From cf9efce0ce3136fa076f53e53154e98455229514 Mon Sep 17 00:00:00 2001 From: Paul Mackerras Date: Thu, 26 Aug 2010 19:56:43 +0000 Subject: powerpc: Account time using timebase rather than PURR Currently, when CONFIG_VIRT_CPU_ACCOUNTING is enabled, we use the PURR register for measuring the user and system time used by processes, as well as other related times such as hardirq and softirq times. This turns out to be quite confusing for users because it means that a program will often be measured as taking less time when run on a multi-threaded processor (SMT2 or SMT4 mode) than it does when run on a single-threaded processor (ST mode), even though the program takes longer to finish. The discrepancy is accounted for as stolen time, which is also confusing, particularly when there are no other partitions running. This changes the accounting to use the timebase instead, meaning that the reported user and system times are the actual number of real-time seconds that the program was executing on the processor thread, regardless of which SMT mode the processor is in. Thus a program will generally show greater user and system times when run on a multi-threaded processor than on a single-threaded processor. On pSeries systems on POWER5 or later processors, we measure the stolen time (time when this partition wasn't running) using the hypervisor dispatch trace log. We check for new entries in the log on every entry from user mode and on every transition from kernel process context to soft or hard IRQ context (i.e. when account_system_vtime() gets called). So that we can correctly distinguish time stolen from user time and time stolen from system time, without having to check the log on every exit to user mode, we store separate timestamps for exit to user mode and entry from user mode. On systems that have a SPURR (POWER6 and POWER7), we read the SPURR in account_system_vtime() (as before), and then apportion the SPURR ticks since the last time we read it between scaled user time and scaled system time according to the relative proportions of user time and system time over the same interval. This avoids having to read the SPURR on every kernel entry and exit. On systems that have PURR but not SPURR (i.e., POWER5), we do the same using the PURR rather than the SPURR. This disables the DTL user interface in /sys/debug/kernel/powerpc/dtl for now since it conflicts with the use of the dispatch trace log by the time accounting code. Signed-off-by: Paul Mackerras Signed-off-by: Benjamin Herrenschmidt --- arch/powerpc/include/asm/paca.h | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) (limited to 'arch/powerpc/include/asm/paca.h') diff --git a/arch/powerpc/include/asm/paca.h b/arch/powerpc/include/asm/paca.h index 1ff6662f7faf..6af6c1613409 100644 --- a/arch/powerpc/include/asm/paca.h +++ b/arch/powerpc/include/asm/paca.h @@ -85,6 +85,8 @@ struct paca_struct { u8 kexec_state; /* set when kexec down has irqs off */ #ifdef CONFIG_PPC_STD_MMU_64 struct slb_shadow *slb_shadow_ptr; + struct dtl_entry *dispatch_log; + struct dtl_entry *dispatch_log_end; /* * Now, starting in cacheline 2, the exception save areas @@ -134,8 +136,14 @@ struct paca_struct { /* Stuff for accurate time accounting */ u64 user_time; /* accumulated usermode TB ticks */ u64 system_time; /* accumulated system TB ticks */ - u64 startpurr; /* PURR/TB value snapshot */ + u64 user_time_scaled; /* accumulated usermode SPURR ticks */ + u64 starttime; /* TB value snapshot */ + u64 starttime_user; /* TB value on exit to usermode */ u64 startspurr; /* SPURR value snapshot */ + u64 utime_sspurr; /* ->user_time when ->startspurr set */ + u64 stolen_time; /* TB ticks taken by hypervisor */ + u64 dtl_ridx; /* read index in dispatch log */ + struct dtl_entry *dtl_curr; /* pointer corresponding to dtl_ridx */ #ifdef CONFIG_KVM_BOOK3S_HANDLER /* We use this to store guest state in */ -- cgit v1.2.1