intel_rps_ei *old, const struct intel_rps_ei *now, int threshold) { u64 time, c0; unsigned int mul = 100; if (old->cz_clock == 0) return false; if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH) mul <<= 8; time = now->cz_clock - old->cz_clock; time *= threshold * dev_priv->czclk_freq; /* Workload can be split between render + media, e.g. SwapBuffers * being blitted in X after being rendered in mesa. To account for * this we need to combine both engines into our activity counter. */ c0 = now->render_c0 - old->render_c0; c0 += now->media_c0 - old->media_c0; c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC; return c0 >= time; } void gen6_rps_reset_ei(struct drm_i915_private *dev_priv) { vlv_c0_read(dev_priv, &dev_priv->rps.down_ei); dev_priv->rps.up_ei = dev_priv->rps.down_ei; } static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir) { struct intel_rps_ei now; u32 events = 0; if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0) return 0; vlv_c0_read(dev_priv, &now); if (now.cz_clock == 0) return 0; if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) { if (!vlv_c0_above(dev_priv, &dev_priv->rps.down_ei, &now, dev_priv->rps.down_threshold)) events |= GEN6_PM_RP_DOWN_THRESHOLD; dev_priv->rps.down_ei = now; } if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) { if (vlv_c0_above(dev_priv, &dev_priv->rps.up_ei, &now, dev_priv->rps.up_threshold)) events |= GEN6_PM_RP_UP_THRESHOLD; dev_priv->rps.up_ei = now; } return events; } static bool any_waiters(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, dev_priv, id) if (intel_engine_has_waiter(engine)) return true; return false; } static void gen6_pm_rps_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, struct drm_i915_private, rps.work); bool client_boost; int new_delay, adj, min, max; u32 pm_iir; spin_lock_irq(&dev_priv->irq_lock); /* Speed up work cancelation during disabling rps interrupts. */ if (!dev_priv->rps.interrupts_enabled) { spin_unlock_irq(&dev_priv->irq_lock); return; } pm_iir = dev_priv->rps.pm_iir; dev_priv->rps.pm_iir = 0; /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */ gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events); client_boost = dev_priv->rps.client_boost; dev_priv->rps.client_boost = false; spin_unlock_irq(&dev_priv->irq_lock); /* Make sure we didn't queue anything we're not going to process. */ WARN_ON(pm_iir & ~dev_priv->pm_rps_events); if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost) return; mutex_lock(&dev_priv->rps.hw_lock); pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir); adj = dev_priv->rps.last_adj; new_delay = dev_priv->rps.cur_freq; min = dev_priv->rps.min_freq_softlimit; max = dev_priv->rps.max_freq_softlimit; if (client_boost || any_waiters(dev_priv)) max = dev_priv->rps.max_freq; if (client_boost && new_delay < dev_priv->rps.boost_freq) { new_delay = dev_priv->rps.boost_freq; adj = 0; } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { if (adj > 0) adj *= 2; else /* CHV needs even encode values */ adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1; /* * For better performance, jump directly * to RPe if we're below it. */ if (new_delay < dev_priv->rps.efficient_freq - adj) { new_delay = dev_priv->rps.efficient_freq; adj = 0; } } else if (client_boost || any_waiters(dev_priv)) { adj = 0; } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq) new_delay = dev_priv->rps.efficient_freq; else new_delay = dev_priv->rps.min_freq_softlimit; adj = 0; } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { if (adj < 0) adj *= 2; else /* CHV needs even encode values */ adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1; } else { /* unknown event */ adj = 0; } dev_priv->rps.last_adj = adj; /* sysfs frequency interfaces may have snuck in while servicing the * interrupt */ new_delay += adj; new_delay = clamp_t(int, new_delay, min, max); intel_set_rps(dev_priv, new_delay); mutex_unlock(&dev_priv->rps.hw_lock); } /** * ivybridge_parity_work - Workqueue called when a parity error interrupt * occurred. * @work: workqueue struct * * Doesn't actually do anything except notify userspace. As a consequence of * this event, userspace should try to remap the bad rows since statistically * it is likely the same row is more likely to go bad again. */ static void ivybridge_parity_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, struct drm_i915_private, l3_parity.error_work); u32 error_status, row, bank, subbank; char *parity_event[6]; uint32_t misccpctl; uint8_t slice = 0; /* We must turn off DOP level clock gating to access the L3 registers. * In order to prevent a get/put style interface, acquire struct mutex * any time we access those registers. */ mutex_lock(&dev_priv->drm.struct_mutex); /* If we've screwed up tracking, just let the interrupt fire again */ if (WARN_ON(!dev_priv->l3_parity.which_slice)) goto out; misccpctl = I915_READ(GEN7_MISCCPCTL); I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); POSTING_READ(GEN7_MISCCPCTL); while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { i915_reg_t reg; slice--; if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv))) break; dev_priv->l3_parity.which_slice &= ~(1<drm.primary->kdev->kobj, KOBJ_CHANGE, parity_event); DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", slice, row, bank, subbank); kfree(parity_event[4]); kfree(parity_event[3]); kfree(parity_event[2]); kfree(parity_event[1]); } I915_WRITE(GEN7_MISCCPCTL, misccpctl); out: WARN_ON(dev_priv->l3_parity.which_slice); spin_lock_irq(&dev_priv->irq_lock); gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); spin_unlock_irq(&dev_priv->irq_lock); mutex_unlock(&dev_priv->drm.struct_mutex); } static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv, u32 iir) { if (!HAS_L3_DPF(dev_priv)) return; spin_lock(&dev_priv->irq_lock); gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv)); spin_unlock(&dev_priv->irq_lock); iir &= GT_PARITY_ERROR(dev_priv); if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1) dev_priv->l3_parity.which_slice |= 1 << 1; if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT) dev_priv->l3_parity.which_slice |= 1 << 0; queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work); } static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir) { if (gt_iir & GT_RENDER_USER_INTERRUPT) notify_ring(dev_priv->engine[RCS]); if (gt_iir & ILK_BSD_USER_INTERRUPT) notify_ring(dev_priv->engine[VCS]); } static void snb_gt_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir) { if (gt_iir & GT_RENDER_USER_INTERRUPT) notify_ring(dev_priv->engine[RCS]); if (gt_iir & GT_BSD_USER_INTERRUPT) notify_ring(dev_priv->engine[VCS]); if (gt_iir & GT_BLT_USER_INTERRUPT) notify_ring(dev_priv->engine[BCS]); if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT | GT_BSD_CS_ERROR_INTERRUPT | GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir); if (gt_iir & GT_PARITY_ERROR(dev_priv)) ivybridge_parity_error_irq_handler(dev_priv, gt_iir); } static __always_inline void gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift) { if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) notify_ring(engine); if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) tasklet_schedule(&engine->irq_tasklet); } static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv, u32 master_ctl, u32 gt_iir[4]) { irqreturn_t ret = IRQ_NONE; if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0)); if (gt_iir[0]) { I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]); ret = IRQ_HANDLED; } else DRM_ERROR("The master control interrupt lied (GT0)!\n"); } if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) { gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1)); if (gt_iir[1]) { I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]); ret = IRQ_HANDLED; } else DRM_ERROR("The master control interrupt lied (GT1)!\n"); } if (master_ctl & GEN8_GT_VECS_IRQ) { gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3)); if (gt_iir[3]) { I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]); ret = IRQ_HANDLED; } else DRM_ERROR("The master control interrupt lied (GT3)!\n"); } if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) { gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2)); if (gt_iir[2] & (dev_priv->pm_rps_events | dev_priv->pm_guc_events)) { I915_WRITE_FW(GEN8_GT_IIR(2), gt_iir[2] & (dev_priv->pm_rps_events | dev_priv->pm_guc_events)); ret = IRQ_HANDLED; } else DRM_ERROR("The master control interrupt lied (PM)!\n"); } return ret; } static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir[4]) { if (gt_iir[0]) { gen8_cs_irq_handler(dev_priv->engine[RCS], gt_iir[0], GEN8_RCS_IRQ_SHIFT); gen8_cs_irq_handler(dev_priv->engine[BCS], gt_iir[0], GEN8_BCS_IRQ_SHIFT); } if (gt_iir[1]) { gen8_cs_irq_handler(dev_priv->engine[VCS], gt_iir[1], GEN8_VCS1_IRQ_SHIFT); gen8_cs_irq_handler(dev_priv->engine[VCS2], gt_iir[1], GEN8_VCS2_IRQ_SHIFT); } if (gt_iir[3]) gen8_cs_irq_handler(dev_priv->engine[VECS], gt_iir[3], GEN8_VECS_IRQ_SHIFT); if (gt_iir[2] & dev_priv->pm_rps_events) gen6_rps_irq_handler(dev_priv, gt_iir[2]); if (gt_iir[2] & dev_priv->pm_guc_events) gen9_guc_irq_handler(dev_priv, gt_iir[2]); } static bool bxt_port_hotplug_long_detect(enum port port, u32 val) { switch (port) { case PORT_A: return val & PORTA_HOTPLUG_LONG_DETECT; case PORT_B: return val & PORTB_HOTPLUG_LONG_DETECT; case PORT_C: return val & PORTC_HOTPLUG_LONG_DETECT; default: return false; } } static bool spt_port_hotplug2_long_detect(enum port port, u32 val) { switch (port) { case PORT_E: return val & PORTE_HOTPLUG_LONG_DETECT; default: return false; } } static bool spt_port_hotplug_long_detect(enum port port, u32 val) { switch (port) { case PORT_A: return val & PORTA_HOTPLUG_LONG_DETECT; case PORT_B: return val & PORTB_HOTPLUG_LONG_DETECT; case PORT_C: return val & PORTC_HOTPLUG_LONG_DETECT; case PORT_D: return val & PORTD_HOTPLUG_LONG_DETECT; default: return false; } } static bool ilk_port_hotplug_long_detect(enum port port, u32 val) { switch (port) { case PORT_A: return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT; default: return false; } } static bool pch_port_hotplug_long_detect(enum port port, u32 val) { switch (port) { case PORT_B: return val & PORTB_HOTPLUG_LONG_DETECT; case PORT_C: return val & PORTC_HOTPLUG_LONG_DETECT; case PORT_D: return val & PORTD_HOTPLUG_LONG_DETECT; default: return false; } } static bool i9xx_port_hotplug_long_detect(enum port port, u32 val) { switch (port) { case PORT_B: return val & PORTB_HOTPLUG_INT_LONG_PULSE; case PORT_C: return val & PORTC_HOTPLUG_INT_LONG_PULSE; case PORT_D: return val & PORTD_HOTPLUG_INT_LONG_PULSE; default: return false; } } /* * Get a bit mask of pins that have triggered, and which ones may be long. * This can be called multiple times with the same masks to accumulate * hotplug detection results from several registers. * * Note that the caller is expected to zero out the masks initially. */ static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask, u32 hotplug_trigger, u32 dig_hotplug_reg, const u32 hpd[HPD_NUM_PINS], bool long_pulse_detect(enum port port, u32 val)) { enum port port; int i; for_each_hpd_pin(i) { if ((hpd[i] & hotplug_trigger) == 0) continue; *pin_mask |= BIT(i); if (!intel_hpd_pin_to_port(i, &port)) continue; if (long_pulse_detect(port, dig_hotplug_reg)) *long_mask |= BIT(i); } DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n", hotplug_trigger, dig_hotplug_reg, *pin_mask); } static void gmbus_irq_handler(struct drm_i915_private *dev_priv) { wake_up_all(&dev_priv->gmbus_wait_queue); } static void dp_aux_irq_handler(struct drm_i915_private *dev_priv) { wake_up_all(&dev_priv->gmbus_wait_queue); } #if defined(CONFIG_DEBUG_FS) static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, enum pipe pipe, uint32_t crc0, uint32_t crc1, uint32_t crc2, uint32_t crc3, uint32_t crc4) { struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; struct intel_pipe_crc_entry *entry; int head, tail; spin_lock(&pipe_crc->lock); if (!pipe_crc->entries) { spin_unlock(&pipe_crc->lock); DRM_DEBUG_KMS("spurious interrupt\n"); return; } head = pipe_crc->head; tail = pipe_crc->tail; if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) { spin_unlock(&pipe_crc->lock); DRM_ERROR("CRC buffer overflowing\n"); return; } entry = &pipe_crc->entries[head]; entry->frame = dev_priv->drm.driver->get_vblank_counter(&dev_priv->drm, pipe); entry->crc[0] = crc0; entry->crc[1] = crc1; entry->crc[2] = crc2; entry->crc[3] = crc3; entry->crc[4] = crc4; head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1); pipe_crc->head = head; spin_unlock(&pipe_crc->lock); wake_up_interruptible(&pipe_crc->wq); } #else static inline void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, enum pipe pipe, uint32_t crc0, uint32_t crc1, uint32_t crc2, uint32_t crc3, uint32_t crc4) {} #endif static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, enum pipe pipe) { display_pipe_crc_irq_handler(dev_priv, pipe, I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 0, 0, 0, 0); } static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, enum pipe pipe) { display_pipe_crc_irq_handler(dev_priv, pipe, I915_READ(PIPE_CRC_RES_1_IVB(pipe)), I915_READ(PIPE_CRC_RES_2_IVB(pipe)), I915_READ(PIPE_CRC_RES_3_IVB(pipe)), I915_READ(PIPE_CRC_RES_4_IVB(pipe)), I915_READ(PIPE_CRC_RES_5_IVB(pipe))); } static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, enum pipe pipe) { uint32_t res1, res2; if (INTEL_GEN(dev_priv) >= 3) res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe)); else res1 = 0; if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe)); else res2 = 0; display_pipe_crc_irq_handler(dev_priv, pipe, I915_READ(PIPE_CRC_RES_RED(pipe)), I915_READ(PIPE_CRC_RES_GREEN(pipe)), I915_READ(PIPE_CRC_RES_BLUE(pipe)), res1, res2); } /* The RPS events need forcewake, so we add them to a work queue and mask their * IMR bits until the work is done. Other interrupts can be processed without * the work queue. */ static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir) { if (pm_iir & dev_priv->pm_rps_events) { spin_lock(&dev_priv->irq_lock); gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events); if (dev_priv->rps.interrupts_enabled) { dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events; schedule_work(&dev_priv->rps.work); } spin_unlock(&dev_priv->irq_lock); } if (INTEL_INFO(dev_priv)->gen >= 8) return; if (HAS_VEBOX(dev_priv)) { if (pm_iir & PM_VEBOX_USER_INTERRUPT) notify_ring(dev_priv->engine[VECS]); if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir); } } static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir) { if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) { /* Sample the log buffer flush related bits & clear them out now * itself from the message identity register to minimize the * probability of losing a flush interrupt, when there are back * to back flush interrupts. * There can be a new flush interrupt, for different log buffer * type (like for ISR), whilst Host is handling one (for DPC). * Since same bit is used in message register for ISR & DPC, it * could happen that GuC sets the bit for 2nd interrupt but Host * clears out the bit on handling the 1st interrupt. */ u32 msg, flush; msg = I915_READ(SOFT_SCRATCH(15)); flush = msg & (GUC2HOST_MSG_CRASH_DUMP_POSTED | GUC2HOST_MSG_FLUSH_LOG_BUFFER); if (flush) { /* Clear the message bits that are handled */ I915_WRITE(SOFT_SCRATCH(15), msg & ~flush); /* Handle flush interrupt in bottom half */ queue_work(dev_priv->guc.log.flush_wq, &dev_priv->guc.log.flush_work); } else { /* Not clearing of unhandled event bits won't result in * re-triggering of the interrupt. */ } } } static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe) { bool ret; ret = drm_handle_vblank(&dev_priv->drm, pipe); if (ret) intel_finish_page_flip_mmio(dev_priv, pipe); return ret; } static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv, u32 iir, u32 pipe_stats[I915_MAX_PIPES]) { int pipe; spin_lock(&dev_priv->irq_lock); if (!dev_priv->display_irqs_enabled) { spin_unlock(&dev_priv->irq_lock); return; } for_each_pipe(dev_priv, pipe) { i915_reg_t reg; u32 mask, iir_bit = 0; /* * PIPESTAT bits get signalled even when the interrupt is * disabled with the mask bits, and some of the status bits do * not generate interrupts at all (like the underrun bit). Hence * we need to be careful that we only handle what we want to * handle. */ /* fifo underruns are filterered in the underrun handler. */ mask = PIPE_FIFO_UNDERRUN_STATUS; switch (pipe) { case PIPE_A: iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT; break; case PIPE_B: iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; break; case PIPE_C: iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; break; } if (iir & iir_bit) mask |= dev_priv->pipestat_irq_mask[pipe]; if (!mask) continue; reg = PIPESTAT(pipe); mask |= PIPESTAT_INT_ENABLE_MASK; pipe_stats[pipe] = I915_READ(reg) & mask; /* * Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS | PIPESTAT_INT_STATUS_MASK)) I915_WRITE(reg, pipe_stats[pipe]); } spin_unlock(&dev_priv->irq_lock); } static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv, u32 pipe_stats[I915_MAX_PIPES]) { enum pipe pipe; for_each_pipe(dev_priv, pipe) { if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS && intel_pipe_handle_vblank(dev_priv, pipe)) intel_check_page_flip(dev_priv, pipe); if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) intel_finish_page_flip_cs(dev_priv, pipe); if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev_priv, pipe); if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); } if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) gmbus_irq_handler(dev_priv); } static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv) { u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT); if (hotplug_status) I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); return hotplug_status; } static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 hotplug_status) { u32 pin_mask = 0, long_mask = 0; if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X; if (hotplug_trigger) { intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, hotplug_trigger, hpd_status_g4x, i9xx_port_hotplug_long_detect); intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); } if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X) dp_aux_irq_handler(dev_priv); } else { u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; if (hotplug_trigger) { intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, hotplug_trigger, hpd_status_i915, i9xx_port_hotplug_long_detect); intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); } } } static irqreturn_t valleyview_irq_handler(int irq, void *arg) { struct drm_device *dev = arg; struct drm_i915_private *dev_priv = to_i915(dev); irqreturn_t ret = IRQ_NONE; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(dev_priv); do { u32 iir, gt_iir, pm_iir; u32 pipe_stats[I915_MAX_PIPES] = {}; u32 hotplug_status = 0; u32 ier = 0; gt_iir = I915_READ(GTIIR); pm_iir = I915_READ(GEN6_PMIIR); iir = I915_READ(VLV_IIR); if (gt_iir == 0 && pm_iir == 0 && iir == 0) break; ret = IRQ_HANDLED; /* * Theory on interrupt generation, based on empirical evidence: * * x = ((VLV_IIR & VLV_IER) || * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) && * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE))); * * A CPU interrupt will only be raised when 'x' has a 0->1 edge. * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to * guarantee the CPU interrupt will be raised again even if we * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR * bits this time around. */ I915_WRITE(VLV_MASTER_IER, 0); ier = I915_READ(VLV_IER); I915_WRITE(VLV_IER, 0); if (gt_iir) I915_WRITE(GTIIR, gt_iir); if (pm_iir) I915_WRITE(GEN6_PMIIR, pm_iir); if (iir & I915_DISPLAY_PORT_INTERRUPT) hotplug_status = i9xx_hpd_irq_ack(dev_priv); /* Call regardless, as some status bits might not be * signalled in iir */ valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats); /* * VLV_IIR is single buffered, and reflects the level * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. */ if (iir) I915_WRITE(VLV_IIR, iir); I915_WRITE(VLV_IER, ier); I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); POSTING_READ(VLV_MASTER_IER); if (gt_iir) snb_gt_irq_handler(dev_priv, gt_iir); if (pm_iir) gen6_rps_irq_handler(dev_priv, pm_iir); if (hotplug_status) i9xx_hpd_irq_handler(dev_priv, hotplug_status); valleyview_pipestat_irq_handler(dev_priv, pipe_stats); } while (0); enable_rpm_wakeref_asserts(dev_priv); return ret; } static irqreturn_t cherryview_irq_handler(int irq, void *arg) { struct drm_device *dev = arg; struct drm_i915_private *dev_priv = to_i915(dev); irqreturn_t ret = IRQ_NONE; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(dev_priv); do { u32 master_ctl, iir; u32 gt_iir[4] = {}; u32 pipe_stats[I915_MAX_PIPES] = {}; u32 hotplug_status = 0; u32 ier = 0; master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; iir = I915_READ(VLV_IIR); if (master_ctl == 0 && iir == 0) break; ret = IRQ_HANDLED; /* * Theory on interrupt generation, based on empirical evidence: * * x = ((VLV_IIR & VLV_IER) || * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) && * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL))); * * A CPU interrupt will only be raised when 'x' has a 0->1 edge. * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to * guarantee the CPU interrupt will be raised again even if we * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL * bits this time around. */ I915_WRITE(GEN8_MASTER_IRQ, 0); ier = I915_READ(VLV_IER); I915_WRITE(VLV_IER, 0); gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); if (iir & I915_DISPLAY_PORT_INTERRUPT) hotplug_status = i9xx_hpd_irq_ack(dev_priv); /* Call regardless, as some status bits might not be * signalled in iir */ valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats); /* * VLV_IIR is single buffered, and reflects the level * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. */ if (iir) I915_WRITE(VLV_IIR, iir); I915_WRITE(VLV_IER, ier); I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); POSTING_READ(GEN8_MASTER_IRQ); gen8_gt_irq_handler(dev_priv, gt_iir); if (hotplug_status) i9xx_hpd_irq_handler(dev_priv, hotplug_status); valleyview_pipestat_irq_handler(dev_priv, pipe_stats); } while (0); enable_rpm_wakeref_asserts(dev_priv); return ret; } static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 hotplug_trigger, const u32 hpd[HPD_NUM_PINS]) { u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; /* * Somehow the PCH doesn't seem to really ack the interrupt to the CPU * unless we touch the hotplug register, even if hotplug_trigger is * zero. Not acking leads to "The master control interrupt lied (SDE)!" * errors. */ dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); if (!hotplug_trigger) { u32 mask = PORTA_HOTPLUG_STATUS_MASK | PORTD_HOTPLUG_STATUS_MASK | PORTC_HOTPLUG_STATUS_MASK | PORTB_HOTPLUG_STATUS_MASK; dig_hotplug_reg &= ~mask; } I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); if (!hotplug_trigger) return; intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, dig_hotplug_reg, hpd, pch_port_hotplug_long_detect); intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); } static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) { int pipe; u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx); if (pch_iir & SDE_AUDIO_POWER_MASK) { int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> SDE_AUDIO_POWER_SHIFT); DRM_DEBUG_DRIVER("PCH audio power change on port %d\n", port_name(port)); } if (pch_iir & SDE_AUX_MASK) dp_aux_irq_handler(dev_priv); if (pch_iir & SDE_GMBUS) gmbus_irq_handler(dev_priv); if (pch_iir & SDE_AUDIO_HDCP_MASK) DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n"); if (pch_iir & SDE_AUDIO_TRANS_MASK) DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n"); if (pch_iir & SDE_POISON) DRM_ERROR("PCH poison interrupt\n"); if (pch_iir & SDE_FDI_MASK) for_each_pipe(dev_priv, pipe) DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", pipe_name(pipe), I915_READ(FDI_RX_IIR(pipe))); if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n"); if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n"); if (pch_iir & SDE_TRANSA_FIFO_UNDER) intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A); if (pch_iir & SDE_TRANSB_FIFO_UNDER) intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B); } static void ivb_err_int_handler(struct drm_i915_private *dev_priv) { u32 err_int = I915_READ(GEN7_ERR_INT); enum pipe pipe; if (err_int & ERR_INT_POISON) DRM_ERROR("Poison interrupt\n"); for_each_pipe(dev_priv, pipe) { if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { if (IS_IVYBRIDGE(dev_priv)) ivb_pipe_crc_irq_handler(dev_priv, pipe); else hsw_pipe_crc_irq_handler(dev_priv, pipe); } } I915_WRITE(GEN7_ERR_INT, err_int); } static void cpt_serr_int_handler(struct drm_i915_private *dev_priv) { u32 serr_int = I915_READ(SERR_INT); if (serr_int & SERR_INT_POISON) DRM_ERROR("PCH poison interrupt\n"); if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN) intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A); if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN) intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B); if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN) intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C); I915_WRITE(SERR_INT, serr_int); } static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) { int pipe; u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt); if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> SDE_AUDIO_POWER_SHIFT_CPT); DRM_DEBUG_DRIVER("PCH audio power change on port %c\n", port_name(port)); } if (pch_iir & SDE_AUX_MASK_CPT) dp_aux_irq_handler(dev_priv); if (pch_iir & SDE_GMBUS_CPT) gmbus_irq_handler(dev_priv); if (pch_iir & SDE_AUDIO_CP_REQ_CPT) DRM_DEBUG_DRIVER("Audio CP request interrupt\n"); if (pch_iir & SDE_AUDIO_CP_CHG_CPT) DRM_DEBUG_DRIVER("Audio CP change interrupt\n"); if (pch_iir & SDE_FDI_MASK_CPT) for_each_pipe(dev_priv, pipe) DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", pipe_name(pipe), I915_READ(FDI_RX_IIR(pipe))); if (pch_iir & SDE_ERROR_CPT) cpt_serr_int_handler(dev_priv); } static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) { u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT & ~SDE_PORTE_HOTPLUG_SPT; u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT; u32 pin_mask = 0, long_mask = 0; if (hotplug_trigger) { u32 dig_hotplug_reg; dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, dig_hotplug_reg, hpd_spt, spt_port_hotplug_long_detect); } if (hotplug2_trigger) { u32 dig_hotplug_reg; dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2); I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg); intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger, dig_hotplug_reg, hpd_spt, spt_port_hotplug2_long_detect); } if (pin_mask) intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); if (pch_iir & SDE_GMBUS_CPT) gmbus_irq_handler(dev_priv); } static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 hotplug_trigger, const u32 hpd[HPD_NUM_PINS]) { u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg); intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, dig_hotplug_reg, hpd, ilk_port_hotplug_long_detect); intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); } static void ilk_display_irq_handler(struct drm_i915_private *dev_priv, u32 de_iir) { enum pipe pipe; u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG; if (hotplug_trigger) ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk); if (de_iir & DE_AUX_CHANNEL_A) dp_aux_irq_handler(dev_priv); if (de_iir & DE_GSE) intel_opregion_asle_intr(dev_priv); if (de_iir & DE_POISON) DRM_ERROR("Poison interrupt\n"); for_each_pipe(dev_priv, pipe) { if (de_iir & DE_PIPE_VBLANK(pipe) && intel_pipe_handle_vblank(dev_priv, pipe)) intel_check_page_flip(dev_priv, pipe); if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); if (de_iir & DE_PIPE_CRC_DONE(pipe)) i9xx_pipe_crc_irq_handler(dev_priv, pipe); /* plane/pipes map 1:1 on ilk+ */ if (de_iir & DE_PLANE_FLIP_DONE(pipe)) intel_finish_page_flip_cs(dev_priv, pipe); } /* check event from PCH */ if (de_iir & DE_PCH_EVENT) { u32 pch_iir = I915_READ(SDEIIR); if (HAS_PCH_CPT(dev_priv)) cpt_irq_handler(dev_priv, pch_iir); else ibx_irq_handler(dev_priv, pch_iir); /* should clear PCH hotplug event before clear CPU irq */ I915_WRITE(SDEIIR, pch_iir); } if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT) ironlake_rps_change_irq_handler(dev_priv); } static void ivb_display_irq_handler(struct drm_i915_private *dev_priv, u32 de_iir) { enum pipe pipe; u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB; if (hotplug_trigger) ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb); if (de_iir & DE_ERR_INT_IVB) ivb_err_int_handler(dev_priv); if (de_iir & DE_AUX_CHANNEL_A_IVB) dp_aux_irq_handler(dev_priv); if (de_iir & DE_GSE_IVB) intel_opregion_asle_intr(dev_priv); for_each_pipe(dev_priv, pipe) { if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) && intel_pipe_handle_vblank(dev_priv, pipe)) intel_check_page_flip(dev_priv, pipe); /* plane/pipes map 1:1 on ilk+ */ if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) intel_finish_page_flip_cs(dev_priv, pipe); } /* check event from PCH */ if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) { u32 pch_iir = I915_READ(SDEIIR); cpt_irq_handler(dev_priv, pch_iir); /* clear PCH hotplug event before clear CPU irq */ I915_WRITE(SDEIIR, pch_iir); } } /* * To handle irqs with the minimum potential races with fresh interrupts, we: * 1 - Disable Master Interrupt Control. * 2 - Find the source(s) of the interrupt. * 3 - Clear the Interrupt Identity bits (IIR). * 4 - Process the interrupt(s) that had bits set in the IIRs. * 5 - Re-enable Master Interrupt Control. */ static irqreturn_t ironlake_irq_handler(int irq, void *arg) { struct drm_device *dev = arg; struct drm_i915_private *dev_priv = to_i915(dev); u32 de_iir, gt_iir, de_ier, sde_ier = 0; irqreturn_t ret = IRQ_NONE; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(dev_priv); /* disable master interrupt before clearing iir */ de_ier = I915_READ(DEIER); I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); POSTING_READ(DEIER); /* Disable south interrupts. We'll only write to SDEIIR once, so further * interrupts will will be stored on its back queue, and then we'll be * able to process them after we restore SDEIER (as soon as we restore * it, we'll get an interrupt if SDEIIR still has something to process * due to its back queue). */ if (!HAS_PCH_NOP(dev_priv)) { sde_ier = I915_READ(SDEIER); I915_WRITE(SDEIER, 0); POSTING_READ(SDEIER); } /* Find, clear, then process each source of interrupt */ gt_iir = I915_READ(GTIIR); if (gt_iir) { I915_WRITE(GTIIR, gt_iir); ret = IRQ_HANDLED; if (INTEL_GEN(dev_priv) >= 6) snb_gt_irq_handler(dev_priv, gt_iir); else ilk_gt_irq_handler(dev_priv, gt_iir); } de_iir = I915_READ(DEIIR); if (de_iir) { I915_WRITE(DEIIR, de_iir); ret = IRQ_HANDLED; if (INTEL_GEN(dev_priv) >= 7) ivb_display_irq_handler(dev_priv, de_iir); else ilk_display_irq_handler(dev_priv, de_iir); } if (INTEL_GEN(dev_priv) >= 6) { u32 pm_iir = I915_READ(GEN6_PMIIR); if (pm_iir) { I915_WRITE(GEN6_PMIIR, pm_iir); ret = IRQ_HANDLED; gen6_rps_irq_handler(dev_priv, pm_iir); } } I915_WRITE(DEIER, de_ier); POSTING_READ(DEIER); if (!HAS_PCH_NOP(dev_priv)) { I915_WRITE(SDEIER, sde_ier); POSTING_READ(SDEIER); } /* IRQs are synced during runtime_suspend, we don't require a wakeref */ enable_rpm_wakeref_asserts(dev_priv); return ret; } static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 hotplug_trigger, const u32 hpd[HPD_NUM_PINS]) { u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger, dig_hotplug_reg, hpd, bxt_port_hotplug_long_detect); intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); } static irqreturn_t gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl) { irqreturn_t ret = IRQ_NONE; u32 iir; enum pipe pipe; if (master_ctl & GEN8_DE_MISC_IRQ) { iir = I915_READ(GEN8_DE_MISC_IIR); if (iir) { I915_WRITE(GEN8_DE_MISC_IIR, iir); ret = IRQ_HANDLED; if (iir & GEN8_DE_MISC_GSE) intel_opregion_asle_intr(dev_priv); else DRM_ERROR("Unexpected DE Misc interrupt\n"); } else DRM_ERROR("The master control interrupt lied (DE MISC)!\n"); } if (master_ctl & GEN8_DE_PORT_IRQ) { iir = I915_READ(GEN8_DE_PORT_IIR); if (iir) { u32 tmp_mask; bool found = false; I915_WRITE(GEN8_DE_PORT_IIR, iir); ret = IRQ_HANDLED; tmp_mask = GEN8_AUX_CHANNEL_A; if (INTEL_INFO(dev_priv)->gen >= 9) tmp_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C | GEN9_AUX_CHANNEL_D; if (iir & tmp_mask) { dp_aux_irq_handler(dev_priv); found = true; } if (IS_BROXTON(dev_priv)) { tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK; if (tmp_mask) { bxt_hpd_irq_handler(dev_priv, tmp_mask, hpd_bxt); found = true; } } else if (IS_BROADWELL(dev_priv)) { tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG; if (tmp_mask) { ilk_hpd_irq_handler(dev_priv, tmp_mask, hpd_bdw); found = true; } } if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) { gmbus_irq_handler(dev_priv); found = true; } if (!found) DRM_ERROR("Unexpected DE Port interrupt\n"); } else DRM_ERROR("The master control interrupt lied (DE PORT)!\n"); } for_each_pipe(dev_priv, pipe) { u32 flip_done, fault_errors; if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) continue; iir = I915_READ(GEN8_DE_PIPE_IIR(pipe)); if (!iir) { DRM_ERROR("The master control interrupt lied (DE PIPE)!\n"); continue; } ret = IRQ_HANDLED; I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir); if (iir & GEN8_PIPE_VBLANK && intel_pipe_handle_vblank(dev_priv, pipe)) intel_check_page_flip(dev_priv, pipe); flip_done = iir; if (INTEL_INFO(dev_priv)->gen >= 9) flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE; else flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE; if (flip_done) intel_finish_page_flip_cs(dev_priv, pipe); if (iir & GEN8_PIPE_CDCLK_CRC_DONE) hsw_pipe_crc_irq_handler(dev_priv, pipe); if (iir & GEN8_PIPE_FIFO_UNDERRUN) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); fault_errors = iir; if (INTEL_INFO(dev_priv)->gen >= 9) fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS; else fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS; if (fault_errors) DRM_ERROR("Fault errors on pipe %c\n: 0x%08x", pipe_name(pipe), fault_errors); } if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) && master_ctl & GEN8_DE_PCH_IRQ) { /* * FIXME(BDW): Assume for now that the new interrupt handling * scheme also closed the SDE interrupt handling race we've seen * on older pch-split platforms. But this needs testing. */ iir = I915_READ(SDEIIR); if (iir) { I915_WRITE(SDEIIR, iir); ret = IRQ_HANDLED; if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv)) spt_irq_handler(dev_priv, iir); else cpt_irq_handler(dev_priv, iir); } else { /* * Like on previous PCH there seems to be something * fishy going on with forwarding PCH interrupts. */ DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n"); } } return ret; } static irqreturn_t gen8_irq_handler(int irq, void *arg) { struct drm_device *dev = arg; struct drm_i915_private *dev_priv = to_i915(dev); u32 master_ctl; u32 gt_iir[4] = {}; irqreturn_t ret; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; master_ctl = I915_READ_FW(GEN8_MASTER_IRQ); master_ctl &= ~GEN8_MASTER_IRQ_CONTROL; if (!master_ctl) return IRQ_NONE; I915_WRITE_FW(GEN8_MASTER_IRQ, 0); /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(dev_priv); /* Find, clear, then process each source of interrupt */ ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir); gen8_gt_irq_handler(dev_priv, gt_iir); ret |= gen8_de_irq_handler(dev_priv, master_ctl); I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); POSTING_READ_FW(GEN8_MASTER_IRQ); enable_rpm_wakeref_asserts(dev_priv); return ret; } static void i915_error_wake_up(struct drm_i915_private *dev_priv) { /* * Notify all waiters for GPU completion events that reset state has * been changed, and that they need to restart their wait after * checking for potential errors (and bail out to drop locks if there is * a gpu reset pending so that i915_error_work_func can acquire them). */ /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */ wake_up_all(&dev_priv->gpu_error.wait_queue); /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */ wake_up_all(&dev_priv->pending_flip_queue); } /** * i915_reset_and_wakeup - do process context error handling work * @dev_priv: i915 device private * * Fire an error uevent so userspace can see that a hang or error * was detected. */ static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv) { struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj; char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); DRM_DEBUG_DRIVER("resetting chip\n"); kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); /* * In most cases it's guaranteed that we get here with an RPM * reference held, for example because there is a pending GPU * request that won't finish until the reset is done. This * isn't the case at least when we get here by doing a * simulated reset via debugs, so get an RPM reference. */ intel_runtime_pm_get(dev_priv); intel_prepare_reset(dev_priv); do { /* * All state reset _must_ be completed before we update the * reset counter, for otherwise waiters might miss the reset * pending state and not properly drop locks, resulting in * deadlocks with the reset work. */ if (mutex_trylock(&dev_priv->drm.struct_mutex)) { i915_reset(dev_priv); mutex_unlock(&dev_priv->drm.struct_mutex); } /* We need to wait for anyone holding the lock to wakeup */ } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags, I915_RESET_IN_PROGRESS, TASK_UNINTERRUPTIBLE, HZ)); intel_finish_reset(dev_priv); intel_runtime_pm_put(dev_priv); if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags)) kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); /* * Note: The wake_up also serves as a memory barrier so that * waiters see the updated value of the dev_priv->gpu_error. */ wake_up_all(&dev_priv->gpu_error.reset_queue); } static inline void i915_err_print_instdone(struct drm_i915_private *dev_priv, struct intel_instdone *instdone) { int slice; int subslice; pr_err(" INSTDONE: 0x%08x\n", instdone->instdone); if (INTEL_GEN(dev_priv) <= 3) return; pr_err(" SC_INSTDONE: 0x%08x\n", instdone->slice_common); if (INTEL_GEN(dev_priv) <= 6) return; for_each_instdone_slice_subslice(dev_priv, slice, subslice) pr_err(" SAMPLER_INSTDONE[%d][%d]: 0x%08x\n", slice, subslice, instdone->sampler[slice][subslice]); for_each_instdone_slice_subslice(dev_priv, slice, subslice) pr_err(" ROW_INSTDONE[%d][%d]: 0x%08x\n", slice, subslice, instdone->row[slice][subslice]); } static void i915_clear_error_registers(struct drm_i915_private *dev_priv) { u32 eir; if (!IS_GEN2(dev_priv)) I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER)); if (INTEL_GEN(dev_priv) < 4) I915_WRITE(IPEIR, I915_READ(IPEIR)); else I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965)); I915_WRITE(EIR, I915_READ(EIR)); eir = I915_READ(EIR); if (eir) { /* * some errors might have become stuck, * mask them. */ DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); I915_WRITE(EMR, I915_READ(EMR) | eir); I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); } } /** * i915_handle_error - handle a gpu error * @dev_priv: i915 device private * @engine_mask: mask representing engines that are hung * Do some basic checking of register state at error time and * dump it to the syslog. Also call i915_capture_error_state() to make * sure we get a record and make it available in debugfs. Fire a uevent * so userspace knows something bad happened (should trigger collection * of a ring dump etc.). * @fmt: Error message format string */ void i915_handle_error(struct drm_i915_private *dev_priv, u32 engine_mask, const char *fmt, ...) { va_list args; char error_msg[80]; va_start(args, fmt); vscnprintf(error_msg, sizeof(error_msg), fmt, args); va_end(args); i915_capture_error_state(dev_priv, engine_mask, error_msg); i915_clear_error_registers(dev_priv); if (!engine_mask) return; if (test_and_set_bit(I915_RESET_IN_PROGRESS, &dev_priv->gpu_error.flags)) return; /* * Wakeup waiting processes so that the reset function * i915_reset_and_wakeup doesn't deadlock trying to grab * various locks. By bumping the reset counter first, the woken * processes will see a reset in progress and back off, * releasing their locks and then wait for the reset completion. * We must do this for _all_ gpu waiters that might hold locks * that the reset work needs to acquire. * * Note: The wake_up also provides a memory barrier to ensure that the * waiters see the updated value of the reset flags. */ i915_error_wake_up(dev_priv); i915_reset_and_wakeup(dev_priv); } /* Called from drm generic code, passed 'crtc' which * we use as a pipe index */ static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe) { struct drm_i915_private *dev_priv = to_i915(dev); unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe) { struct drm_i915_private *dev_priv = to_i915(dev); unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_enable_pipestat(dev_priv, pipe, PIPE_START_VBLANK_INTERRUPT_STATUS); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe) { struct drm_i915_private *dev_priv = to_i915(dev); unsigned long irqflags; uint32_t bit = INTEL_GEN(dev_priv) >= 7 ? DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); spin_lock_irqsave(&dev_priv->irq_lock, irqflags); ilk_enable_display_irq(dev_priv, bit); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe) { struct drm_i915_private *dev_priv = to_i915(dev); unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } /* Called from drm generic code, passed 'crtc' which * we use as a pipe index */ static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe) { struct drm_i915_private *dev_priv = to_i915(dev); unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe) { struct drm_i915_private *dev_priv = to_i915(dev); unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_disable_pipestat(dev_priv, pipe, PIPE_START_VBLANK_INTERRUPT_STATUS); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe) { struct drm_i915_private *dev_priv = to_i915(dev); unsigned long irqflags; uint32_t bit = INTEL_GEN(dev_priv) >= 7 ? DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); spin_lock_irqsave(&dev_priv->irq_lock, irqflags); ilk_disable_display_irq(dev_priv, bit); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe) { struct drm_i915_private *dev_priv = to_i915(dev); unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static bool ipehr_is_semaphore_wait(struct intel_engine_cs *engine, u32 ipehr) { if (INTEL_GEN(engine->i915) >= 8) { return (ipehr >> 23) == 0x1c; } else { ipehr &= ~MI_SEMAPHORE_SYNC_MASK; return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER); } } static struct intel_engine_cs * semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr, u64 offset) { struct drm_i915_private *dev_priv = engine->i915; struct intel_engine_cs *signaller; enum intel_engine_id id; if (INTEL_GEN(dev_priv) >= 8) { for_each_engine(signaller, dev_priv, id) { if (engine == signaller) continue; if (offset == signaller->semaphore.signal_ggtt[engine->hw_id]) return signaller; } } else { u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK; for_each_engine(signaller, dev_priv, id) { if(engine == signaller) continue; if (sync_bits == signaller->semaphore.mbox.wait[engine->hw_id]) return signaller; } } DRM_DEBUG_DRIVER("No signaller ring found for %s, ipehr 0x%08x, offset 0x%016llx\n", engine->name, ipehr, offset); return ERR_PTR(-ENODEV); } static struct intel_engine_cs * semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno) { struct drm_i915_private *dev_priv = engine->i915; void __iomem *vaddr; u32 cmd, ipehr, head; u64 offset = 0; int i, backwards; /* * This function does not support execlist mode - any attempt to * proceed further into this function will result in a kernel panic * when dereferencing ring->buffer, which is not set up in execlist * mode. * * The correct way of doing it would be to derive the currently * executing ring buffer from the current context, which is derived * from the currently running request. Unfortunately, to get the * current request we would have to grab the struct_mutex before doing * anything else, which would be ill-advised since some other thread * might have grabbed it already and managed to hang itself, causing * the hang checker to deadlock. * * Therefore, this function does not support execlist mode in its * current form. Just return NULL and move on. */ if (engine->buffer == NULL) return NULL; ipehr = I915_READ(RING_IPEHR(engine->mmio_base)); if (!ipehr_is_semaphore_wait(engine, ipehr)) return NULL; /* * HEAD is likely pointing to the dword after the actual command, * so scan backwards until we find the MBOX. But limit it to just 3 * or 4 dwords depending on the semaphore wait command size. * Note that we don't care about ACTHD here since that might * point at at batch, and semaphores are always emitted into the * ringbuffer itself. */ head = I915_READ_HEAD(engine) & HEAD_ADDR; backwards = (INTEL_GEN(dev_priv) >= 8) ? 5 : 4; vaddr = (void __iomem *)engine->buffer->vaddr; for (i = backwards; i; --i) { /* * Be paranoid and presume the hw has gone off into the wild - * our ring is smaller than what the hardware (and hence * HEAD_ADDR) allows. Also handles wrap-around. */ head &= engine->buffer->size - 1; /* This here seems to blow up */ cmd = ioread32(vaddr + head); if (cmd == ipehr) break; head -= 4; } if (!i) return NULL; *seqno = ioread32(vaddr + head + 4) + 1; if (INTEL_GEN(dev_priv) >= 8) { offset = ioread32(vaddr + head + 12); offset <<= 32; offset |= ioread32(vaddr + head + 8); } return semaphore_wait_to_signaller_ring(engine, ipehr, offset); } static int semaphore_passed(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; struct intel_engine_cs *signaller; u32 seqno; engine->hangcheck.deadlock++; signaller = semaphore_waits_for(engine, &seqno); if (signaller == NULL) return -1; if (IS_ERR(signaller)) return 0; /* Prevent pathological recursion due to driver bugs */ if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES) return -1; if (i915_seqno_passed(intel_engine_get_seqno(signaller), seqno)) return 1; /* cursory check for an unkickable deadlock */ if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0) return -1; return 0; } static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, dev_priv, id) engine->hangcheck.deadlock = 0; } static bool instdone_unchanged(u32 current_instdone, u32 *old_instdone) { u32 tmp = current_instdone | *old_instdone; bool unchanged; unchanged = tmp == *old_instdone; *old_instdone |= tmp; return unchanged; } static bool subunits_stuck(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; struct intel_instdone instdone; struct intel_instdone *accu_instdone = &engine->hangcheck.instdone; bool stuck; int slice; int subslice; if (engine->id != RCS) return true; intel_engine_get_instdone(engine, &instdone); /* There might be unstable subunit states even when * actual head is not moving. Filter out the unstable ones by * accumulating the undone -> done transitions and only * consider those as progress. */ stuck = instdone_unchanged(instdone.instdone, &accu_instdone->instdone); stuck &= instdone_unchanged(instdone.slice_common, &accu_instdone->slice_common); for_each_instdone_slice_subslice(dev_priv, slice, subslice) { stuck &= instdone_unchanged(instdone.sampler[slice][subslice], &accu_instdone->sampler[slice][subslice]); stuck &= instdone_unchanged(instdone.row[slice][subslice], &accu_instdone->row[slice][subslice]); } return stuck; } static enum intel_engine_hangcheck_action head_stuck(struct intel_engine_cs *engine, u64 acthd) { if (acthd != engine->hangcheck.acthd) { /* Clear subunit states on head movement */ memset(&engine->hangcheck.instdone, 0, sizeof(engine->hangcheck.instdone)); return HANGCHECK_ACTIVE; } if (!subunits_stuck(engine)) return HANGCHECK_ACTIVE; return HANGCHECK_HUNG; } static enum intel_engine_hangcheck_action engine_stuck(struct intel_engine_cs *engine, u64 acthd) { struct drm_i915_private *dev_priv = engine->i915; enum intel_engine_hangcheck_action ha; u32 tmp; ha = head_stuck(engine, acthd); if (ha != HANGCHECK_HUNG) return ha; if (IS_GEN2(dev_priv)) return HANGCHECK_HUNG; /* Is the chip hanging on a WAIT_FOR_EVENT? * If so we can simply poke the RB_WAIT bit * and break the hang. This should work on * all but the second generation chipsets. */ tmp = I915_READ_CTL(engine); if (tmp & RING_WAIT) { i915_handle_error(dev_priv, 0, "Kicking stuck wait on %s", engine->name); I915_WRITE_CTL(engine, tmp); return HANGCHECK_KICK; } if (INTEL_GEN(dev_priv) >= 6 && tmp & RING_WAIT_SEMAPHORE) { switch (semaphore_passed(engine)) { default: return HANGCHECK_HUNG; case 1: i915_handle_error(dev_priv, 0, "Kicking stuck semaphore on %s", engine->name); I915_WRITE_CTL(engine, tmp); return HANGCHECK_KICK; case 0: return HANGCHECK_WAIT; } } return HANGCHECK_HUNG; } /* * This is called when the chip hasn't reported back with completed * batchbuffers in a long time. We keep track per ring seqno progress and * if there are no progress, hangcheck score for that ring is increased. * Further, acthd is inspected to see if the ring is stuck. On stuck case * we kick the ring. If we see no progress on three subsequent calls * we assume chip is wedged and try to fix it by resetting the chip. */ static void i915_hangcheck_elapsed(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), gpu_error.hangcheck_work.work); struct intel_engine_cs *engine; enum intel_engine_id id; unsigned int hung = 0, stuck = 0; int busy_count = 0; #define BUSY 1 #define KICK 5 #define HUNG 20 #define ACTIVE_DECAY 15 if (!i915.enable_hangcheck) return; if (!READ_ONCE(dev_priv->gt.awake)) return; /* As enabling the GPU requires fairly extensive mmio access, * periodically arm the mmio checker to see if we are triggering * any invalid access. */ intel_uncore_arm_unclaimed_mmio_detection(dev_priv); for_each_engine(engine, dev_priv, id) { bool busy = intel_engine_has_waiter(engine); u64 acthd; u32 seqno; u32 submit; semaphore_clear_deadlocks(dev_priv); /* We don't strictly need an irq-barrier here, as we are not * serving an interrupt request, be paranoid in case the * barrier has side-effects (such as preventing a broken * cacheline snoop) and so be sure that we can see the seqno * advance. If the seqno should stick, due to a stale * cacheline, we would erroneously declare the GPU hung. */ if (engine->irq_seqno_barrier) engine->irq_seqno_barrier(engine); acthd = intel_engine_get_active_head(engine); seqno = intel_engine_get_seqno(engine); submit = READ_ONCE(engine->last_submitted_seqno); if (engine->hangcheck.seqno == seqno) { if (i915_seqno_passed(seqno, submit)) { engine->hangcheck.action = HANGCHECK_IDLE; } else { /* We always increment the hangcheck score * if the engine is busy and still processing * the same request, so that no single request * can run indefinitely (such as a chain of * batches). The only time we do not increment * the hangcheck score on this ring, if this * engine is in a legitimate wait for another * engine. In that case the waiting engine is a * victim and we want to be sure we catch the * right culprit. Then every time we do kick * the ring, add a small increment to the * score so that we can catch a batch that is * being repeatedly kicked and so responsible * for stalling the machine. */ engine->hangcheck.action = engine_stuck(engine, acthd); switch (engine->hangcheck.action) { case HANGCHECK_IDLE: case HANGCHECK_WAIT: break; case HANGCHECK_ACTIVE: engine->hangcheck.score += BUSY; break; case HANGCHECK_KICK: engine->hangcheck.score += KICK; break; case HANGCHECK_HUNG: engine->hangcheck.score += HUNG; break; } } if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) { hung |= intel_engine_flag(engine); if (engine->hangcheck.action != HANGCHECK_HUNG) stuck |= intel_engine_flag(engine); } } else { engine->hangcheck.action = HANGCHECK_ACTIVE; /* Gradually reduce the count so that we catch DoS * attempts across multiple batches. */ if (engine->hangcheck.score > 0) engine->hangcheck.score -= ACTIVE_DECAY; if (engine->hangcheck.score < 0) engine->hangcheck.score = 0; /* Clear head and subunit states on seqno movement */ acthd = 0; memset(&engine->hangcheck.instdone, 0, sizeof(engine->hangcheck.instdone)); } engine->hangcheck.seqno = seqno; engine->hangcheck.acthd = acthd; busy_count += busy; } if (hung) { char msg[80]; unsigned int tmp; int len; /* If some rings hung but others were still busy, only * blame the hanging rings in the synopsis. */ if (stuck != hung) hung &= ~stuck; len = scnprintf(msg, sizeof(msg), "%s on ", stuck == hung ? "No progress" : "Hang"); for_each_engine_masked(engine, dev_priv, hung, tmp) len += scnprintf(msg + len, sizeof(msg) - len, "%s, ", engine->name); msg[len-2] = '\0'; return i915_handle_error(dev_priv, hung, msg); } /* Reset timer in case GPU hangs without another request being added */ if (busy_count) i915_queue_hangcheck(dev_priv); } static void ibx_irq_reset(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); if (HAS_PCH_NOP(dev_priv)) return; GEN5_IRQ_RESET(SDE); if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) I915_WRITE(SERR_INT, 0xffffffff); } /* * SDEIER is also touched by the interrupt handler to work around missed PCH * interrupts. Hence we can't update it after the interrupt handler is enabled - * instead we unconditionally enable all PCH interrupt sources here, but then * only unmask them as needed with SDEIMR. * * This function needs to be called before interrupts are enabled. */ static void ibx_irq_pre_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); if (HAS_PCH_NOP(dev_priv)) return; WARN_ON(I915_READ(SDEIER) != 0); I915_WRITE(SDEIER, 0xffffffff); POSTING_READ(SDEIER); } static void gen5_gt_irq_reset(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); GEN5_IRQ_RESET(GT); if (INTEL_INFO(dev)->gen >= 6) GEN5_IRQ_RESET(GEN6_PM); } static void vlv_display_irq_reset(struct drm_i915_private *dev_priv) { enum pipe pipe; if (IS_CHERRYVIEW(dev_priv)) I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV); else I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK); i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); for_each_pipe(dev_priv, pipe) { I915_WRITE(PIPESTAT(pipe), PIPE_FIFO_UNDERRUN_STATUS | PIPESTAT_INT_STATUS_MASK); dev_priv->pipestat_irq_mask[pipe] = 0; } GEN5_IRQ_RESET(VLV_); dev_priv->irq_mask = ~0; } static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv) { u32 pipestat_mask; u32 enable_mask; enum pipe pipe; pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV | PIPE_CRC_DONE_INTERRUPT_STATUS; i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); for_each_pipe(dev_priv, pipe) i915_enable_pipestat(dev_priv, pipe, pipestat_mask); enable_mask = I915_DISPLAY_PORT_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; if (IS_CHERRYVIEW(dev_priv)) enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; WARN_ON(dev_priv->irq_mask != ~0); dev_priv->irq_mask = ~enable_mask; GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask); } /* drm_dma.h hooks */ static void ironlake_irq_reset(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); I915_WRITE(HWSTAM, 0xffffffff); GEN5_IRQ_RESET(DE); if (IS_GEN7(dev_priv)) I915_WRITE(GEN7_ERR_INT, 0xffffffff); gen5_gt_irq_reset(dev); ibx_irq_reset(dev); } static void valleyview_irq_preinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); I915_WRITE(VLV_MASTER_IER, 0); POSTING_READ(VLV_MASTER_IER); gen5_gt_irq_reset(dev); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) vlv_display_irq_reset(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); } static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv) { GEN8_IRQ_RESET_NDX(GT, 0); GEN8_IRQ_RESET_NDX(GT, 1); GEN8_IRQ_RESET_NDX(GT, 2); GEN8_IRQ_RESET_NDX(GT, 3); } static void gen8_irq_reset(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); int pipe; I915_WRITE(GEN8_MASTER_IRQ, 0); POSTING_READ(GEN8_MASTER_IRQ); gen8_gt_irq_reset(dev_priv); for_each_pipe(dev_priv, pipe) if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) GEN8_IRQ_RESET_NDX(DE_PIPE, pipe); GEN5_IRQ_RESET(GEN8_DE_PORT_); GEN5_IRQ_RESET(GEN8_DE_MISC_); GEN5_IRQ_RESET(GEN8_PCU_); if (HAS_PCH_SPLIT(dev_priv)) ibx_irq_reset(dev); } void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv, unsigned int pipe_mask) { uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN; enum pipe pipe; spin_lock_irq(&dev_priv->irq_lock); for_each_pipe_masked(dev_priv, pipe, pipe_mask) GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, dev_priv->de_irq_mask[pipe], ~dev_priv->de_irq_mask[pipe] | extra_ier); spin_unlock_irq(&dev_priv->irq_lock); } void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv, unsigned int pipe_mask) { enum pipe pipe; spin_lock_irq(&dev_priv->irq_lock); for_each_pipe_masked(dev_priv, pipe, pipe_mask) GEN8_IRQ_RESET_NDX(DE_PIPE, pipe); spin_unlock_irq(&dev_priv->irq_lock); /* make sure we're done processing display irqs */ synchronize_irq(dev_priv->drm.irq); } static void cherryview_irq_preinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); I915_WRITE(GEN8_MASTER_IRQ, 0); POSTING_READ(GEN8_MASTER_IRQ); gen8_gt_irq_reset(dev_priv); GEN5_IRQ_RESET(GEN8_PCU_); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) vlv_display_irq_reset(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); } static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv, const u32 hpd[HPD_NUM_PINS]) { struct intel_encoder *encoder; u32 enabled_irqs = 0; for_each_intel_encoder(&dev_priv->drm, encoder) if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED) enabled_irqs |= hpd[encoder->hpd_pin]; return enabled_irqs; } static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv) { u32 hotplug_irqs, hotplug, enabled_irqs; if (HAS_PCH_IBX(dev_priv)) { hotplug_irqs = SDE_HOTPLUG_MASK; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx); } else { hotplug_irqs = SDE_HOTPLUG_MASK_CPT; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt); } ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); /* * Enable digital hotplug on the PCH, and configure the DP short pulse * duration to 2ms (which is the minimum in the Display Port spec). * The pulse duration bits are reserved on LPT+. */ hotplug = I915_READ(PCH_PORT_HOTPLUG); hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK); hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms; hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms; hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms; /* * When CPU and PCH are on the same package, port A * HPD must be enabled in both north and south. */ if (HAS_PCH_LPT_LP(dev_priv)) hotplug |= PORTA_HOTPLUG_ENABLE; I915_WRITE(PCH_PORT_HOTPLUG, hotplug); } static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv) { u32 hotplug_irqs, hotplug, enabled_irqs; hotplug_irqs = SDE_HOTPLUG_MASK_SPT; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt); ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); /* Enable digital hotplug on the PCH */ hotplug = I915_READ(PCH_PORT_HOTPLUG); hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE; I915_WRITE(PCH_PORT_HOTPLUG, hotplug); hotplug = I915_READ(PCH_PORT_HOTPLUG2); hotplug |= PORTE_HOTPLUG_ENABLE; I915_WRITE(PCH_PORT_HOTPLUG2, hotplug); } static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv) { u32 hotplug_irqs, hotplug, enabled_irqs; if (INTEL_GEN(dev_priv) >= 8) { hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw); bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); } else if (INTEL_GEN(dev_priv) >= 7) { hotplug_irqs = DE_DP_A_HOTPLUG_IVB; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb); ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); } else { hotplug_irqs = DE_DP_A_HOTPLUG; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk); ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); } /* * Enable digital hotplug on the CPU, and configure the DP short pulse * duration to 2ms (which is the minimum in the Display Port spec) * The pulse duration bits are reserved on HSW+. */ hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK; hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms; I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug); ibx_hpd_irq_setup(dev_priv); } static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv) { u32 hotplug_irqs, hotplug, enabled_irqs; enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt); hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK; bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); hotplug = I915_READ(PCH_PORT_HOTPLUG); hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE; DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n", hotplug, enabled_irqs); hotplug &= ~BXT_DDI_HPD_INVERT_MASK; /* * For BXT invert bit has to be set based on AOB design * for HPD detection logic, update it based on VBT fields. */ if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) && intel_bios_is_port_hpd_inverted(dev_priv, PORT_A)) hotplug |= BXT_DDIA_HPD_INVERT; if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) && intel_bios_is_port_hpd_inverted(dev_priv, PORT_B)) hotplug |= BXT_DDIB_HPD_INVERT; if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) && intel_bios_is_port_hpd_inverted(dev_priv, PORT_C)) hotplug |= BXT_DDIC_HPD_INVERT; I915_WRITE(PCH_PORT_HOTPLUG, hotplug); } static void ibx_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); u32 mask; if (HAS_PCH_NOP(dev_priv)) return; if (HAS_PCH_IBX(dev_priv)) mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON; else mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT; gen5_assert_iir_is_zero(dev_priv, SDEIIR); I915_WRITE(SDEIMR, ~mask); } static void gen5_gt_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); u32 pm_irqs, gt_irqs; pm_irqs = gt_irqs = 0; dev_priv->gt_irq_mask = ~0; if (HAS_L3_DPF(dev_priv)) { /* L3 parity interrupt is always unmasked. */ dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv); gt_irqs |= GT_PARITY_ERROR(dev_priv); } gt_irqs |= GT_RENDER_USER_INTERRUPT; if (IS_GEN5(dev_priv)) { gt_irqs |= ILK_BSD_USER_INTERRUPT; } else { gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT; } GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs); if (INTEL_INFO(dev)->gen >= 6) { /* * RPS interrupts will get enabled/disabled on demand when RPS * itself is enabled/disabled. */ if (HAS_VEBOX(dev_priv)) { pm_irqs |= PM_VEBOX_USER_INTERRUPT; dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT; } dev_priv->pm_imr = 0xffffffff; GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs); } } static int ironlake_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); u32 display_mask, extra_mask; if (INTEL_INFO(dev)->gen >= 7) { display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB | DE_PLANEB_FLIP_DONE_IVB | DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB); extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB | DE_DP_A_HOTPLUG_IVB); } else { display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE | DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE | DE_POISON); extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT | DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN | DE_DP_A_HOTPLUG); } dev_priv->irq_mask = ~display_mask; I915_WRITE(HWSTAM, 0xeffe); ibx_irq_pre_postinstall(dev); GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask); gen5_gt_irq_postinstall(dev); ibx_irq_postinstall(dev); if (IS_IRONLAKE_M(dev_priv)) { /* Enable PCU event interrupts * * spinlocking not required here for correctness since interrupt * setup is guaranteed to run in single-threaded context. But we * need it to make the assert_spin_locked happy. */ spin_lock_irq(&dev_priv->irq_lock); ilk_enable_display_irq(dev_priv, DE_PCU_EVENT); spin_unlock_irq(&dev_priv->irq_lock); } return 0; } void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv) { assert_spin_locked(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) return; dev_priv->display_irqs_enabled = true; if (intel_irqs_enabled(dev_priv)) { vlv_display_irq_reset(dev_priv); vlv_display_irq_postinstall(dev_priv); } } void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv) { assert_spin_locked(&dev_priv->irq_lock); if (!dev_priv->display_irqs_enabled) return; dev_priv->display_irqs_enabled = false; if (intel_irqs_enabled(dev_priv)) vlv_display_irq_reset(dev_priv); } static int valleyview_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); gen5_gt_irq_postinstall(dev); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) vlv_display_irq_postinstall(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); POSTING_READ(VLV_MASTER_IER); return 0; } static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv) { /* These are interrupts we'll toggle with the ring mask register */ uint32_t gt_interrupts[] = { GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT | GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT | GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT, GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT | GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT, 0, GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT | GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT }; if (HAS_L3_DPF(dev_priv)) gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT; dev_priv->pm_ier = 0x0; dev_priv->pm_imr = ~dev_priv->pm_ier; GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]); GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]); /* * RPS interrupts will get enabled/disabled on demand when RPS itself * is enabled/disabled. Same wil be the case for GuC interrupts. */ GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier); GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]); } static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) { uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE; uint32_t de_pipe_enables; u32 de_port_masked = GEN8_AUX_CHANNEL_A; u32 de_port_enables; u32 de_misc_masked = GEN8_DE_MISC_GSE; enum pipe pipe; if (INTEL_INFO(dev_priv)->gen >= 9) { de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE | GEN9_DE_PIPE_IRQ_FAULT_ERRORS; de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C | GEN9_AUX_CHANNEL_D; if (IS_BROXTON(dev_priv)) de_port_masked |= BXT_DE_PORT_GMBUS; } else { de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE | GEN8_DE_PIPE_IRQ_FAULT_ERRORS; } de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN; de_port_enables = de_port_masked; if (IS_BROXTON(dev_priv)) de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK; else if (IS_BROADWELL(dev_priv)) de_port_enables |= GEN8_PORT_DP_A_HOTPLUG; dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked; dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked; dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked; for_each_pipe(dev_priv, pipe) if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, dev_priv->de_irq_mask[pipe], de_pipe_enables); GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables); GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked); } static int gen8_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); if (HAS_PCH_SPLIT(dev_priv)) ibx_irq_pre_postinstall(dev); gen8_gt_irq_postinstall(dev_priv); gen8_de_irq_postinstall(dev_priv); if (HAS_PCH_SPLIT(dev_priv)) ibx_irq_postinstall(dev); I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); POSTING_READ(GEN8_MASTER_IRQ); return 0; } static int cherryview_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); gen8_gt_irq_postinstall(dev_priv); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) vlv_display_irq_postinstall(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); POSTING_READ(GEN8_MASTER_IRQ); return 0; } static void gen8_irq_uninstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); if (!dev_priv) return; gen8_irq_reset(dev); } static void valleyview_irq_uninstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); if (!dev_priv) return; I915_WRITE(VLV_MASTER_IER, 0); POSTING_READ(VLV_MASTER_IER); gen5_gt_irq_reset(dev); I915_WRITE(HWSTAM, 0xffffffff); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) vlv_display_irq_reset(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); } static void cherryview_irq_uninstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); if (!dev_priv) return; I915_WRITE(GEN8_MASTER_IRQ, 0); POSTING_READ(GEN8_MASTER_IRQ); gen8_gt_irq_reset(dev_priv); GEN5_IRQ_RESET(GEN8_PCU_); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display_irqs_enabled) vlv_display_irq_reset(dev_priv); spin_unlock_irq(&dev_priv->irq_lock); } static void ironlake_irq_uninstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); if (!dev_priv) return; ironlake_irq_reset(dev); } static void i8xx_irq_preinstall(struct drm_device * dev) { struct drm_i915_private *dev_priv = to_i915(dev); int pipe; for_each_pipe(dev_priv, pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE16(IMR, 0xffff); I915_WRITE16(IER, 0x0); POSTING_READ16(IER); } static int i8xx_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT); I915_WRITE16(IMR, dev_priv->irq_mask); I915_WRITE16(IER, I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_USER_INTERRUPT); POSTING_READ16(IER); /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); return 0; } /* * Returns true when a page flip has completed. */ static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv, int plane, int pipe, u32 iir) { u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane); if (!intel_pipe_handle_vblank(dev_priv, pipe)) return false; if ((iir & flip_pending) == 0) goto check_page_flip; /* We detect FlipDone by looking for the change in PendingFlip from '1' * to '0' on the following vblank, i.e. IIR has the Pendingflip * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence * the flip is completed (no longer pending). Since this doesn't raise * an interrupt per se, we watch for the change at vblank. */ if (I915_READ16(ISR) & flip_pending) goto check_page_flip; intel_finish_page_flip_cs(dev_priv, pipe); return true; check_page_flip: intel_check_page_flip(dev_priv, pipe); return false; } static irqreturn_t i8xx_irq_handler(int irq, void *arg) { struct drm_device *dev = arg; struct drm_i915_private *dev_priv = to_i915(dev); u16 iir, new_iir; u32 pipe_stats[2]; int pipe; u16 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; irqreturn_t ret; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(dev_priv); ret = IRQ_NONE; iir = I915_READ16(IIR); if (iir == 0) goto out; while (iir & ~flip_mask) { /* Can't rely on pipestat interrupt bit in iir as it might * have been cleared after the pipestat interrupt was received. * It doesn't set the bit in iir again, but it still produces * interrupts (for non-MSI). */ spin_lock(&dev_priv->irq_lock); if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) DRM_DEBUG("Command parser error, iir 0x%08x\n", iir); for_each_pipe(dev_priv, pipe) { i915_reg_t reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg); /* * Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & 0x8000ffff) I915_WRITE(reg, pipe_stats[pipe]); } spin_unlock(&dev_priv->irq_lock); I915_WRITE16(IIR, iir & ~flip_mask); new_iir = I915_READ16(IIR); /* Flush posted writes */ if (iir & I915_USER_INTERRUPT) notify_ring(dev_priv->engine[RCS]); for_each_pipe(dev_priv, pipe) { int plane = pipe; if (HAS_FBC(dev_priv)) plane = !plane; if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS && i8xx_handle_vblank(dev_priv, plane, pipe, iir)) flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane); if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev_priv, pipe); if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); } iir = new_iir; } ret = IRQ_HANDLED; out: enable_rpm_wakeref_asserts(dev_priv); return ret; } static void i8xx_irq_uninstall(struct drm_device * dev) { struct drm_i915_private *dev_priv = to_i915(dev); int pipe; for_each_pipe(dev_priv, pipe) { /* Clear enable bits; then clear status bits */ I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe))); } I915_WRITE16(IMR, 0xffff); I915_WRITE16(IER, 0x0); I915_WRITE16(IIR, I915_READ16(IIR)); } static void i915_irq_preinstall(struct drm_device * dev) { struct drm_i915_private *dev_priv = to_i915(dev); int pipe; if (I915_HAS_HOTPLUG(dev)) { i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); } I915_WRITE16(HWSTAM, 0xeffe); for_each_pipe(dev_priv, pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); POSTING_READ(IER); } static int i915_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); u32 enable_mask; I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT); enable_mask = I915_ASLE_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_USER_INTERRUPT; if (I915_HAS_HOTPLUG(dev)) { i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); POSTING_READ(PORT_HOTPLUG_EN); /* Enable in IER... */ enable_mask |= I915_DISPLAY_PORT_INTERRUPT; /* and unmask in IMR */ dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; } I915_WRITE(IMR, dev_priv->irq_mask); I915_WRITE(IER, enable_mask); POSTING_READ(IER); i915_enable_asle_pipestat(dev_priv); /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); return 0; } /* * Returns true when a page flip has completed. */ static bool i915_handle_vblank(struct drm_i915_private *dev_priv, int plane, int pipe, u32 iir) { u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane); if (!intel_pipe_handle_vblank(dev_priv, pipe)) return false; if ((iir & flip_pending) == 0) goto check_page_flip; /* We detect FlipDone by looking for the change in PendingFlip from '1' * to '0' on the following vblank, i.e. IIR has the Pendingflip * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence * the flip is completed (no longer pending). Since this doesn't raise * an interrupt per se, we watch for the change at vblank. */ if (I915_READ(ISR) & flip_pending) goto check_page_flip; intel_finish_page_flip_cs(dev_priv, pipe); return true; check_page_flip: intel_check_page_flip(dev_priv, pipe); return false; } static irqreturn_t i915_irq_handler(int irq, void *arg) { struct drm_device *dev = arg; struct drm_i915_private *dev_priv = to_i915(dev); u32 iir, new_iir, pipe_stats[I915_MAX_PIPES]; u32 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; int pipe, ret = IRQ_NONE; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(dev_priv); iir = I915_READ(IIR); do { bool irq_received = (iir & ~flip_mask) != 0; bool blc_event = false; /* Can't rely on pipestat interrupt bit in iir as it might * have been cleared after the pipestat interrupt was received. * It doesn't set the bit in iir again, but it still produces * interrupts (for non-MSI). */ spin_lock(&dev_priv->irq_lock); if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) DRM_DEBUG("Command parser error, iir 0x%08x\n", iir); for_each_pipe(dev_priv, pipe) { i915_reg_t reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg); /* Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & 0x8000ffff) { I915_WRITE(reg, pipe_stats[pipe]); irq_received = true; } } spin_unlock(&dev_priv->irq_lock); if (!irq_received) break; /* Consume port. Then clear IIR or we'll miss events */ if (I915_HAS_HOTPLUG(dev_priv) && iir & I915_DISPLAY_PORT_INTERRUPT) { u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv); if (hotplug_status) i9xx_hpd_irq_handler(dev_priv, hotplug_status); } I915_WRITE(IIR, iir & ~flip_mask); new_iir = I915_READ(IIR); /* Flush posted writes */ if (iir & I915_USER_INTERRUPT) notify_ring(dev_priv->engine[RCS]); for_each_pipe(dev_priv, pipe) { int plane = pipe; if (HAS_FBC(dev_priv)) plane = !plane; if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS && i915_handle_vblank(dev_priv, plane, pipe, iir)) flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane); if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) blc_event = true; if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev_priv, pipe); if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); } if (blc_event || (iir & I915_ASLE_INTERRUPT)) intel_opregion_asle_intr(dev_priv); /* With MSI, interrupts are only generated when iir * transitions from zero to nonzero. If another bit got * set while we were handling the existing iir bits, then * we would never get another interrupt. * * This is fine on non-MSI as well, as if we hit this path * we avoid exiting the interrupt handler only to generate * another one. * * Note that for MSI this could cause a stray interrupt report * if an interrupt landed in the time between writing IIR and * the posting read. This should be rare enough to never * trigger the 99% of 100,000 interrupts test for disabling * stray interrupts. */ ret = IRQ_HANDLED; iir = new_iir; } while (iir & ~flip_mask); enable_rpm_wakeref_asserts(dev_priv); return ret; } static void i915_irq_uninstall(struct drm_device * dev) { struct drm_i915_private *dev_priv = to_i915(dev); int pipe; if (I915_HAS_HOTPLUG(dev)) { i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); } I915_WRITE16(HWSTAM, 0xffff); for_each_pipe(dev_priv, pipe) { /* Clear enable bits; then clear status bits */ I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe))); } I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); I915_WRITE(IIR, I915_READ(IIR)); } static void i965_irq_preinstall(struct drm_device * dev) { struct drm_i915_private *dev_priv = to_i915(dev); int pipe; i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); I915_WRITE(HWSTAM, 0xeffe); for_each_pipe(dev_priv, pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); POSTING_READ(IER); } static int i965_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); u32 enable_mask; u32 error_mask; /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT | I915_DISPLAY_PORT_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); enable_mask = ~dev_priv->irq_mask; enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT); enable_mask |= I915_USER_INTERRUPT; if (IS_G4X(dev_priv)) enable_mask |= I915_BSD_USER_INTERRUPT; /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); /* * Enable some error detection, note the instruction error mask * bit is reserved, so we leave it masked. */ if (IS_G4X(dev_priv)) { error_mask = ~(GM45_ERROR_PAGE_TABLE | GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV | I915_ERROR_MEMORY_REFRESH); } else { error_mask = ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH); } I915_WRITE(EMR, error_mask); I915_WRITE(IMR, dev_priv->irq_mask); I915_WRITE(IER, enable_mask); POSTING_READ(IER); i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); POSTING_READ(PORT_HOTPLUG_EN); i915_enable_asle_pipestat(dev_priv); return 0; } static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv) { u32 hotplug_en; assert_spin_locked(&dev_priv->irq_lock); /* Note HDMI and DP share hotplug bits */ /* enable bits are the same for all generations */ hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915); /* Programming the CRT detection parameters tends to generate a spurious hotplug event about three seconds later. So just do it once. */ if (IS_G4X(dev_priv)) hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; /* Ignore TV since it's buggy */ i915_hotplug_interrupt_update_locked(dev_priv, HOTPLUG_INT_EN_MASK | CRT_HOTPLUG_VOLTAGE_COMPARE_MASK | CRT_HOTPLUG_ACTIVATION_PERIOD_64, hotplug_en); } static irqreturn_t i965_irq_handler(int irq, void *arg) { struct drm_device *dev = arg; struct drm_i915_private *dev_priv = to_i915(dev); u32 iir, new_iir; u32 pipe_stats[I915_MAX_PIPES]; int ret = IRQ_NONE, pipe; u32 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; if (!intel_irqs_enabled(dev_priv)) return IRQ_NONE; /* IRQs are synced during runtime_suspend, we don't require a wakeref */ disable_rpm_wakeref_asserts(dev_priv); iir = I915_READ(IIR); for (;;) { bool irq_received = (iir & ~flip_mask) != 0; bool blc_event = false; /* Can't rely on pipestat interrupt bit in iir as it might * have been cleared after the pipestat interrupt was received. * It doesn't set the bit in iir again, but it still produces * interrupts (for non-MSI). */ spin_lock(&dev_priv->irq_lock); if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) DRM_DEBUG("Command parser error, iir 0x%08x\n", iir); for_each_pipe(dev_priv, pipe) { i915_reg_t reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg); /* * Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & 0x8000ffff) { I915_WRITE(reg, pipe_stats[pipe]); irq_received = true; } } spin_unlock(&dev_priv->irq_lock); if (!irq_received) break; ret = IRQ_HANDLED; /* Consume port. Then clear IIR or we'll miss events */ if (iir & I915_DISPLAY_PORT_INTERRUPT) { u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv); if (hotplug_status) i9xx_hpd_irq_handler(dev_priv, hotplug_status); } I915_WRITE(IIR, iir & ~flip_mask); new_iir = I915_READ(IIR); /* Flush posted writes */ if (iir & I915_USER_INTERRUPT) notify_ring(dev_priv->engine[RCS]); if (iir & I915_BSD_USER_INTERRUPT) notify_ring(dev_priv->engine[VCS]); for_each_pipe(dev_priv, pipe) { if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS && i915_handle_vblank(dev_priv, pipe, pipe, iir)) flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe); if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) blc_event = true; if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev_priv, pipe); if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); } if (blc_event || (iir & I915_ASLE_INTERRUPT)) intel_opregion_asle_intr(dev_priv); if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) gmbus_irq_handler(dev_priv); /* With MSI, interrupts are only generated when iir * transitions from zero to nonzero. If another bit got * set while we were handling the existing iir bits, then * we would never get another interrupt. * * This is fine on non-MSI as well, as if we hit this path * we avoid exiting the interrupt handler only to generate * another one. * * Note that for MSI this could cause a stray interrupt report * if an interrupt landed in the time between writing IIR and * the posting read. This should be rare enough to never * trigger the 99% of 100,000 interrupts test for disabling * stray interrupts. */ iir = new_iir; } enable_rpm_wakeref_asserts(dev_priv); return ret; } static void i965_irq_uninstall(struct drm_device * dev) { struct drm_i915_private *dev_priv = to_i915(dev); int pipe; if (!dev_priv) return; i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); I915_WRITE(HWSTAM, 0xffffffff); for_each_pipe(dev_priv, pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); for_each_pipe(dev_priv, pipe) I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)) & 0x8000ffff); I915_WRITE(IIR, I915_READ(IIR)); } /** * intel_irq_init - initializes irq support * @dev_priv: i915 device instance * * This function initializes all the irq support including work items, timers * and all the vtables. It does not setup the interrupt itself though. */ void intel_irq_init(struct drm_i915_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; intel_hpd_init_work(dev_priv); INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work); INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work); if (HAS_GUC_SCHED(dev)) dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT; /* Let's track the enabled rps events */ if (IS_VALLEYVIEW(dev_priv)) /* WaGsvRC0ResidencyMethod:vlv */ dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED; else dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS; dev_priv->rps.pm_intr_keep = 0; /* * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer * if GEN6_PM_UP_EI_EXPIRED is masked. * * TODO: verify if this can be reproduced on VLV,CHV. */ if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv)) dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED; if (INTEL_INFO(dev_priv)->gen >= 8) dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC; INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work, i915_hangcheck_elapsed); if (IS_GEN2(dev_priv)) { /* Gen2 doesn't have a hardware frame counter */ dev->max_vblank_count = 0; dev->driver->get_vblank_counter = drm_vblank_no_hw_counter; } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) { dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */ dev->driver->get_vblank_counter = g4x_get_vblank_counter; } else { dev->driver->get_vblank_counter = i915_get_vblank_counter; dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */ } /* * Opt out of the vblank disable timer on everything except gen2. * Gen2 doesn't have a hardware frame counter and so depends on * vblank interrupts to produce sane vblank seuquence numbers. */ if (!IS_GEN2(dev_priv)) dev->vblank_disable_immediate = true; dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp; dev->driver->get_scanout_position = i915_get_crtc_scanoutpos; if (IS_CHERRYVIEW(dev_priv)) { dev->driver->irq_handler = cherryview_irq_handler; dev->driver->irq_preinstall = cherryview_irq_preinstall; dev->driver->irq_postinstall = cherryview_irq_postinstall; dev->driver->irq_uninstall = cherryview_irq_uninstall; dev->driver->enable_vblank = i965_enable_vblank; dev->driver->disable_vblank = i965_disable_vblank; dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; } else if (IS_VALLEYVIEW(dev_priv)) { dev->driver->irq_handler = valleyview_irq_handler; dev->driver->irq_preinstall = valleyview_irq_preinstall; dev->driver->irq_postinstall = valleyview_irq_postinstall; dev->driver->irq_uninstall = valleyview_irq_uninstall; dev->driver->enable_vblank = i965_enable_vblank; dev->driver->disable_vblank = i965_disable_vblank; dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; } else if (INTEL_INFO(dev_priv)->gen >= 8) { dev->driver->irq_handler = gen8_irq_handler; dev->driver->irq_preinstall = gen8_irq_reset; dev->driver->irq_postinstall = gen8_irq_postinstall; dev->driver->irq_uninstall = gen8_irq_uninstall; dev->driver->enable_vblank = gen8_enable_vblank; dev->driver->disable_vblank = gen8_disable_vblank; if (IS_BROXTON(dev_priv)) dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup; else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv)) dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup; else dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; } else if (HAS_PCH_SPLIT(dev_priv)) { dev->driver->irq_handler = ironlake_irq_handler; dev->driver->irq_preinstall = ironlake_irq_reset; dev->driver->irq_postinstall = ironlake_irq_postinstall; dev->driver->irq_uninstall = ironlake_irq_uninstall; dev->driver->enable_vblank = ironlake_enable_vblank; dev->driver->disable_vblank = ironlake_disable_vblank; dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; } else { if (IS_GEN2(dev_priv)) { dev->driver->irq_preinstall = i8xx_irq_preinstall; dev->driver->irq_postinstall = i8xx_irq_postinstall; dev->driver->irq_handler = i8xx_irq_handler; dev->driver->irq_uninstall = i8xx_irq_uninstall; dev->driver->enable_vblank = i8xx_enable_vblank; dev->driver->disable_vblank = i8xx_disable_vblank; } else if (IS_GEN3(dev_priv)) { dev->driver->irq_preinstall = i915_irq_preinstall; dev->driver->irq_postinstall = i915_irq_postinstall; dev->driver->irq_uninstall = i915_irq_uninstall; dev->driver->irq_handler = i915_irq_handler; dev->driver->enable_vblank = i8xx_enable_vblank; dev->driver->disable_vblank = i8xx_disable_vblank; } else { dev->driver->irq_preinstall = i965_irq_preinstall; dev->driver->irq_postinstall = i965_irq_postinstall; dev->driver->irq_uninstall = i965_irq_uninstall; dev->driver->irq_handler = i965_irq_handler; dev->driver->enable_vblank = i965_enable_vblank; dev->driver->disable_vblank = i965_disable_vblank; } if (I915_HAS_HOTPLUG(dev_priv)) dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; } } /** * intel_irq_install - enables the hardware interrupt * @dev_priv: i915 device instance * * This function enables the hardware interrupt handling, but leaves the hotplug * handling still disabled. It is called after intel_irq_init(). * * In the driver load and resume code we need working interrupts in a few places * but don't want to deal with the hassle of concurrent probe and hotplug * workers. Hence the split into this two-stage approach. */ int intel_irq_install(struct drm_i915_private *dev_priv) { /* * We enable some interrupt sources in our postinstall hooks, so mark * interrupts as enabled _before_ actually enabling them to avoid * special cases in our ordering checks. */ dev_priv->pm.irqs_enabled = true; return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq); } /** * intel_irq_uninstall - finilizes all irq handling * @dev_priv: i915 device instance * * This stops interrupt and hotplug handling and unregisters and frees all * resources acquired in the init functions. */ void intel_irq_uninstall(struct drm_i915_private *dev_priv) { drm_irq_uninstall(&dev_priv->drm); intel_hpd_cancel_work(dev_priv); dev_priv->pm.irqs_enabled = false; } /** * intel_runtime_pm_disable_interrupts - runtime interrupt disabling * @dev_priv: i915 device instance * * This function is used to disable interrupts at runtime, both in the runtime * pm and the system suspend/resume code. */ void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv) { dev_priv->drm.driver->irq_uninstall(&dev_priv->drm); dev_priv->pm.irqs_enabled = false; synchronize_irq(dev_priv->drm.irq); } /** * intel_runtime_pm_enable_interrupts - runtime interrupt enabling * @dev_priv: i915 device instance * * This function is used to enable interrupts at runtime, both in the runtime * pm and the system suspend/resume code. */ void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv) { dev_priv->pm.irqs_enabled = true; dev_priv->drm.driver->irq_preinstall(&dev_priv->drm); dev_priv->drm.driver->irq_postinstall(&dev_priv->drm); }