/* Performance event support for sparc64. * * Copyright (C) 2009, 2010 David S. Miller * * This code is based almost entirely upon the x86 perf event * code, which is: * * Copyright (C) 2008 Thomas Gleixner * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar * Copyright (C) 2009 Jaswinder Singh Rajput * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kernel.h" #include "kstack.h" /* Two classes of sparc64 chips currently exist. All of which have * 32-bit counters which can generate overflow interrupts on the * transition from 0xffffffff to 0. * * All chips upto and including SPARC-T3 have two performance * counters. The two 32-bit counters are accessed in one go using a * single 64-bit register. * * On these older chips both counters are controlled using a single * control register. The only way to stop all sampling is to clear * all of the context (user, supervisor, hypervisor) sampling enable * bits. But these bits apply to both counters, thus the two counters * can't be enabled/disabled individually. * * Furthermore, the control register on these older chips have two * event fields, one for each of the two counters. It's thus nearly * impossible to have one counter going while keeping the other one * stopped. Therefore it is possible to get overflow interrupts for * counters not currently "in use" and that condition must be checked * in the overflow interrupt handler. * * So we use a hack, in that we program inactive counters with the * "sw_count0" and "sw_count1" events. These count how many times * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an * unusual way to encode a NOP and therefore will not trigger in * normal code. * * Starting with SPARC-T4 we have one control register per counter. * And the counters are stored in individual registers. The registers * for the counters are 64-bit but only a 32-bit counter is * implemented. The event selections on SPARC-T4 lack any * restrictions, therefore we can elide all of the complicated * conflict resolution code we have for SPARC-T3 and earlier chips. */ #define MAX_HWEVENTS 4 #define MAX_PCRS 4 #define MAX_PERIOD ((1UL << 32) - 1) #define PIC_UPPER_INDEX 0 #define PIC_LOWER_INDEX 1 #define PIC_NO_INDEX -1 struct cpu_hw_events { /* Number of events currently scheduled onto this cpu. * This tells how many entries in the arrays below * are valid. */ int n_events; /* Number of new events added since the last hw_perf_disable(). * This works because the perf event layer always adds new * events inside of a perf_{disable,enable}() sequence. */ int n_added; /* Array of events current scheduled on this cpu. */ struct perf_event *event[MAX_HWEVENTS]; /* Array of encoded longs, specifying the %pcr register * encoding and the mask of PIC counters this even can * be scheduled on. See perf_event_encode() et al. */ unsigned long events[MAX_HWEVENTS]; /* The current counter index assigned to an event. When the * event hasn't been programmed into the cpu yet, this will * hold PIC_NO_INDEX. The event->hw.idx value tells us where * we ought to schedule the event. */ int current_idx[MAX_HWEVENTS]; /* Software copy of %pcr register(s) on this cpu. */ u64 pcr[MAX_HWEVENTS]; /* Enabled/disable state. */ int enabled; unsigned int group_flag; }; static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, }; /* An event map describes the characteristics of a performance * counter event. In particular it gives the encoding as well as * a mask telling which counters the event can be measured on. * * The mask is unused on SPARC-T4 and later. */ struct perf_event_map { u16 encoding; u8 pic_mask; #define PIC_NONE 0x00 #define PIC_UPPER 0x01 #define PIC_LOWER 0x02 }; /* Encode a perf_event_map entry into a long. */ static unsigned long perf_event_encode(const struct perf_event_map *pmap) { return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask; } static u8 perf_event_get_msk(unsigned long val) { return val & 0xff; } static u64 perf_event_get_enc(unsigned long val) { return val >> 16; } #define C(x) PERF_COUNT_HW_CACHE_##x #define CACHE_OP_UNSUPPORTED 0xfffe #define CACHE_OP_NONSENSE 0xffff typedef struct perf_event_map cache_map_t [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX]; struct sparc_pmu { const struct perf_event_map *(*event_map)(int); const cache_map_t *cache_map; int max_events; u32 (*read_pmc)(int); void (*write_pmc)(int, u64); int upper_shift; int lower_shift; int event_mask; int user_bit; int priv_bit; int hv_bit; int irq_bit; int upper_nop; int lower_nop; unsigned int flags; #define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001 #define SPARC_PMU_HAS_CONFLICTS 0x00000002 int max_hw_events; int num_pcrs; int num_pic_regs; }; static u32 sparc_default_read_pmc(int idx) { u64 val; val = pcr_ops->read_pic(0); if (idx == PIC_UPPER_INDEX) val >>= 32; return val & 0xffffffff; } static void sparc_default_write_pmc(int idx, u64 val) { u64 shift, mask, pic; shift = 0; if (idx == PIC_UPPER_INDEX) shift = 32; mask = ((u64) 0xffffffff) << shift; val <<= shift; pic = pcr_ops->read_pic(0); pic &= ~mask; pic |= val; pcr_ops->write_pic(0, pic); } static const struct perf_event_map ultra3_perfmon_event_map[] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER }, [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER }, [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER }, }; static const struct perf_event_map *ultra3_event_map(int event_id) { return &ultra3_perfmon_event_map[event_id]; } static const cache_map_t ultra3_cache_map = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, }, [C(RESULT_MISS)] = { 0x09, PIC_UPPER, }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER }, [C(RESULT_MISS)] = { 0x0a, PIC_UPPER }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, }, [C(RESULT_MISS)] = { 0x09, PIC_UPPER, }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, }, [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER }, [C(RESULT_MISS)] = { 0x0c, PIC_UPPER }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { 0x12, PIC_UPPER, }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { 0x11, PIC_UPPER, }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(BPU)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(NODE)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, }; static const struct sparc_pmu ultra3_pmu = { .event_map = ultra3_event_map, .cache_map = &ultra3_cache_map, .max_events = ARRAY_SIZE(ultra3_perfmon_event_map), .read_pmc = sparc_default_read_pmc, .write_pmc = sparc_default_write_pmc, .upper_shift = 11, .lower_shift = 4, .event_mask = 0x3f, .user_bit = PCR_UTRACE, .priv_bit = PCR_STRACE, .upper_nop = 0x1c, .lower_nop = 0x14, .flags = (SPARC_PMU_ALL_EXCLUDES_SAME | SPARC_PMU_HAS_CONFLICTS), .max_hw_events = 2, .num_pcrs = 1, .num_pic_regs = 1, }; /* Niagara1 is very limited. The upper PIC is hard-locked to count * only instructions, so it is free running which creates all kinds of * problems. Some hardware designs make one wonder if the creator * even looked at how this stuff gets used by software. */ static const struct perf_event_map niagara1_perfmon_event_map[] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER }, [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE }, [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER }, }; static const struct perf_event_map *niagara1_event_map(int event_id) { return &niagara1_perfmon_event_map[event_id]; } static const cache_map_t niagara1_cache_map = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { 0x03, PIC_LOWER, }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { 0x03, PIC_LOWER, }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER }, [C(RESULT_MISS)] = { 0x02, PIC_LOWER, }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { 0x07, PIC_LOWER, }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { 0x07, PIC_LOWER, }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { 0x05, PIC_LOWER, }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { 0x04, PIC_LOWER, }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(BPU)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(NODE)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, }; static const struct sparc_pmu niagara1_pmu = { .event_map = niagara1_event_map, .cache_map = &niagara1_cache_map, .max_events = ARRAY_SIZE(niagara1_perfmon_event_map), .read_pmc = sparc_default_read_pmc, .write_pmc = sparc_default_write_pmc, .upper_shift = 0, .lower_shift = 4, .event_mask = 0x7, .user_bit = PCR_UTRACE, .priv_bit = PCR_STRACE, .upper_nop = 0x0, .lower_nop = 0x0, .flags = (SPARC_PMU_ALL_EXCLUDES_SAME | SPARC_PMU_HAS_CONFLICTS), .max_hw_events = 2, .num_pcrs = 1, .num_pic_regs = 1, }; static const struct perf_event_map niagara2_perfmon_event_map[] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER }, [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER }, [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER }, }; static const struct perf_event_map *niagara2_event_map(int event_id) { return &niagara2_perfmon_event_map[event_id]; } static const cache_map_t niagara2_cache_map = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, }, [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, }, [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, }, [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, }, [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, }, [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(BPU)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(NODE)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, }; static const struct sparc_pmu niagara2_pmu = { .event_map = niagara2_event_map, .cache_map = &niagara2_cache_map, .max_events = ARRAY_SIZE(niagara2_perfmon_event_map), .read_pmc = sparc_default_read_pmc, .write_pmc = sparc_default_write_pmc, .upper_shift = 19, .lower_shift = 6, .event_mask = 0xfff, .user_bit = PCR_UTRACE, .priv_bit = PCR_STRACE, .hv_bit = PCR_N2_HTRACE, .irq_bit = 0x30, .upper_nop = 0x220, .lower_nop = 0x220, .flags = (SPARC_PMU_ALL_EXCLUDES_SAME | SPARC_PMU_HAS_CONFLICTS), .max_hw_events = 2, .num_pcrs = 1, .num_pic_regs = 1, }; static const struct perf_event_map niagara4_perfmon_event_map[] = { [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) }, [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f }, [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 }, [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 }, [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f }, }; static const struct perf_event_map *niagara4_event_map(int event_id) { return &niagara4_perfmon_event_map[event_id]; } static const cache_map_t niagara4_cache_map = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 }, [C(RESULT_MISS)] = { (16 << 6) | 0x07 }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 }, [C(RESULT_MISS)] = { (16 << 6) | 0x07 }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f }, [C(RESULT_MISS)] = { (11 << 6) | 0x03 }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 }, [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 }, [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { (17 << 6) | 0x3f }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { (6 << 6) | 0x3f }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(BPU)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, [C(NODE)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, }, }, }; static u32 sparc_vt_read_pmc(int idx) { u64 val = pcr_ops->read_pic(idx); return val & 0xffffffff; } static void sparc_vt_write_pmc(int idx, u64 val) { u64 pcr; /* There seems to be an internal latch on the overflow event * on SPARC-T4 that prevents it from triggering unless you * update the PIC exactly as we do here. The requirement * seems to be that you have to turn off event counting in the * PCR around the PIC update. * * For example, after the following sequence: * * 1) set PIC to -1 * 2) enable event counting and overflow reporting in PCR * 3) overflow triggers, softint 15 handler invoked * 4) clear OV bit in PCR * 5) write PIC to -1 * * a subsequent overflow event will not trigger. This * sequence works on SPARC-T3 and previous chips. */ pcr = pcr_ops->read_pcr(idx); pcr_ops->write_pcr(idx, PCR_N4_PICNPT); pcr_ops->write_pic(idx, val & 0xffffffff); pcr_ops->write_pcr(idx, pcr); } static const struct sparc_pmu niagara4_pmu = { .event_map = niagara4_event_map, .cache_map = &niagara4_cache_map, .max_events = ARRAY_SIZE(niagara4_perfmon_event_map), .read_pmc = sparc_vt_read_pmc, .write_pmc = sparc_vt_write_pmc, .upper_shift = 5, .lower_shift = 5, .event_mask = 0x7ff, .user_bit = PCR_N4_UTRACE, .priv_bit = PCR_N4_STRACE, /* We explicitly don't support hypervisor tracing. The T4 * generates the overflow event for precise events via a trap * which will not be generated (ie. it's completely lost) if * we happen to be in the hypervisor when the event triggers. * Essentially, the overflow event reporting is completely * unusable when you have hypervisor mode tracing enabled. */ .hv_bit = 0, .irq_bit = PCR_N4_TOE, .upper_nop = 0, .lower_nop = 0, .flags = 0, .max_hw_events = 4, .num_pcrs = 4, .num_pic_regs = 4, }; static const struct sparc_pmu *sparc_pmu __read_mostly; static u64 event_encoding(u64 event_id, int idx) { if (idx == PIC_UPPER_INDEX) event_id <<= sparc_pmu->upper_shift; else event_id <<= sparc_pmu->lower_shift; return event_id; } static u64 mask_for_index(int idx) { return event_encoding(sparc_pmu->event_mask, idx); } static u64 nop_for_index(int idx) { return event_encoding(idx == PIC_UPPER_INDEX ? sparc_pmu->upper_nop : sparc_pmu->lower_nop, idx); } static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx) { u64 enc, val, mask = mask_for_index(idx); int pcr_index = 0; if (sparc_pmu->num_pcrs > 1) pcr_index = idx; enc = perf_event_get_enc(cpuc->events[idx]); val = cpuc->pcr[pcr_index]; val &= ~mask; val |= event_encoding(enc, idx); cpuc->pcr[pcr_index] = val; pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]); } static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx) { u64 mask = mask_for_index(idx); u64 nop = nop_for_index(idx); int pcr_index = 0; u64 val; if (sparc_pmu->num_pcrs > 1) pcr_index = idx; val = cpuc->pcr[pcr_index]; val &= ~mask; val |= nop; cpuc->pcr[pcr_index] = val; pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]); } static u64 sparc_perf_event_update(struct perf_event *event, struct hw_perf_event *hwc, int idx) { int shift = 64 - 32; u64 prev_raw_count, new_raw_count; s64 delta; again: prev_raw_count = local64_read(&hwc->prev_count); new_raw_count = sparc_pmu->read_pmc(idx); if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; delta = (new_raw_count << shift) - (prev_raw_count << shift); delta >>= shift; local64_add(delta, &event->count); local64_sub(delta, &hwc->period_left); return new_raw_count; } static int sparc_perf_event_set_period(struct perf_event *event, struct hw_perf_event *hwc, int idx) { s64 left = local64_read(&hwc->period_left); s64 period = hwc->sample_period; int ret = 0; if (unlikely(left <= -period)) { left = period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (unlikely(left <= 0)) { left += period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (left > MAX_PERIOD) left = MAX_PERIOD; local64_set(&hwc->prev_count, (u64)-left); sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff); perf_event_update_userpage(event); return ret; } static void read_in_all_counters(struct cpu_hw_events *cpuc) { int i; for (i = 0; i < cpuc->n_events; i++) { struct perf_event *cp = cpuc->event[i]; if (cpuc->current_idx[i] != PIC_NO_INDEX && cpuc->current_idx[i] != cp->hw.idx) { sparc_perf_event_update(cp, &cp->hw, cpuc->current_idx[i]); cpuc->current_idx[i] = PIC_NO_INDEX; } } } /* On this PMU all PICs are programmed using a single PCR. Calculate * the combined control register value. * * For such chips we require that all of the events have the same * configuration, so just fetch the settings from the first entry. */ static void calculate_single_pcr(struct cpu_hw_events *cpuc) { int i; if (!cpuc->n_added) goto out; /* Assign to counters all unassigned events. */ for (i = 0; i < cpuc->n_events; i++) { struct perf_event *cp = cpuc->event[i]; struct hw_perf_event *hwc = &cp->hw; int idx = hwc->idx; u64 enc; if (cpuc->current_idx[i] != PIC_NO_INDEX) continue; sparc_perf_event_set_period(cp, hwc, idx); cpuc->current_idx[i] = idx; enc = perf_event_get_enc(cpuc->events[i]); cpuc->pcr[0] &= ~mask_for_index(idx); if (hwc->state & PERF_HES_STOPPED) cpuc->pcr[0] |= nop_for_index(idx); else cpuc->pcr[0] |= event_encoding(enc, idx); } out: cpuc->pcr[0] |= cpuc->event[0]->hw.config_base; } /* On this PMU each PIC has it's own PCR control register. */ static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc) { int i; if (!cpuc->n_added) goto out; for (i = 0; i < cpuc->n_events; i++) { struct perf_event *cp = cpuc->event[i]; struct hw_perf_event *hwc = &cp->hw; int idx = hwc->idx; u64 enc; if (cpuc->current_idx[i] != PIC_NO_INDEX) continue; sparc_perf_event_set_period(cp, hwc, idx); cpuc->current_idx[i] = idx; enc = perf_event_get_enc(cpuc->events[i]); cpuc->pcr[idx] &= ~mask_for_index(idx); if (hwc->state & PERF_HES_STOPPED) cpuc->pcr[idx] |= nop_for_index(idx); else cpuc->pcr[idx] |= event_encoding(enc, idx); } out: for (i = 0; i < cpuc->n_events; i++) { struct perf_event *cp = cpuc->event[i]; int idx = cp->hw.idx; cpuc->pcr[idx] |= cp->hw.config_base; } } /* If performance event entries have been added, move existing events * around (if necessary) and then assign new entries to counters. */ static void update_pcrs_for_enable(struct cpu_hw_events *cpuc) { if (cpuc->n_added) read_in_all_counters(cpuc); if (sparc_pmu->num_pcrs == 1) { calculate_single_pcr(cpuc); } else { calculate_multiple_pcrs(cpuc); } } static void sparc_pmu_enable(struct pmu *pmu) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); int i; if (cpuc->enabled) return; cpuc->enabled = 1; barrier(); if (cpuc->n_events) update_pcrs_for_enable(cpuc); for (i = 0; i < sparc_pmu->num_pcrs; i++) pcr_ops->write_pcr(i, cpuc->pcr[i]); } static void sparc_pmu_disable(struct pmu *pmu) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); int i; if (!cpuc->enabled) return; cpuc->enabled = 0; cpuc->n_added = 0; for (i = 0; i < sparc_pmu->num_pcrs; i++) { u64 val = cpuc->pcr[i]; val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit | sparc_pmu->hv_bit | sparc_pmu->irq_bit); cpuc->pcr[i] = val; pcr_ops->write_pcr(i, cpuc->pcr[i]); } } static int active_event_index(struct cpu_hw_events *cpuc, struct perf_event *event) { int i; for (i = 0; i < cpuc->n_events; i++) { if (cpuc->event[i] == event) break; } BUG_ON(i == cpuc->n_events); return cpuc->current_idx[i]; } static void sparc_pmu_start(struct perf_event *event, int flags) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); int idx = active_event_index(cpuc, event); if (flags & PERF_EF_RELOAD) { WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); sparc_perf_event_set_period(event, &event->hw, idx); } event->hw.state = 0; sparc_pmu_enable_event(cpuc, &event->hw, idx); } static void sparc_pmu_stop(struct perf_event *event, int flags) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); int idx = active_event_index(cpuc, event); if (!(event->hw.state & PERF_HES_STOPPED)) { sparc_pmu_disable_event(cpuc, &event->hw, idx); event->hw.state |= PERF_HES_STOPPED; } if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) { sparc_perf_event_update(event, &event->hw, idx); event->hw.state |= PERF_HES_UPTODATE; } } static void sparc_pmu_del(struct perf_event *event, int _flags) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); unsigned long flags; int i; local_irq_save(flags); perf_pmu_disable(event->pmu); for (i = 0; i < cpuc->n_events; i++) { if (event == cpuc->event[i]) { /* Absorb the final count and turn off the * event. */ sparc_pmu_stop(event, PERF_EF_UPDATE); /* Shift remaining entries down into * the existing slot. */ while (++i < cpuc->n_events) { cpuc->event[i - 1] = cpuc->event[i]; cpuc->events[i - 1] = cpuc->events[i]; cpuc->current_idx[i - 1] = cpuc->current_idx[i]; } perf_event_update_userpage(event); cpuc->n_events--; break; } } perf_pmu_enable(event->pmu); local_irq_restore(flags); } static void sparc_pmu_read(struct perf_event *event) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); int idx = active_event_index(cpuc, event); struct hw_perf_event *hwc = &event->hw; sparc_perf_event_update(event, hwc, idx); } static atomic_t active_events = ATOMIC_INIT(0); static DEFINE_MUTEX(pmc_grab_mutex); static void perf_stop_nmi_watchdog(void *unused) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); int i; stop_nmi_watchdog(NULL); for (i = 0; i < sparc_pmu->num_pcrs; i++) cpuc->pcr[i] = pcr_ops->read_pcr(i); } static void perf_event_grab_pmc(void) { if (atomic_inc_not_zero(&active_events)) return; mutex_lock(&pmc_grab_mutex); if (atomic_read(&active_events) == 0) { if (atomic_read(&nmi_active) > 0) { on_each_cpu(perf_stop_nmi_watchdog, NULL, 1); BUG_ON(atomic_read(&nmi_active) != 0); } atomic_inc(&active_events); } mutex_unlock(&pmc_grab_mutex); } static void perf_event_release_pmc(void) { if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) { if (atomic_read(&nmi_active) == 0) on_each_cpu(start_nmi_watchdog, NULL, 1); mutex_unlock(&pmc_grab_mutex); } } static const struct perf_event_map *sparc_map_cache_event(u64 config) { unsigned int cache_type, cache_op, cache_result; const struct perf_event_map *pmap; if (!sparc_pmu->cache_map) return ERR_PTR(-ENOENT); cache_type = (config >> 0) & 0xff; if (cache_type >= PERF_COUNT_HW_CACHE_MAX) return ERR_PTR(-EINVAL); cache_op = (config >> 8) & 0xff; if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) return ERR_PTR(-EINVAL); cache_result = (config >> 16) & 0xff; if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) return ERR_PTR(-EINVAL); pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]); if (pmap->encoding == CACHE_OP_UNSUPPORTED) return ERR_PTR(-ENOENT); if (pmap->encoding == CACHE_OP_NONSENSE) return ERR_PTR(-EINVAL); return pmap; } static void hw_perf_event_destroy(struct perf_event *event) { perf_event_release_pmc(); } /* Make sure all events can be scheduled into the hardware at * the same time. This is simplified by the fact that we only * need to support 2 simultaneous HW events. * * As a side effect, the evts[]->hw.idx values will be assigned * on success. These are pending indexes. When the events are * actually programmed into the chip, these values will propagate * to the per-cpu cpuc->current_idx[] slots, see the code in * maybe_change_configuration() for details. */ static int sparc_check_constraints(struct perf_event **evts, unsigned long *events, int n_ev) { u8 msk0 = 0, msk1 = 0; int idx0 = 0; /* This case is possible when we are invoked from * hw_perf_group_sched_in(). */ if (!n_ev) return 0; if (n_ev > sparc_pmu->max_hw_events) return -1; if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) { int i; for (i = 0; i < n_ev; i++) evts[i]->hw.idx = i; return 0; } msk0 = perf_event_get_msk(events[0]); if (n_ev == 1) { if (msk0 & PIC_LOWER) idx0 = 1; goto success; } BUG_ON(n_ev != 2); msk1 = perf_event_get_msk(events[1]); /* If both events can go on any counter, OK. */ if (msk0 == (PIC_UPPER | PIC_LOWER) && msk1 == (PIC_UPPER | PIC_LOWER)) goto success; /* If one event is limited to a specific counter, * and the other can go on both, OK. */ if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) && msk1 == (PIC_UPPER | PIC_LOWER)) { if (msk0 & PIC_LOWER) idx0 = 1; goto success; } if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) && msk0 == (PIC_UPPER | PIC_LOWER)) { if (msk1 & PIC_UPPER) idx0 = 1; goto success; } /* If the events are fixed to different counters, OK. */ if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) || (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) { if (msk0 & PIC_LOWER) idx0 = 1; goto success; } /* Otherwise, there is a conflict. */ return -1; success: evts[0]->hw.idx = idx0; if (n_ev == 2) evts[1]->hw.idx = idx0 ^ 1; return 0; } static int check_excludes(struct perf_event **evts, int n_prev, int n_new) { int eu = 0, ek = 0, eh = 0; struct perf_event *event; int i, n, first; if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME)) return 0; n = n_prev + n_new; if (n <= 1) return 0; first = 1; for (i = 0; i < n; i++) { event = evts[i]; if (first) { eu = event->attr.exclude_user; ek = event->attr.exclude_kernel; eh = event->attr.exclude_hv; first = 0; } else if (event->attr.exclude_user != eu || event->attr.exclude_kernel != ek || event->attr.exclude_hv != eh) { return -EAGAIN; } } return 0; } static int collect_events(struct perf_event *group, int max_count, struct perf_event *evts[], unsigned long *events, int *current_idx) { struct perf_event *event; int n = 0; if (!is_software_event(group)) { if (n >= max_count) return -1; evts[n] = group; events[n] = group->hw.event_base; current_idx[n++] = PIC_NO_INDEX; } list_for_each_entry(event, &group->sibling_list, group_entry) { if (!is_software_event(event) && event->state != PERF_EVENT_STATE_OFF) { if (n >= max_count) return -1; evts[n] = event; events[n] = event->hw.event_base; current_idx[n++] = PIC_NO_INDEX; } } return n; } static int sparc_pmu_add(struct perf_event *event, int ef_flags) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); int n0, ret = -EAGAIN; unsigned long flags; local_irq_save(flags); perf_pmu_disable(event->pmu); n0 = cpuc->n_events; if (n0 >= sparc_pmu->max_hw_events) goto out; cpuc->event[n0] = event; cpuc->events[n0] = event->hw.event_base; cpuc->current_idx[n0] = PIC_NO_INDEX; event->hw.state = PERF_HES_UPTODATE; if (!(ef_flags & PERF_EF_START)) event->hw.state |= PERF_HES_STOPPED; /* * If group events scheduling transaction was started, * skip the schedulability test here, it will be performed * at commit time(->commit_txn) as a whole */ if (cpuc->group_flag & PERF_EVENT_TXN) goto nocheck; if (check_excludes(cpuc->event, n0, 1)) goto out; if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1)) goto out; nocheck: cpuc->n_events++; cpuc->n_added++; ret = 0; out: perf_pmu_enable(event->pmu); local_irq_restore(flags); return ret; } static int sparc_pmu_event_init(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; struct perf_event *evts[MAX_HWEVENTS]; struct hw_perf_event *hwc = &event->hw; unsigned long events[MAX_HWEVENTS]; int current_idx_dmy[MAX_HWEVENTS]; const struct perf_event_map *pmap; int n; if (atomic_read(&nmi_active) < 0) return -ENODEV; /* does not support taken branch sampling */ if (has_branch_stack(event)) return -EOPNOTSUPP; switch (attr->type) { case PERF_TYPE_HARDWARE: if (attr->config >= sparc_pmu->max_events) return -EINVAL; pmap = sparc_pmu->event_map(attr->config); break; case PERF_TYPE_HW_CACHE: pmap = sparc_map_cache_event(attr->config); if (IS_ERR(pmap)) return PTR_ERR(pmap); break; case PERF_TYPE_RAW: pmap = NULL; break; default: return -ENOENT; } if (pmap) { hwc->event_base = perf_event_encode(pmap); } else { /* * User gives us "(encoding << 16) | pic_mask" for * PERF_TYPE_RAW events. */ hwc->event_base = attr->config; } /* We save the enable bits in the config_base. */ hwc->config_base = sparc_pmu->irq_bit; if (!attr->exclude_user) hwc->config_base |= sparc_pmu->user_bit; if (!attr->exclude_kernel) hwc->config_base |= sparc_pmu->priv_bit; if (!attr->exclude_hv) hwc->config_base |= sparc_pmu->hv_bit; n = 0; if (event->group_leader != event) { n = collect_events(event->group_leader, sparc_pmu->max_hw_events - 1, evts, events, current_idx_dmy); if (n < 0) return -EINVAL; } events[n] = hwc->event_base; evts[n] = event; if (check_excludes(evts, n, 1)) return -EINVAL; if (sparc_check_constraints(evts, events, n + 1)) return -EINVAL; hwc->idx = PIC_NO_INDEX; /* Try to do all error checking before this point, as unwinding * state after grabbing the PMC is difficult. */ perf_event_grab_pmc(); event->destroy = hw_perf_event_destroy; if (!hwc->sample_period) { hwc->sample_period = MAX_PERIOD; hwc->last_period = hwc->sample_period; local64_set(&hwc->period_left, hwc->sample_period); } return 0; } /* * Start group events scheduling transaction * Set the flag to make pmu::enable() not perform the * schedulability test, it will be performed at commit time */ static void sparc_pmu_start_txn(struct pmu *pmu) { struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); perf_pmu_disable(pmu); cpuhw->group_flag |= PERF_EVENT_TXN; } /* * Stop group events scheduling transaction * Clear the flag and pmu::enable() will perform the * schedulability test. */ static void sparc_pmu_cancel_txn(struct pmu *pmu) { struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); cpuhw->group_flag &= ~PERF_EVENT_TXN; perf_pmu_enable(pmu); } /* * Commit group events scheduling transaction * Perform the group schedulability test as a whole * Return 0 if success */ static int sparc_pmu_commit_txn(struct pmu *pmu) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); int n; if (!sparc_pmu) return -EINVAL; cpuc = &__get_cpu_var(cpu_hw_events); n = cpuc->n_events; if (check_excludes(cpuc->event, 0, n)) return -EINVAL; if (sparc_check_constraints(cpuc->event, cpuc->events, n)) return -EAGAIN; cpuc->group_flag &= ~PERF_EVENT_TXN; perf_pmu_enable(pmu); return 0; } static struct pmu pmu = { .pmu_enable = sparc_pmu_enable, .pmu_disable = sparc_pmu_disable, .event_init = sparc_pmu_event_init, .add = sparc_pmu_add, .del = sparc_pmu_del, .start = sparc_pmu_start, .stop = sparc_pmu_stop, .read = sparc_pmu_read, .start_txn = sparc_pmu_start_txn, .cancel_txn = sparc_pmu_cancel_txn, .commit_txn = sparc_pmu_commit_txn, }; void perf_event_print_debug(void) { unsigned long flags; int cpu, i; if (!sparc_pmu) return; local_irq_save(flags); cpu = smp_processor_id(); pr_info("\n"); for (i = 0; i < sparc_pmu->num_pcrs; i++) pr_info("CPU#%d: PCR%d[%016llx]\n", cpu, i, pcr_ops->read_pcr(i)); for (i = 0; i < sparc_pmu->num_pic_regs; i++) pr_info("CPU#%d: PIC%d[%016llx]\n", cpu, i, pcr_ops->read_pic(i)); local_irq_restore(flags); } static int __kprobes perf_event_nmi_handler(struct notifier_block *self, unsigned long cmd, void *__args) { struct die_args *args = __args; struct perf_sample_data data; struct cpu_hw_events *cpuc; struct pt_regs *regs; int i; if (!atomic_read(&active_events)) return NOTIFY_DONE; switch (cmd) { case DIE_NMI: break; default: return NOTIFY_DONE; } regs = args->regs; cpuc = &__get_cpu_var(cpu_hw_events); /* If the PMU has the TOE IRQ enable bits, we need to do a * dummy write to the %pcr to clear the overflow bits and thus * the interrupt. * * Do this before we peek at the counters to determine * overflow so we don't lose any events. */ if (sparc_pmu->irq_bit && sparc_pmu->num_pcrs == 1) pcr_ops->write_pcr(0, cpuc->pcr[0]); for (i = 0; i < cpuc->n_events; i++) { struct perf_event *event = cpuc->event[i]; int idx = cpuc->current_idx[i]; struct hw_perf_event *hwc; u64 val; if (sparc_pmu->irq_bit && sparc_pmu->num_pcrs > 1) pcr_ops->write_pcr(idx, cpuc->pcr[idx]); hwc = &event->hw; val = sparc_perf_event_update(event, hwc, idx); if (val & (1ULL << 31)) continue; perf_sample_data_init(&data, 0, hwc->last_period); if (!sparc_perf_event_set_period(event, hwc, idx)) continue; if (perf_event_overflow(event, &data, regs)) sparc_pmu_stop(event, 0); } return NOTIFY_STOP; } static __read_mostly struct notifier_block perf_event_nmi_notifier = { .notifier_call = perf_event_nmi_handler, }; static bool __init supported_pmu(void) { if (!strcmp(sparc_pmu_type, "ultra3") || !strcmp(sparc_pmu_type, "ultra3+") || !strcmp(sparc_pmu_type, "ultra3i") || !strcmp(sparc_pmu_type, "ultra4+")) { sparc_pmu = &ultra3_pmu; return true; } if (!strcmp(sparc_pmu_type, "niagara")) { sparc_pmu = &niagara1_pmu; return true; } if (!strcmp(sparc_pmu_type, "niagara2") || !strcmp(sparc_pmu_type, "niagara3")) { sparc_pmu = &niagara2_pmu; return true; } if (!strcmp(sparc_pmu_type, "niagara4") || !strcmp(sparc_pmu_type, "niagara5")) { sparc_pmu = &niagara4_pmu; return true; } return false; } static int __init init_hw_perf_events(void) { int err; pr_info("Performance events: "); err = pcr_arch_init(); if (err || !supported_pmu()) { pr_cont("No support for PMU type '%s'\n", sparc_pmu_type); return 0; } pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type); perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); register_die_notifier(&perf_event_nmi_notifier); return 0; } pure_initcall(init_hw_perf_events); void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs) { unsigned long ksp, fp; #ifdef CONFIG_FUNCTION_GRAPH_TRACER int graph = 0; #endif stack_trace_flush(); perf_callchain_store(entry, regs->tpc); ksp = regs->u_regs[UREG_I6]; fp = ksp + STACK_BIAS; do { struct sparc_stackf *sf; struct pt_regs *regs; unsigned long pc; if (!kstack_valid(current_thread_info(), fp)) break; sf = (struct sparc_stackf *) fp; regs = (struct pt_regs *) (sf + 1); if (kstack_is_trap_frame(current_thread_info(), regs)) { if (user_mode(regs)) break; pc = regs->tpc; fp = regs->u_regs[UREG_I6] + STACK_BIAS; } else { pc = sf->callers_pc; fp = (unsigned long)sf->fp + STACK_BIAS; } perf_callchain_store(entry, pc); #ifdef CONFIG_FUNCTION_GRAPH_TRACER if ((pc + 8UL) == (unsigned long) &return_to_handler) { int index = current->curr_ret_stack; if (current->ret_stack && index >= graph) { pc = current->ret_stack[index - graph].ret; perf_callchain_store(entry, pc); graph++; } } #endif } while (entry->nr < PERF_MAX_STACK_DEPTH); } static void perf_callchain_user_64(struct perf_callchain_entry *entry, struct pt_regs *regs) { unsigned long ufp; ufp = regs->u_regs[UREG_I6] + STACK_BIAS; do { struct sparc_stackf __user *usf; struct sparc_stackf sf; unsigned long pc; usf = (struct sparc_stackf __user *)ufp; if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) break; pc = sf.callers_pc; ufp = (unsigned long)sf.fp + STACK_BIAS; perf_callchain_store(entry, pc); } while (entry->nr < PERF_MAX_STACK_DEPTH); } static void perf_callchain_user_32(struct perf_callchain_entry *entry, struct pt_regs *regs) { unsigned long ufp; ufp = regs->u_regs[UREG_I6] & 0xffffffffUL; do { unsigned long pc; if (thread32_stack_is_64bit(ufp)) { struct sparc_stackf __user *usf; struct sparc_stackf sf; ufp += STACK_BIAS; usf = (struct sparc_stackf __user *)ufp; if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) break; pc = sf.callers_pc & 0xffffffff; ufp = ((unsigned long) sf.fp) & 0xffffffff; } else { struct sparc_stackf32 __user *usf; struct sparc_stackf32 sf; usf = (struct sparc_stackf32 __user *)ufp; if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) break; pc = sf.callers_pc; ufp = (unsigned long)sf.fp; } perf_callchain_store(entry, pc); } while (entry->nr < PERF_MAX_STACK_DEPTH); } void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs) { perf_callchain_store(entry, regs->tpc); if (!current->mm) return; flushw_user(); if (test_thread_flag(TIF_32BIT)) perf_callchain_user_32(entry, regs); else perf_callchain_user_64(entry, regs); }