/* * 8253/8254 interval timer emulation * * Copyright (c) 2003-2004 Fabrice Bellard * Copyright (c) 2006 Intel Corporation * Copyright (c) 2007 Keir Fraser, XenSource Inc * Copyright (c) 2008 Intel Corporation * Copyright 2009 Red Hat, Inc. and/or its affiliates. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * Authors: * Sheng Yang * Based on QEMU and Xen. */ #define pr_fmt(fmt) "pit: " fmt #include #include #include "ioapic.h" #include "irq.h" #include "i8254.h" #include "x86.h" #ifndef CONFIG_X86_64 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) #else #define mod_64(x, y) ((x) % (y)) #endif #define RW_STATE_LSB 1 #define RW_STATE_MSB 2 #define RW_STATE_WORD0 3 #define RW_STATE_WORD1 4 /* Compute with 96 bit intermediate result: (a*b)/c */ static u64 muldiv64(u64 a, u32 b, u32 c) { union { u64 ll; struct { u32 low, high; } l; } u, res; u64 rl, rh; u.ll = a; rl = (u64)u.l.low * (u64)b; rh = (u64)u.l.high * (u64)b; rh += (rl >> 32); res.l.high = div64_u64(rh, c); res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c); return res.ll; } static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val) { struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel]; switch (c->mode) { default: case 0: case 4: /* XXX: just disable/enable counting */ break; case 1: case 2: case 3: case 5: /* Restart counting on rising edge. */ if (c->gate < val) c->count_load_time = ktime_get(); break; } c->gate = val; } static int pit_get_gate(struct kvm_pit *pit, int channel) { return pit->pit_state.channels[channel].gate; } static s64 __kpit_elapsed(struct kvm_pit *pit) { s64 elapsed; ktime_t remaining; struct kvm_kpit_state *ps = &pit->pit_state; if (!ps->period) return 0; /* * The Counter does not stop when it reaches zero. In * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to * the highest count, either FFFF hex for binary counting * or 9999 for BCD counting, and continues counting. * Modes 2 and 3 are periodic; the Counter reloads * itself with the initial count and continues counting * from there. */ remaining = hrtimer_get_remaining(&ps->timer); elapsed = ps->period - ktime_to_ns(remaining); return elapsed; } static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c, int channel) { if (channel == 0) return __kpit_elapsed(pit); return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time)); } static int pit_get_count(struct kvm_pit *pit, int channel) { struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel]; s64 d, t; int counter; t = kpit_elapsed(pit, c, channel); d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); switch (c->mode) { case 0: case 1: case 4: case 5: counter = (c->count - d) & 0xffff; break; case 3: /* XXX: may be incorrect for odd counts */ counter = c->count - (mod_64((2 * d), c->count)); break; default: counter = c->count - mod_64(d, c->count); break; } return counter; } static int pit_get_out(struct kvm_pit *pit, int channel) { struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel]; s64 d, t; int out; t = kpit_elapsed(pit, c, channel); d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); switch (c->mode) { default: case 0: out = (d >= c->count); break; case 1: out = (d < c->count); break; case 2: out = ((mod_64(d, c->count) == 0) && (d != 0)); break; case 3: out = (mod_64(d, c->count) < ((c->count + 1) >> 1)); break; case 4: case 5: out = (d == c->count); break; } return out; } static void pit_latch_count(struct kvm_pit *pit, int channel) { struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel]; if (!c->count_latched) { c->latched_count = pit_get_count(pit, channel); c->count_latched = c->rw_mode; } } static void pit_latch_status(struct kvm_pit *pit, int channel) { struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel]; if (!c->status_latched) { /* TODO: Return NULL COUNT (bit 6). */ c->status = ((pit_get_out(pit, channel) << 7) | (c->rw_mode << 4) | (c->mode << 1) | c->bcd); c->status_latched = 1; } } static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps) { return container_of(ps, struct kvm_pit, pit_state); } static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian) { struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state, irq_ack_notifier); struct kvm_pit *pit = pit_state_to_pit(ps); atomic_set(&ps->irq_ack, 1); /* irq_ack should be set before pending is read. Order accesses with * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work. */ smp_mb(); if (atomic_dec_if_positive(&ps->pending) > 0) queue_kthread_work(&pit->worker, &pit->expired); } void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu) { struct kvm_pit *pit = vcpu->kvm->arch.vpit; struct hrtimer *timer; if (!kvm_vcpu_is_bsp(vcpu) || !pit) return; timer = &pit->pit_state.timer; mutex_lock(&pit->pit_state.lock); if (hrtimer_cancel(timer)) hrtimer_start_expires(timer, HRTIMER_MODE_ABS); mutex_unlock(&pit->pit_state.lock); } static void destroy_pit_timer(struct kvm_pit *pit) { hrtimer_cancel(&pit->pit_state.timer); flush_kthread_work(&pit->expired); } static void pit_do_work(struct kthread_work *work) { struct kvm_pit *pit = container_of(work, struct kvm_pit, expired); struct kvm *kvm = pit->kvm; struct kvm_vcpu *vcpu; int i; struct kvm_kpit_state *ps = &pit->pit_state; if (ps->reinject && !atomic_xchg(&ps->irq_ack, 0)) return; kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false); kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false); /* * Provides NMI watchdog support via Virtual Wire mode. * The route is: PIT -> LVT0 in NMI mode. * * Note: Our Virtual Wire implementation does not follow * the MP specification. We propagate a PIT interrupt to all * VCPUs and only when LVT0 is in NMI mode. The interrupt can * also be simultaneously delivered through PIC and IOAPIC. */ if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0) kvm_for_each_vcpu(i, vcpu, kvm) kvm_apic_nmi_wd_deliver(vcpu); } static enum hrtimer_restart pit_timer_fn(struct hrtimer *data) { struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer); struct kvm_pit *pt = pit_state_to_pit(ps); if (ps->reinject) atomic_inc(&ps->pending); queue_kthread_work(&pt->worker, &pt->expired); if (ps->is_periodic) { hrtimer_add_expires_ns(&ps->timer, ps->period); return HRTIMER_RESTART; } else return HRTIMER_NORESTART; } static inline void kvm_pit_reset_reinject(struct kvm_pit *pit) { atomic_set(&pit->pit_state.pending, 0); atomic_set(&pit->pit_state.irq_ack, 1); } void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject) { struct kvm_kpit_state *ps = &pit->pit_state; struct kvm *kvm = pit->kvm; if (ps->reinject == reinject) return; if (reinject) { /* The initial state is preserved while ps->reinject == 0. */ kvm_pit_reset_reinject(pit); kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier); kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier); } else { kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier); kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier); } ps->reinject = reinject; } static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period) { struct kvm_kpit_state *ps = &pit->pit_state; struct kvm *kvm = pit->kvm; s64 interval; if (!ioapic_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY) return; interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ); pr_debug("create pit timer, interval is %llu nsec\n", interval); /* TODO The new value only affected after the retriggered */ hrtimer_cancel(&ps->timer); flush_kthread_work(&pit->expired); ps->period = interval; ps->is_periodic = is_period; ps->timer.function = pit_timer_fn; kvm_pit_reset_reinject(pit); /* * Do not allow the guest to program periodic timers with small * interval, since the hrtimers are not throttled by the host * scheduler. */ if (ps->is_periodic) { s64 min_period = min_timer_period_us * 1000LL; if (ps->period < min_period) { pr_info_ratelimited( "kvm: requested %lld ns " "i8254 timer period limited to %lld ns\n", ps->period, min_period); ps->period = min_period; } } hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval), HRTIMER_MODE_ABS); } static void pit_load_count(struct kvm_pit *pit, int channel, u32 val) { struct kvm_kpit_state *ps = &pit->pit_state; pr_debug("load_count val is %d, channel is %d\n", val, channel); /* * The largest possible initial count is 0; this is equivalent * to 216 for binary counting and 104 for BCD counting. */ if (val == 0) val = 0x10000; ps->channels[channel].count = val; if (channel != 0) { ps->channels[channel].count_load_time = ktime_get(); return; } /* Two types of timer * mode 1 is one shot, mode 2 is period, otherwise del timer */ switch (ps->channels[0].mode) { case 0: case 1: /* FIXME: enhance mode 4 precision */ case 4: create_pit_timer(pit, val, 0); break; case 2: case 3: create_pit_timer(pit, val, 1); break; default: destroy_pit_timer(pit); } } void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val, int hpet_legacy_start) { u8 saved_mode; WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock)); if (hpet_legacy_start) { /* save existing mode for later reenablement */ WARN_ON(channel != 0); saved_mode = pit->pit_state.channels[0].mode; pit->pit_state.channels[0].mode = 0xff; /* disable timer */ pit_load_count(pit, channel, val); pit->pit_state.channels[0].mode = saved_mode; } else { pit_load_count(pit, channel, val); } } static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev) { return container_of(dev, struct kvm_pit, dev); } static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev) { return container_of(dev, struct kvm_pit, speaker_dev); } static inline int pit_in_range(gpa_t addr) { return ((addr >= KVM_PIT_BASE_ADDRESS) && (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH)); } static int pit_ioport_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, const void *data) { struct kvm_pit *pit = dev_to_pit(this); struct kvm_kpit_state *pit_state = &pit->pit_state; int channel, access; struct kvm_kpit_channel_state *s; u32 val = *(u32 *) data; if (!pit_in_range(addr)) return -EOPNOTSUPP; val &= 0xff; addr &= KVM_PIT_CHANNEL_MASK; mutex_lock(&pit_state->lock); if (val != 0) pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n", (unsigned int)addr, len, val); if (addr == 3) { channel = val >> 6; if (channel == 3) { /* Read-Back Command. */ for (channel = 0; channel < 3; channel++) { s = &pit_state->channels[channel]; if (val & (2 << channel)) { if (!(val & 0x20)) pit_latch_count(pit, channel); if (!(val & 0x10)) pit_latch_status(pit, channel); } } } else { /* Select Counter . */ s = &pit_state->channels[channel]; access = (val >> 4) & KVM_PIT_CHANNEL_MASK; if (access == 0) { pit_latch_count(pit, channel); } else { s->rw_mode = access; s->read_state = access; s->write_state = access; s->mode = (val >> 1) & 7; if (s->mode > 5) s->mode -= 4; s->bcd = val & 1; } } } else { /* Write Count. */ s = &pit_state->channels[addr]; switch (s->write_state) { default: case RW_STATE_LSB: pit_load_count(pit, addr, val); break; case RW_STATE_MSB: pit_load_count(pit, addr, val << 8); break; case RW_STATE_WORD0: s->write_latch = val; s->write_state = RW_STATE_WORD1; break; case RW_STATE_WORD1: pit_load_count(pit, addr, s->write_latch | (val << 8)); s->write_state = RW_STATE_WORD0; break; } } mutex_unlock(&pit_state->lock); return 0; } static int pit_ioport_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, void *data) { struct kvm_pit *pit = dev_to_pit(this); struct kvm_kpit_state *pit_state = &pit->pit_state; int ret, count; struct kvm_kpit_channel_state *s; if (!pit_in_range(addr)) return -EOPNOTSUPP; addr &= KVM_PIT_CHANNEL_MASK; if (addr == 3) return 0; s = &pit_state->channels[addr]; mutex_lock(&pit_state->lock); if (s->status_latched) { s->status_latched = 0; ret = s->status; } else if (s->count_latched) { switch (s->count_latched) { default: case RW_STATE_LSB: ret = s->latched_count & 0xff; s->count_latched = 0; break; case RW_STATE_MSB: ret = s->latched_count >> 8; s->count_latched = 0; break; case RW_STATE_WORD0: ret = s->latched_count & 0xff; s->count_latched = RW_STATE_MSB; break; } } else { switch (s->read_state) { default: case RW_STATE_LSB: count = pit_get_count(pit, addr); ret = count & 0xff; break; case RW_STATE_MSB: count = pit_get_count(pit, addr); ret = (count >> 8) & 0xff; break; case RW_STATE_WORD0: count = pit_get_count(pit, addr); ret = count & 0xff; s->read_state = RW_STATE_WORD1; break; case RW_STATE_WORD1: count = pit_get_count(pit, addr); ret = (count >> 8) & 0xff; s->read_state = RW_STATE_WORD0; break; } } if (len > sizeof(ret)) len = sizeof(ret); memcpy(data, (char *)&ret, len); mutex_unlock(&pit_state->lock); return 0; } static int speaker_ioport_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, const void *data) { struct kvm_pit *pit = speaker_to_pit(this); struct kvm_kpit_state *pit_state = &pit->pit_state; u32 val = *(u32 *) data; if (addr != KVM_SPEAKER_BASE_ADDRESS) return -EOPNOTSUPP; mutex_lock(&pit_state->lock); pit_state->speaker_data_on = (val >> 1) & 1; pit_set_gate(pit, 2, val & 1); mutex_unlock(&pit_state->lock); return 0; } static int speaker_ioport_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, void *data) { struct kvm_pit *pit = speaker_to_pit(this); struct kvm_kpit_state *pit_state = &pit->pit_state; unsigned int refresh_clock; int ret; if (addr != KVM_SPEAKER_BASE_ADDRESS) return -EOPNOTSUPP; /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */ refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1; mutex_lock(&pit_state->lock); ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) | (pit_get_out(pit, 2) << 5) | (refresh_clock << 4)); if (len > sizeof(ret)) len = sizeof(ret); memcpy(data, (char *)&ret, len); mutex_unlock(&pit_state->lock); return 0; } static void kvm_pit_reset(struct kvm_pit *pit) { int i; struct kvm_kpit_channel_state *c; pit->pit_state.flags = 0; for (i = 0; i < 3; i++) { c = &pit->pit_state.channels[i]; c->mode = 0xff; c->gate = (i != 2); pit_load_count(pit, i, 0); } kvm_pit_reset_reinject(pit); } static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask) { struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier); if (!mask) kvm_pit_reset_reinject(pit); } static const struct kvm_io_device_ops pit_dev_ops = { .read = pit_ioport_read, .write = pit_ioport_write, }; static const struct kvm_io_device_ops speaker_dev_ops = { .read = speaker_ioport_read, .write = speaker_ioport_write, }; /* Caller must hold slots_lock */ struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags) { struct kvm_pit *pit; struct kvm_kpit_state *pit_state; struct pid *pid; pid_t pid_nr; int ret; pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL); if (!pit) return NULL; pit->irq_source_id = kvm_request_irq_source_id(kvm); if (pit->irq_source_id < 0) goto fail_request; mutex_init(&pit->pit_state.lock); pid = get_pid(task_tgid(current)); pid_nr = pid_vnr(pid); put_pid(pid); init_kthread_worker(&pit->worker); pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker, "kvm-pit/%d", pid_nr); if (IS_ERR(pit->worker_task)) goto fail_kthread; init_kthread_work(&pit->expired, pit_do_work); pit->kvm = kvm; pit_state = &pit->pit_state; hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); pit_state->irq_ack_notifier.gsi = 0; pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq; pit->mask_notifier.func = pit_mask_notifer; kvm_pit_reset(pit); kvm_pit_set_reinject(pit, true); kvm_iodevice_init(&pit->dev, &pit_dev_ops); ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS, KVM_PIT_MEM_LENGTH, &pit->dev); if (ret < 0) goto fail_register_pit; if (flags & KVM_PIT_SPEAKER_DUMMY) { kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops); ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_SPEAKER_BASE_ADDRESS, 4, &pit->speaker_dev); if (ret < 0) goto fail_register_speaker; } return pit; fail_register_speaker: kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev); fail_register_pit: kvm_pit_set_reinject(pit, false); kthread_stop(pit->worker_task); fail_kthread: kvm_free_irq_source_id(kvm, pit->irq_source_id); fail_request: kfree(pit); return NULL; } void kvm_free_pit(struct kvm *kvm) { struct kvm_pit *pit = kvm->arch.vpit; if (pit) { kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev); kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev); kvm_pit_set_reinject(pit, false); hrtimer_cancel(&pit->pit_state.timer); flush_kthread_work(&pit->expired); kthread_stop(pit->worker_task); kvm_free_irq_source_id(kvm, pit->irq_source_id); kfree(pit); } }