/* * Carsten Langgaard, carstenl@mips.com * Copyright (C) 2000, 2001, 2004 MIPS Technologies, Inc. * Copyright (C) 2001 Ralf Baechle * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. * * Routines for generic manipulation of the interrupts found on the MIPS * Malta board. * The interrupt controller is located in the South Bridge a PIIX4 device * with two internal 82C95 interrupt controllers. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int gcmp_present = -1; int gic_present; static unsigned long _msc01_biu_base; static unsigned long _gcmp_base; static unsigned int ipi_map[NR_CPUS]; static DEFINE_SPINLOCK(mips_irq_lock); static inline int mips_pcibios_iack(void) { int irq; u32 dummy; /* * Determine highest priority pending interrupt by performing * a PCI Interrupt Acknowledge cycle. */ switch (mips_revision_sconid) { case MIPS_REVISION_SCON_SOCIT: case MIPS_REVISION_SCON_ROCIT: case MIPS_REVISION_SCON_SOCITSC: case MIPS_REVISION_SCON_SOCITSCP: MSC_READ(MSC01_PCI_IACK, irq); irq &= 0xff; break; case MIPS_REVISION_SCON_GT64120: irq = GT_READ(GT_PCI0_IACK_OFS); irq &= 0xff; break; case MIPS_REVISION_SCON_BONITO: /* The following will generate a PCI IACK cycle on the * Bonito controller. It's a little bit kludgy, but it * was the easiest way to implement it in hardware at * the given time. */ BONITO_PCIMAP_CFG = 0x20000; /* Flush Bonito register block */ dummy = BONITO_PCIMAP_CFG; iob(); /* sync */ irq = readl((u32 *)_pcictrl_bonito_pcicfg); iob(); /* sync */ irq &= 0xff; BONITO_PCIMAP_CFG = 0; break; default: printk(KERN_WARNING "Unknown system controller.\n"); return -1; } return irq; } static inline int get_int(void) { unsigned long flags; int irq; spin_lock_irqsave(&mips_irq_lock, flags); irq = mips_pcibios_iack(); /* * The only way we can decide if an interrupt is spurious * is by checking the 8259 registers. This needs a spinlock * on an SMP system, so leave it up to the generic code... */ spin_unlock_irqrestore(&mips_irq_lock, flags); return irq; } static void malta_hw0_irqdispatch(void) { int irq; irq = get_int(); if (irq < 0) { /* interrupt has already been cleared */ return; } do_IRQ(MALTA_INT_BASE + irq); } static void malta_ipi_irqdispatch(void) { int irq; irq = gic_get_int(); if (irq < 0) return; /* interrupt has already been cleared */ do_IRQ(MIPS_GIC_IRQ_BASE + irq); } static void corehi_irqdispatch(void) { unsigned int intedge, intsteer, pcicmd, pcibadaddr; unsigned int pcimstat, intisr, inten, intpol; unsigned int intrcause, datalo, datahi; struct pt_regs *regs = get_irq_regs(); printk(KERN_EMERG "CoreHI interrupt, shouldn't happen, we die here!\n"); printk(KERN_EMERG "epc : %08lx\nStatus: %08lx\n" "Cause : %08lx\nbadVaddr : %08lx\n", regs->cp0_epc, regs->cp0_status, regs->cp0_cause, regs->cp0_badvaddr); /* Read all the registers and then print them as there is a problem with interspersed printk's upsetting the Bonito controller. Do it for the others too. */ switch (mips_revision_sconid) { case MIPS_REVISION_SCON_SOCIT: case MIPS_REVISION_SCON_ROCIT: case MIPS_REVISION_SCON_SOCITSC: case MIPS_REVISION_SCON_SOCITSCP: ll_msc_irq(); break; case MIPS_REVISION_SCON_GT64120: intrcause = GT_READ(GT_INTRCAUSE_OFS); datalo = GT_READ(GT_CPUERR_ADDRLO_OFS); datahi = GT_READ(GT_CPUERR_ADDRHI_OFS); printk(KERN_EMERG "GT_INTRCAUSE = %08x\n", intrcause); printk(KERN_EMERG "GT_CPUERR_ADDR = %02x%08x\n", datahi, datalo); break; case MIPS_REVISION_SCON_BONITO: pcibadaddr = BONITO_PCIBADADDR; pcimstat = BONITO_PCIMSTAT; intisr = BONITO_INTISR; inten = BONITO_INTEN; intpol = BONITO_INTPOL; intedge = BONITO_INTEDGE; intsteer = BONITO_INTSTEER; pcicmd = BONITO_PCICMD; printk(KERN_EMERG "BONITO_INTISR = %08x\n", intisr); printk(KERN_EMERG "BONITO_INTEN = %08x\n", inten); printk(KERN_EMERG "BONITO_INTPOL = %08x\n", intpol); printk(KERN_EMERG "BONITO_INTEDGE = %08x\n", intedge); printk(KERN_EMERG "BONITO_INTSTEER = %08x\n", intsteer); printk(KERN_EMERG "BONITO_PCICMD = %08x\n", pcicmd); printk(KERN_EMERG "BONITO_PCIBADADDR = %08x\n", pcibadaddr); printk(KERN_EMERG "BONITO_PCIMSTAT = %08x\n", pcimstat); break; } die("CoreHi interrupt", regs); } static inline int clz(unsigned long x) { __asm__( " .set push \n" " .set mips32 \n" " clz %0, %1 \n" " .set pop \n" : "=r" (x) : "r" (x)); return x; } /* * Version of ffs that only looks at bits 12..15. */ static inline unsigned int irq_ffs(unsigned int pending) { #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) return -clz(pending) + 31 - CAUSEB_IP; #else unsigned int a0 = 7; unsigned int t0; t0 = pending & 0xf000; t0 = t0 < 1; t0 = t0 << 2; a0 = a0 - t0; pending = pending << t0; t0 = pending & 0xc000; t0 = t0 < 1; t0 = t0 << 1; a0 = a0 - t0; pending = pending << t0; t0 = pending & 0x8000; t0 = t0 < 1; /* t0 = t0 << 2; */ a0 = a0 - t0; /* pending = pending << t0; */ return a0; #endif } /* * IRQs on the Malta board look basically (barring software IRQs which we * don't use at all and all external interrupt sources are combined together * on hardware interrupt 0 (MIPS IRQ 2)) like: * * MIPS IRQ Source * -------- ------ * 0 Software (ignored) * 1 Software (ignored) * 2 Combined hardware interrupt (hw0) * 3 Hardware (ignored) * 4 Hardware (ignored) * 5 Hardware (ignored) * 6 Hardware (ignored) * 7 R4k timer (what we use) * * We handle the IRQ according to _our_ priority which is: * * Highest ---- R4k Timer * Lowest ---- Combined hardware interrupt * * then we just return, if multiple IRQs are pending then we will just take * another exception, big deal. */ asmlinkage void plat_irq_dispatch(void) { unsigned int pending = read_c0_cause() & read_c0_status() & ST0_IM; int irq; irq = irq_ffs(pending); if (irq == MIPSCPU_INT_I8259A) malta_hw0_irqdispatch(); else if (gic_present && ((1 << irq) & ipi_map[smp_processor_id()])) malta_ipi_irqdispatch(); else if (irq >= 0) do_IRQ(MIPS_CPU_IRQ_BASE + irq); else spurious_interrupt(); } #ifdef CONFIG_MIPS_MT_SMP #define GIC_MIPS_CPU_IPI_RESCHED_IRQ 3 #define GIC_MIPS_CPU_IPI_CALL_IRQ 4 #define MIPS_CPU_IPI_RESCHED_IRQ 0 /* SW int 0 for resched */ #define C_RESCHED C_SW0 #define MIPS_CPU_IPI_CALL_IRQ 1 /* SW int 1 for resched */ #define C_CALL C_SW1 static int cpu_ipi_resched_irq, cpu_ipi_call_irq; static void ipi_resched_dispatch(void) { do_IRQ(MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_RESCHED_IRQ); } static void ipi_call_dispatch(void) { do_IRQ(MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_CALL_IRQ); } static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) { return IRQ_HANDLED; } static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) { smp_call_function_interrupt(); return IRQ_HANDLED; } static struct irqaction irq_resched = { .handler = ipi_resched_interrupt, .flags = IRQF_DISABLED|IRQF_PERCPU, .name = "IPI_resched" }; static struct irqaction irq_call = { .handler = ipi_call_interrupt, .flags = IRQF_DISABLED|IRQF_PERCPU, .name = "IPI_call" }; static int gic_resched_int_base; static int gic_call_int_base; #define GIC_RESCHED_INT(cpu) (gic_resched_int_base+(cpu)) #define GIC_CALL_INT(cpu) (gic_call_int_base+(cpu)) #endif /* CONFIG_MIPS_MT_SMP */ static struct irqaction i8259irq = { .handler = no_action, .name = "XT-PIC cascade" }; static struct irqaction corehi_irqaction = { .handler = no_action, .name = "CoreHi" }; static msc_irqmap_t __initdata msc_irqmap[] = { {MSC01C_INT_TMR, MSC01_IRQ_EDGE, 0}, {MSC01C_INT_PCI, MSC01_IRQ_LEVEL, 0}, }; static int __initdata msc_nr_irqs = ARRAY_SIZE(msc_irqmap); static msc_irqmap_t __initdata msc_eicirqmap[] = { {MSC01E_INT_SW0, MSC01_IRQ_LEVEL, 0}, {MSC01E_INT_SW1, MSC01_IRQ_LEVEL, 0}, {MSC01E_INT_I8259A, MSC01_IRQ_LEVEL, 0}, {MSC01E_INT_SMI, MSC01_IRQ_LEVEL, 0}, {MSC01E_INT_COREHI, MSC01_IRQ_LEVEL, 0}, {MSC01E_INT_CORELO, MSC01_IRQ_LEVEL, 0}, {MSC01E_INT_TMR, MSC01_IRQ_EDGE, 0}, {MSC01E_INT_PCI, MSC01_IRQ_LEVEL, 0}, {MSC01E_INT_PERFCTR, MSC01_IRQ_LEVEL, 0}, {MSC01E_INT_CPUCTR, MSC01_IRQ_LEVEL, 0} }; static int __initdata msc_nr_eicirqs = ARRAY_SIZE(msc_eicirqmap); #if defined(CONFIG_MIPS_MT_SMP) /* * This GIC specific tabular array defines the association between External * Interrupts and CPUs/Core Interrupts. The nature of the External * Interrupts is also defined here - polarity/trigger. */ static struct gic_intr_map gic_intr_map[GIC_NUM_INTRS] = { { GIC_EXT_INTR(0), X, X, X, X, 0 }, { GIC_EXT_INTR(1), X, X, X, X, 0 }, { GIC_EXT_INTR(2), X, X, X, X, 0 }, { GIC_EXT_INTR(3), 0, GIC_CPU_INT0, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, { GIC_EXT_INTR(4), 0, GIC_CPU_INT1, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, { GIC_EXT_INTR(5), 0, GIC_CPU_INT2, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, { GIC_EXT_INTR(6), 0, GIC_CPU_INT3, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, { GIC_EXT_INTR(7), 0, GIC_CPU_INT4, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, { GIC_EXT_INTR(8), 0, GIC_CPU_INT3, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, { GIC_EXT_INTR(9), 0, GIC_CPU_INT3, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, { GIC_EXT_INTR(10), X, X, X, X, 0 }, { GIC_EXT_INTR(11), X, X, X, X, 0 }, { GIC_EXT_INTR(12), 0, GIC_CPU_INT3, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, { GIC_EXT_INTR(13), 0, GIC_MAP_TO_NMI_MSK, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, { GIC_EXT_INTR(14), 0, GIC_MAP_TO_NMI_MSK, GIC_POL_POS, GIC_TRIG_LEVEL, 0 }, { GIC_EXT_INTR(15), X, X, X, X, 0 }, /* This is the end of the general interrupts now we do IPI ones */ }; #endif /* * GCMP needs to be detected before any SMP initialisation */ static int __init gcmp_probe(unsigned long addr, unsigned long size) { if (gcmp_present >= 0) return gcmp_present; _gcmp_base = (unsigned long) ioremap_nocache(GCMP_BASE_ADDR, GCMP_ADDRSPACE_SZ); _msc01_biu_base = (unsigned long) ioremap_nocache(MSC01_BIU_REG_BASE, MSC01_BIU_ADDRSPACE_SZ); gcmp_present = (GCMPGCB(GCMPB) & GCMP_GCB_GCMPB_GCMPBASE_MSK) == GCMP_BASE_ADDR; if (gcmp_present) printk(KERN_DEBUG "GCMP present\n"); return gcmp_present; } #if defined(CONFIG_MIPS_MT_SMP) static void __init fill_ipi_map1(int baseintr, int cpu, int cpupin) { int intr = baseintr + cpu; gic_intr_map[intr].intrnum = GIC_EXT_INTR(intr); gic_intr_map[intr].cpunum = cpu; gic_intr_map[intr].pin = cpupin; gic_intr_map[intr].polarity = GIC_POL_POS; gic_intr_map[intr].trigtype = GIC_TRIG_EDGE; gic_intr_map[intr].ipiflag = 1; ipi_map[cpu] |= (1 << (cpupin + 2)); } static void __init fill_ipi_map(void) { int cpu; for (cpu = 0; cpu < NR_CPUS; cpu++) { fill_ipi_map1(gic_resched_int_base, cpu, GIC_CPU_INT1); fill_ipi_map1(gic_call_int_base, cpu, GIC_CPU_INT2); } } #endif void __init arch_init_irq(void) { int gic_present, gcmp_present; init_i8259_irqs(); if (!cpu_has_veic) mips_cpu_irq_init(); gcmp_present = gcmp_probe(GCMP_BASE_ADDR, GCMP_ADDRSPACE_SZ); if (gcmp_present) { GCMPGCB(GICBA) = GIC_BASE_ADDR | GCMP_GCB_GICBA_EN_MSK; gic_present = 1; } else { _msc01_biu_base = (unsigned long) ioremap_nocache(MSC01_BIU_REG_BASE, MSC01_BIU_ADDRSPACE_SZ); gic_present = (REG(_msc01_biu_base, MSC01_SC_CFG) & MSC01_SC_CFG_GICPRES_MSK) >> MSC01_SC_CFG_GICPRES_SHF; } if (gic_present) printk(KERN_DEBUG "GIC present\n"); switch (mips_revision_sconid) { case MIPS_REVISION_SCON_SOCIT: case MIPS_REVISION_SCON_ROCIT: if (cpu_has_veic) init_msc_irqs(MIPS_MSC01_IC_REG_BASE, MSC01E_INT_BASE, msc_eicirqmap, msc_nr_eicirqs); else init_msc_irqs(MIPS_MSC01_IC_REG_BASE, MSC01C_INT_BASE, msc_irqmap, msc_nr_irqs); break; case MIPS_REVISION_SCON_SOCITSC: case MIPS_REVISION_SCON_SOCITSCP: if (cpu_has_veic) init_msc_irqs(MIPS_SOCITSC_IC_REG_BASE, MSC01E_INT_BASE, msc_eicirqmap, msc_nr_eicirqs); else init_msc_irqs(MIPS_SOCITSC_IC_REG_BASE, MSC01C_INT_BASE, msc_irqmap, msc_nr_irqs); } if (cpu_has_veic) { set_vi_handler(MSC01E_INT_I8259A, malta_hw0_irqdispatch); set_vi_handler(MSC01E_INT_COREHI, corehi_irqdispatch); setup_irq(MSC01E_INT_BASE+MSC01E_INT_I8259A, &i8259irq); setup_irq(MSC01E_INT_BASE+MSC01E_INT_COREHI, &corehi_irqaction); } else if (cpu_has_vint) { set_vi_handler(MIPSCPU_INT_I8259A, malta_hw0_irqdispatch); set_vi_handler(MIPSCPU_INT_COREHI, corehi_irqdispatch); #ifdef CONFIG_MIPS_MT_SMTC setup_irq_smtc(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_I8259A, &i8259irq, (0x100 << MIPSCPU_INT_I8259A)); setup_irq_smtc(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_COREHI, &corehi_irqaction, (0x100 << MIPSCPU_INT_COREHI)); /* * Temporary hack to ensure that the subsidiary device * interrupts coing in via the i8259A, but associated * with low IRQ numbers, will restore the Status.IM * value associated with the i8259A. */ { int i; for (i = 0; i < 16; i++) irq_hwmask[i] = (0x100 << MIPSCPU_INT_I8259A); } #else /* Not SMTC */ setup_irq(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_I8259A, &i8259irq); setup_irq(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_COREHI, &corehi_irqaction); #endif /* CONFIG_MIPS_MT_SMTC */ } else { setup_irq(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_I8259A, &i8259irq); setup_irq(MIPS_CPU_IRQ_BASE+MIPSCPU_INT_COREHI, &corehi_irqaction); } #if defined(CONFIG_MIPS_MT_SMP) if (gic_present) { /* FIXME */ int i; gic_call_int_base = GIC_NUM_INTRS - NR_CPUS; gic_resched_int_base = gic_call_int_base - NR_CPUS; fill_ipi_map(); gic_init(GIC_BASE_ADDR, GIC_ADDRSPACE_SZ, gic_intr_map, ARRAY_SIZE(gic_intr_map), MIPS_GIC_IRQ_BASE); if (!gcmp_present) { /* Enable the GIC */ i = REG(_msc01_biu_base, MSC01_SC_CFG); REG(_msc01_biu_base, MSC01_SC_CFG) = (i | (0x1 << MSC01_SC_CFG_GICENA_SHF)); pr_debug("GIC Enabled\n"); } /* set up ipi interrupts */ if (cpu_has_vint) { set_vi_handler(MIPSCPU_INT_IPI0, malta_ipi_irqdispatch); set_vi_handler(MIPSCPU_INT_IPI1, malta_ipi_irqdispatch); } /* Argh.. this really needs sorting out.. */ printk("CPU%d: status register was %08x\n", smp_processor_id(), read_c0_status()); write_c0_status(read_c0_status() | STATUSF_IP3 | STATUSF_IP4); printk("CPU%d: status register now %08x\n", smp_processor_id(), read_c0_status()); write_c0_status(0x1100dc00); printk("CPU%d: status register frc %08x\n", smp_processor_id(), read_c0_status()); for (i = 0; i < NR_CPUS; i++) { setup_irq(MIPS_GIC_IRQ_BASE + GIC_RESCHED_INT(i), &irq_resched); setup_irq(MIPS_GIC_IRQ_BASE + GIC_CALL_INT(i), &irq_call); set_irq_handler(MIPS_GIC_IRQ_BASE + GIC_RESCHED_INT(i), handle_percpu_irq); set_irq_handler(MIPS_GIC_IRQ_BASE + GIC_CALL_INT(i), handle_percpu_irq); } } else { /* set up ipi interrupts */ if (cpu_has_veic) { set_vi_handler (MSC01E_INT_SW0, ipi_resched_dispatch); set_vi_handler (MSC01E_INT_SW1, ipi_call_dispatch); cpu_ipi_resched_irq = MSC01E_INT_SW0; cpu_ipi_call_irq = MSC01E_INT_SW1; } else { if (cpu_has_vint) { set_vi_handler (MIPS_CPU_IPI_RESCHED_IRQ, ipi_resched_dispatch); set_vi_handler (MIPS_CPU_IPI_CALL_IRQ, ipi_call_dispatch); } cpu_ipi_resched_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_RESCHED_IRQ; cpu_ipi_call_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_CALL_IRQ; } setup_irq(cpu_ipi_resched_irq, &irq_resched); setup_irq(cpu_ipi_call_irq, &irq_call); set_irq_handler(cpu_ipi_resched_irq, handle_percpu_irq); set_irq_handler(cpu_ipi_call_irq, handle_percpu_irq); } #endif } void malta_be_init(void) { if (gcmp_present) { /* Could change CM error mask register */ } } static char *tr[8] = { "mem", "gcr", "gic", "mmio", "0x04", "0x05", "0x06", "0x07" }; static char *mcmd[32] = { [0x00] = "0x00", [0x01] = "Legacy Write", [0x02] = "Legacy Read", [0x03] = "0x03", [0x04] = "0x04", [0x05] = "0x05", [0x06] = "0x06", [0x07] = "0x07", [0x08] = "Coherent Read Own", [0x09] = "Coherent Read Share", [0x0a] = "Coherent Read Discard", [0x0b] = "Coherent Ready Share Always", [0x0c] = "Coherent Upgrade", [0x0d] = "Coherent Writeback", [0x0e] = "0x0e", [0x0f] = "0x0f", [0x10] = "Coherent Copyback", [0x11] = "Coherent Copyback Invalidate", [0x12] = "Coherent Invalidate", [0x13] = "Coherent Write Invalidate", [0x14] = "Coherent Completion Sync", [0x15] = "0x15", [0x16] = "0x16", [0x17] = "0x17", [0x18] = "0x18", [0x19] = "0x19", [0x1a] = "0x1a", [0x1b] = "0x1b", [0x1c] = "0x1c", [0x1d] = "0x1d", [0x1e] = "0x1e", [0x1f] = "0x1f" }; static char *core[8] = { "Invalid/OK", "Invalid/Data", "Shared/OK", "Shared/Data", "Modified/OK", "Modified/Data", "Exclusive/OK", "Exclusive/Data" }; static char *causes[32] = { "None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR", "COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07", "0x08", "0x09", "0x0a", "0x0b", "0x0c", "0x0d", "0x0e", "0x0f", "0x10", "0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "INTVN_WR_ERR", "INTVN_RD_ERR", "0x19", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f" }; int malta_be_handler(struct pt_regs *regs, int is_fixup) { /* This duplicates the handling in do_be which seems wrong */ int retval = is_fixup ? MIPS_BE_FIXUP : MIPS_BE_FATAL; if (gcmp_present) { unsigned long cm_error = GCMPGCB(GCMEC); unsigned long cm_addr = GCMPGCB(GCMEA); unsigned long cm_other = GCMPGCB(GCMEO); unsigned long cause, ocause; char buf[256]; cause = (cm_error & GCMP_GCB_GMEC_ERROR_TYPE_MSK); if (cause != 0) { cause >>= GCMP_GCB_GMEC_ERROR_TYPE_SHF; if (cause < 16) { unsigned long cca_bits = (cm_error >> 15) & 7; unsigned long tr_bits = (cm_error >> 12) & 7; unsigned long mcmd_bits = (cm_error >> 7) & 0x1f; unsigned long stag_bits = (cm_error >> 3) & 15; unsigned long sport_bits = (cm_error >> 0) & 7; snprintf(buf, sizeof(buf), "CCA=%lu TR=%s MCmd=%s STag=%lu " "SPort=%lu\n", cca_bits, tr[tr_bits], mcmd[mcmd_bits], stag_bits, sport_bits); } else { /* glob state & sresp together */ unsigned long c3_bits = (cm_error >> 18) & 7; unsigned long c2_bits = (cm_error >> 15) & 7; unsigned long c1_bits = (cm_error >> 12) & 7; unsigned long c0_bits = (cm_error >> 9) & 7; unsigned long sc_bit = (cm_error >> 8) & 1; unsigned long mcmd_bits = (cm_error >> 3) & 0x1f; unsigned long sport_bits = (cm_error >> 0) & 7; snprintf(buf, sizeof(buf), "C3=%s C2=%s C1=%s C0=%s SC=%s " "MCmd=%s SPort=%lu\n", core[c3_bits], core[c2_bits], core[c1_bits], core[c0_bits], sc_bit ? "True" : "False", mcmd[mcmd_bits], sport_bits); } ocause = (cm_other & GCMP_GCB_GMEO_ERROR_2ND_MSK) >> GCMP_GCB_GMEO_ERROR_2ND_SHF; printk("CM_ERROR=%08lx %s <%s>\n", cm_error, causes[cause], buf); printk("CM_ADDR =%08lx\n", cm_addr); printk("CM_OTHER=%08lx %s\n", cm_other, causes[ocause]); /* reprime cause register */ GCMPGCB(GCMEC) = 0; } } return retval; }