From 73969ff0eda233f140bcbed1251431387b43f383 Mon Sep 17 00:00:00 2001 From: Daniel Mack Date: Wed, 4 Mar 2009 23:27:14 -0800 Subject: Input: generic driver for rotary encoders on GPIOs This patch adds a generic driver for rotary encoders connected to GPIO pins of a system. It relies on gpiolib and generic hardware irqs. The documentation that also comes with this patch explains the concept and how to use the driver. Signed-off-by: Daniel Mack Tested-by: H Hartley Sweeten Signed-off-by: Dmitry Torokhov --- Documentation/input/rotary-encoder.txt | 101 +++++++++++++++++++++++++++++++++ 1 file changed, 101 insertions(+) create mode 100644 Documentation/input/rotary-encoder.txt (limited to 'Documentation') diff --git a/Documentation/input/rotary-encoder.txt b/Documentation/input/rotary-encoder.txt new file mode 100644 index 000000000000..435102a26d96 --- /dev/null +++ b/Documentation/input/rotary-encoder.txt @@ -0,0 +1,101 @@ +rotary-encoder - a generic driver for GPIO connected devices +Daniel Mack , Feb 2009 + +0. Function +----------- + +Rotary encoders are devices which are connected to the CPU or other +peripherals with two wires. The outputs are phase-shifted by 90 degrees +and by triggering on falling and rising edges, the turn direction can +be determined. + +The phase diagram of these two outputs look like this: + + _____ _____ _____ + | | | | | | + Channel A ____| |_____| |_____| |____ + + : : : : : : : : : : : : + __ _____ _____ _____ + | | | | | | | + Channel B |_____| |_____| |_____| |__ + + : : : : : : : : : : : : + Event a b c d a b c d a b c d + + |<-------->| + one step + + +For more information, please see + http://en.wikipedia.org/wiki/Rotary_encoder + + +1. Events / state machine +------------------------- + +a) Rising edge on channel A, channel B in low state + This state is used to recognize a clockwise turn + +b) Rising edge on channel B, channel A in high state + When entering this state, the encoder is put into 'armed' state, + meaning that there it has seen half the way of a one-step transition. + +c) Falling edge on channel A, channel B in high state + This state is used to recognize a counter-clockwise turn + +d) Falling edge on channel B, channel A in low state + Parking position. If the encoder enters this state, a full transition + should have happend, unless it flipped back on half the way. The + 'armed' state tells us about that. + +2. Platform requirements +------------------------ + +As there is no hardware dependent call in this driver, the platform it is +used with must support gpiolib. Another requirement is that IRQs must be +able to fire on both edges. + + +3. Board integration +-------------------- + +To use this driver in your system, register a platform_device with the +name 'rotary-encoder' and associate the IRQs and some specific platform +data with it. + +struct rotary_encoder_platform_data is declared in +include/linux/rotary-encoder.h and needs to be filled with the number of +steps the encoder has and can carry information about externally inverted +signals (because of used invertig buffer or other reasons). + +Because GPIO to IRQ mapping is platform specific, this information must +be given in seperately to the driver. See the example below. + +------------------ + +/* board support file example */ + +#include +#include + +#define GPIO_ROTARY_A 1 +#define GPIO_ROTARY_B 2 + +static struct rotary_encoder_platform_data my_rotary_encoder_info = { + .steps = 24, + .axis = ABS_X, + .gpio_a = GPIO_ROTARY_A, + .gpio_b = GPIO_ROTARY_B, + .inverted_a = 0, + .inverted_b = 0, +}; + +static struct platform_device rotary_encoder_device = { + .name = "rotary-encoder", + .id = 0, + .dev = { + .platform_data = &my_rotary_encoder_info, + } +}; + -- cgit v1.2.1 From ef12fefabf94b6a902ad3abd3eb124b00560c445 Mon Sep 17 00:00:00 2001 From: Bharata B Rao Date: Tue, 31 Mar 2009 10:02:22 +0530 Subject: cpuacct: add per-cgroup utime/stime statistics Add per-cgroup cpuacct controller statistics like the system and user time consumed by the group of tasks. Changelog: v7 - Changed the name of the statistic from utime to user and from stime to system so that in future we could easily add other statistics like irq, softirq, steal times etc easily. v6 - Fixed a bug in the error path of cpuacct_create() (pointed by Li Zefan). v5 - In cpuacct_stats_show(), use cputime64_to_clock_t() since we are operating on a 64bit variable here. v4 - Remove comments in cpuacct_update_stats() which explained why rcu_read_lock() was needed (as per Peter Zijlstra's review comments). - Don't say that percpu_counter_read() is broken in Documentation/cpuacct.txt as per KAMEZAWA Hiroyuki's review comments. v3 - Fix a small race in the cpuacct hierarchy walk. v2 - stime and utime now exported in clock_t units instead of msecs. - Addressed the code review comments from Balbir and Li Zefan. - Moved to -tip tree. v1 - Moved the stime/utime accounting to cpuacct controller. Earlier versions - http://lkml.org/lkml/2009/2/25/129 Signed-off-by: Bharata B Rao Signed-off-by: Balaji Rao Cc: Dhaval Giani Cc: Paul Menage Cc: Andrew Morton Cc: KAMEZAWA Hiroyuki Reviewed-by: Li Zefan Acked-by: Peter Zijlstra Acked-by: Balbir Singh Tested-by: Balbir Singh LKML-Reference: <20090331043222.GA4093@in.ibm.com> Signed-off-by: Ingo Molnar --- Documentation/cgroups/cpuacct.txt | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) (limited to 'Documentation') diff --git a/Documentation/cgroups/cpuacct.txt b/Documentation/cgroups/cpuacct.txt index bb775fbe43d7..8b930946c52a 100644 --- a/Documentation/cgroups/cpuacct.txt +++ b/Documentation/cgroups/cpuacct.txt @@ -30,3 +30,21 @@ The above steps create a new group g1 and move the current shell process (bash) into it. CPU time consumed by this bash and its children can be obtained from g1/cpuacct.usage and the same is accumulated in /cgroups/cpuacct.usage also. + +cpuacct.stat file lists a few statistics which further divide the +CPU time obtained by the cgroup into user and system times. Currently +the following statistics are supported: + +user: Time spent by tasks of the cgroup in user mode. +system: Time spent by tasks of the cgroup in kernel mode. + +user and system are in USER_HZ unit. + +cpuacct controller uses percpu_counter interface to collect user and +system times. This has two side effects: + +- It is theoretically possible to see wrong values for user and system times. + This is because percpu_counter_read() on 32bit systems isn't safe + against concurrent writes. +- It is possible to see slightly outdated values for user and system times + due to the batch processing nature of percpu_counter. -- cgit v1.2.1 From 8d82ffd15e59febf2c597067a777526958b7f769 Mon Sep 17 00:00:00 2001 From: Wolfgang Grandegger Date: Tue, 7 Apr 2009 10:20:56 +0200 Subject: powerpc: Document new FSL I2C bindings and cleanup This patch documents the new bindings for the MPC I2C bus driver. Furthermore, it removes obsolete FSL device related definitions for I2C. Signed-off-by: Wolfgang Grandegger Signed-off-by: Kumar Gala --- Documentation/powerpc/dts-bindings/fsl/i2c.txt | 46 +++++++++++++++++--------- 1 file changed, 31 insertions(+), 15 deletions(-) (limited to 'Documentation') diff --git a/Documentation/powerpc/dts-bindings/fsl/i2c.txt b/Documentation/powerpc/dts-bindings/fsl/i2c.txt index d0ab33e21fe6..b6d2e21474f9 100644 --- a/Documentation/powerpc/dts-bindings/fsl/i2c.txt +++ b/Documentation/powerpc/dts-bindings/fsl/i2c.txt @@ -7,8 +7,10 @@ Required properties : Recommended properties : - - compatible : Should be "fsl-i2c" for parts compatible with - Freescale I2C specifications. + - compatible : compatibility list with 2 entries, the first should + be "fsl,CHIP-i2c" where CHIP is the name of a compatible processor, + e.g. mpc8313, mpc8543, mpc8544, mpc5200 or mpc5200b. The second one + should be "fsl-i2c". - interrupts : where a is the interrupt number and b is a field that represents an encoding of the sense and level information for the interrupt. This should be encoded based on @@ -16,17 +18,31 @@ Recommended properties : controller you have. - interrupt-parent : the phandle for the interrupt controller that services interrupts for this device. - - dfsrr : boolean; if defined, indicates that this I2C device has - a digital filter sampling rate register - - fsl5200-clocking : boolean; if defined, indicated that this device - uses the FSL 5200 clocking mechanism. - -Example : - i2c@3000 { - interrupt-parent = <40000>; - interrupts = <1b 3>; - reg = <3000 18>; - device_type = "i2c"; - compatible = "fsl-i2c"; - dfsrr; + - fsl,preserve-clocking : boolean; if defined, the clock settings + from the bootloader are preserved (not touched). + - clock-frequency : desired I2C bus clock frequency in Hz. + +Examples : + + i2c@3d00 { + #address-cells = <1>; + #size-cells = <0>; + compatible = "fsl,mpc5200b-i2c","fsl,mpc5200-i2c","fsl-i2c"; + cell-index = <0>; + reg = <0x3d00 0x40>; + interrupts = <2 15 0>; + interrupt-parent = <&mpc5200_pic>; + fsl,preserve-clocking; }; + + i2c@3100 { + #address-cells = <1>; + #size-cells = <0>; + cell-index = <1>; + compatible = "fsl,mpc8544-i2c", "fsl-i2c"; + reg = <0x3100 0x100>; + interrupts = <43 2>; + interrupt-parent = <&mpic>; + clock-frequency = <400000>; + }; + -- cgit v1.2.1 From 6a3335b43342b42dd6c69b4bbbde15d622cb49ca Mon Sep 17 00:00:00 2001 From: Or Gerlitz Date: Wed, 8 Apr 2009 13:52:01 -0700 Subject: IPoIB: Document newish features Update the documentation to include connected mode, stateless offloads and interrupt moderation, and add a reference to the connected mode RFC. Signed-off-by: Or Gerlitz Signed-off-by: Roland Dreier --- Documentation/infiniband/ipoib.txt | 45 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 45 insertions(+) (limited to 'Documentation') diff --git a/Documentation/infiniband/ipoib.txt b/Documentation/infiniband/ipoib.txt index 864ff3283780..6d40f00b358c 100644 --- a/Documentation/infiniband/ipoib.txt +++ b/Documentation/infiniband/ipoib.txt @@ -24,6 +24,49 @@ Partitions and P_Keys The P_Key for any interface is given by the "pkey" file, and the main interface for a subinterface is in "parent." +Datagram vs Connected modes + + The IPoIB driver supports two modes of operation: datagram and + connected. The mode is set and read through an interface's + /sys/class/net//mode file. + + In datagram mode, the IB UD (Unreliable Datagram) transport is used + and so the interface MTU has is equal to the IB L2 MTU minus the + IPoIB encapsulation header (4 bytes). For example, in a typical IB + fabric with a 2K MTU, the IPoIB MTU will be 2048 - 4 = 2044 bytes. + + In connected mode, the IB RC (Reliable Connected) transport is used. + Connected mode is to takes advantage of the connected nature of the + IB transport and allows an MTU up to the maximal IP packet size of + 64K, which reduces the number of IP packets needed for handling + large UDP datagrams, TCP segments, etc and increases the performance + for large messages. + + In connected mode, the interface's UD QP is still used for multicast + and communication with peers that don't support connected mode. In + this case, RX emulation of ICMP PMTU packets is used to cause the + networking stack to use the smaller UD MTU for these neighbours. + +Stateless offloads + + If the IB HW supports IPoIB stateless offloads, IPoIB advertises + TCP/IP checksum and/or Large Send (LSO) offloading capability to the + network stack. + + Large Receive (LRO) offloading is also implemented and may be turned + on/off using ethtool calls. Currently LRO is supported only for + checksum offload capable devices. + + Stateless offloads are supported only in datagram mode. + +Interrupt moderation + + If the underlying IB device supports CQ event moderation, one can + use ethtool to set interrupt mitigation parameters and thus reduce + the overhead incurred by handling interrupts. The main code path of + IPoIB doesn't use events for TX completion signaling so only RX + moderation is supported. + Debugging Information By compiling the IPoIB driver with CONFIG_INFINIBAND_IPOIB_DEBUG set @@ -55,3 +98,5 @@ References http://ietf.org/rfc/rfc4391.txt IP over InfiniBand (IPoIB) Architecture (RFC 4392) http://ietf.org/rfc/rfc4392.txt + IP over InfiniBand: Connected Mode (RFC 4755) + http://ietf.org/rfc/rfc4755.txt -- cgit v1.2.1 From 66bb74888eb4bef4ba7c87c931ecb7ecca3a240c Mon Sep 17 00:00:00 2001 From: Li Zefan Date: Thu, 9 Apr 2009 11:40:27 +0800 Subject: tracing: consolidate documents Move kmemtrace.txt, tracepoints.txt, ftrace.txt and mmiotrace.txt to the new trace/ directory. I didnt find any references to those documents in both source files and documents, so no extra work needs to be done. Signed-off-by: Li Zefan Acked-by: Pekka Paalanen Cc: Steven Rostedt Cc: Frederic Weisbecker Cc: Mathieu Desnoyers LKML-Reference: <49DD6E2B.6090200@cn.fujitsu.com> Signed-off-by: Ingo Molnar --- Documentation/ftrace.txt | 1828 ----------------------------------- Documentation/trace/ftrace.txt | 1828 +++++++++++++++++++++++++++++++++++ Documentation/trace/kmemtrace.txt | 126 +++ Documentation/trace/mmiotrace.txt | 163 ++++ Documentation/trace/tracepoints.txt | 116 +++ Documentation/tracepoints.txt | 116 --- Documentation/tracers/mmiotrace.txt | 163 ---- Documentation/vm/kmemtrace.txt | 126 --- 8 files changed, 2233 insertions(+), 2233 deletions(-) delete mode 100644 Documentation/ftrace.txt create mode 100644 Documentation/trace/ftrace.txt create mode 100644 Documentation/trace/kmemtrace.txt create mode 100644 Documentation/trace/mmiotrace.txt create mode 100644 Documentation/trace/tracepoints.txt delete mode 100644 Documentation/tracepoints.txt delete mode 100644 Documentation/tracers/mmiotrace.txt delete mode 100644 Documentation/vm/kmemtrace.txt (limited to 'Documentation') diff --git a/Documentation/ftrace.txt b/Documentation/ftrace.txt deleted file mode 100644 index fd9a3e693813..000000000000 --- a/Documentation/ftrace.txt +++ /dev/null @@ -1,1828 +0,0 @@ - ftrace - Function Tracer - ======================== - -Copyright 2008 Red Hat Inc. - Author: Steven Rostedt - License: The GNU Free Documentation License, Version 1.2 - (dual licensed under the GPL v2) -Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton, - John Kacur, and David Teigland. - -Written for: 2.6.28-rc2 - -Introduction ------------- - -Ftrace is an internal tracer designed to help out developers and -designers of systems to find what is going on inside the kernel. -It can be used for debugging or analyzing latencies and -performance issues that take place outside of user-space. - -Although ftrace is the function tracer, it also includes an -infrastructure that allows for other types of tracing. Some of -the tracers that are currently in ftrace include a tracer to -trace context switches, the time it takes for a high priority -task to run after it was woken up, the time interrupts are -disabled, and more (ftrace allows for tracer plugins, which -means that the list of tracers can always grow). - - -The File System ---------------- - -Ftrace uses the debugfs file system to hold the control files as -well as the files to display output. - -To mount the debugfs system: - - # mkdir /debug - # mount -t debugfs nodev /debug - -( Note: it is more common to mount at /sys/kernel/debug, but for - simplicity this document will use /debug) - -That's it! (assuming that you have ftrace configured into your kernel) - -After mounting the debugfs, you can see a directory called -"tracing". This directory contains the control and output files -of ftrace. Here is a list of some of the key files: - - - Note: all time values are in microseconds. - - current_tracer: - - This is used to set or display the current tracer - that is configured. - - available_tracers: - - This holds the different types of tracers that - have been compiled into the kernel. The - tracers listed here can be configured by - echoing their name into current_tracer. - - tracing_enabled: - - This sets or displays whether the current_tracer - is activated and tracing or not. Echo 0 into this - file to disable the tracer or 1 to enable it. - - trace: - - This file holds the output of the trace in a human - readable format (described below). - - latency_trace: - - This file shows the same trace but the information - is organized more to display possible latencies - in the system (described below). - - trace_pipe: - - The output is the same as the "trace" file but this - file is meant to be streamed with live tracing. - Reads from this file will block until new data - is retrieved. Unlike the "trace" and "latency_trace" - files, this file is a consumer. This means reading - from this file causes sequential reads to display - more current data. Once data is read from this - file, it is consumed, and will not be read - again with a sequential read. The "trace" and - "latency_trace" files are static, and if the - tracer is not adding more data, they will display - the same information every time they are read. - - trace_options: - - This file lets the user control the amount of data - that is displayed in one of the above output - files. - - tracing_max_latency: - - Some of the tracers record the max latency. - For example, the time interrupts are disabled. - This time is saved in this file. The max trace - will also be stored, and displayed by either - "trace" or "latency_trace". A new max trace will - only be recorded if the latency is greater than - the value in this file. (in microseconds) - - buffer_size_kb: - - This sets or displays the number of kilobytes each CPU - buffer can hold. The tracer buffers are the same size - for each CPU. The displayed number is the size of the - CPU buffer and not total size of all buffers. The - trace buffers are allocated in pages (blocks of memory - that the kernel uses for allocation, usually 4 KB in size). - If the last page allocated has room for more bytes - than requested, the rest of the page will be used, - making the actual allocation bigger than requested. - ( Note, the size may not be a multiple of the page size - due to buffer managment overhead. ) - - This can only be updated when the current_tracer - is set to "nop". - - tracing_cpumask: - - This is a mask that lets the user only trace - on specified CPUS. The format is a hex string - representing the CPUS. - - set_ftrace_filter: - - When dynamic ftrace is configured in (see the - section below "dynamic ftrace"), the code is dynamically - modified (code text rewrite) to disable calling of the - function profiler (mcount). This lets tracing be configured - in with practically no overhead in performance. This also - has a side effect of enabling or disabling specific functions - to be traced. Echoing names of functions into this file - will limit the trace to only those functions. - - set_ftrace_notrace: - - This has an effect opposite to that of - set_ftrace_filter. Any function that is added here will not - be traced. If a function exists in both set_ftrace_filter - and set_ftrace_notrace, the function will _not_ be traced. - - set_ftrace_pid: - - Have the function tracer only trace a single thread. - - set_graph_function: - - Set a "trigger" function where tracing should start - with the function graph tracer (See the section - "dynamic ftrace" for more details). - - available_filter_functions: - - This lists the functions that ftrace - has processed and can trace. These are the function - names that you can pass to "set_ftrace_filter" or - "set_ftrace_notrace". (See the section "dynamic ftrace" - below for more details.) - - -The Tracers ------------ - -Here is the list of current tracers that may be configured. - - "function" - - Function call tracer to trace all kernel functions. - - "function_graph_tracer" - - Similar to the function tracer except that the - function tracer probes the functions on their entry - whereas the function graph tracer traces on both entry - and exit of the functions. It then provides the ability - to draw a graph of function calls similar to C code - source. - - "sched_switch" - - Traces the context switches and wakeups between tasks. - - "irqsoff" - - Traces the areas that disable interrupts and saves - the trace with the longest max latency. - See tracing_max_latency. When a new max is recorded, - it replaces the old trace. It is best to view this - trace via the latency_trace file. - - "preemptoff" - - Similar to irqsoff but traces and records the amount of - time for which preemption is disabled. - - "preemptirqsoff" - - Similar to irqsoff and preemptoff, but traces and - records the largest time for which irqs and/or preemption - is disabled. - - "wakeup" - - Traces and records the max latency that it takes for - the highest priority task to get scheduled after - it has been woken up. - - "hw-branch-tracer" - - Uses the BTS CPU feature on x86 CPUs to traces all - branches executed. - - "nop" - - This is the "trace nothing" tracer. To remove all - tracers from tracing simply echo "nop" into - current_tracer. - - -Examples of using the tracer ----------------------------- - -Here are typical examples of using the tracers when controlling -them only with the debugfs interface (without using any -user-land utilities). - -Output format: --------------- - -Here is an example of the output format of the file "trace" - - -------- -# tracer: function -# -# TASK-PID CPU# TIMESTAMP FUNCTION -# | | | | | - bash-4251 [01] 10152.583854: path_put <-path_walk - bash-4251 [01] 10152.583855: dput <-path_put - bash-4251 [01] 10152.583855: _atomic_dec_and_lock <-dput - -------- - -A header is printed with the tracer name that is represented by -the trace. In this case the tracer is "function". Then a header -showing the format. Task name "bash", the task PID "4251", the -CPU that it was running on "01", the timestamp in . -format, the function name that was traced "path_put" and the -parent function that called this function "path_walk". The -timestamp is the time at which the function was entered. - -The sched_switch tracer also includes tracing of task wakeups -and context switches. - - ksoftirqd/1-7 [01] 1453.070013: 7:115:R + 2916:115:S - ksoftirqd/1-7 [01] 1453.070013: 7:115:R + 10:115:S - ksoftirqd/1-7 [01] 1453.070013: 7:115:R ==> 10:115:R - events/1-10 [01] 1453.070013: 10:115:S ==> 2916:115:R - kondemand/1-2916 [01] 1453.070013: 2916:115:S ==> 7:115:R - ksoftirqd/1-7 [01] 1453.070013: 7:115:S ==> 0:140:R - -Wake ups are represented by a "+" and the context switches are -shown as "==>". The format is: - - Context switches: - - Previous task Next Task - - :: ==> :: - - Wake ups: - - Current task Task waking up - - :: + :: - -The prio is the internal kernel priority, which is the inverse -of the priority that is usually displayed by user-space tools. -Zero represents the highest priority (99). Prio 100 starts the -"nice" priorities with 100 being equal to nice -20 and 139 being -nice 19. The prio "140" is reserved for the idle task which is -the lowest priority thread (pid 0). - - -Latency trace format --------------------- - -For traces that display latency times, the latency_trace file -gives somewhat more information to see why a latency happened. -Here is a typical trace. - -# tracer: irqsoff -# -irqsoff latency trace v1.1.5 on 2.6.26-rc8 --------------------------------------------------------------------- - latency: 97 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) - ----------------- - | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0) - ----------------- - => started at: apic_timer_interrupt - => ended at: do_softirq - -# _------=> CPU# -# / _-----=> irqs-off -# | / _----=> need-resched -# || / _---=> hardirq/softirq -# ||| / _--=> preempt-depth -# |||| / -# ||||| delay -# cmd pid ||||| time | caller -# \ / ||||| \ | / - -0 0d..1 0us+: trace_hardirqs_off_thunk (apic_timer_interrupt) - -0 0d.s. 97us : __do_softirq (do_softirq) - -0 0d.s1 98us : trace_hardirqs_on (do_softirq) - - -This shows that the current tracer is "irqsoff" tracing the time -for which interrupts were disabled. It gives the trace version -and the version of the kernel upon which this was executed on -(2.6.26-rc8). Then it displays the max latency in microsecs (97 -us). The number of trace entries displayed and the total number -recorded (both are three: #3/3). The type of preemption that was -used (PREEMPT). VP, KP, SP, and HP are always zero and are -reserved for later use. #P is the number of online CPUS (#P:2). - -The task is the process that was running when the latency -occurred. (swapper pid: 0). - -The start and stop (the functions in which the interrupts were -disabled and enabled respectively) that caused the latencies: - - apic_timer_interrupt is where the interrupts were disabled. - do_softirq is where they were enabled again. - -The next lines after the header are the trace itself. The header -explains which is which. - - cmd: The name of the process in the trace. - - pid: The PID of that process. - - CPU#: The CPU which the process was running on. - - irqs-off: 'd' interrupts are disabled. '.' otherwise. - Note: If the architecture does not support a way to - read the irq flags variable, an 'X' will always - be printed here. - - need-resched: 'N' task need_resched is set, '.' otherwise. - - hardirq/softirq: - 'H' - hard irq occurred inside a softirq. - 'h' - hard irq is running - 's' - soft irq is running - '.' - normal context. - - preempt-depth: The level of preempt_disabled - -The above is mostly meaningful for kernel developers. - - time: This differs from the trace file output. The trace file output - includes an absolute timestamp. The timestamp used by the - latency_trace file is relative to the start of the trace. - - delay: This is just to help catch your eye a bit better. And - needs to be fixed to be only relative to the same CPU. - The marks are determined by the difference between this - current trace and the next trace. - '!' - greater than preempt_mark_thresh (default 100) - '+' - greater than 1 microsecond - ' ' - less than or equal to 1 microsecond. - - The rest is the same as the 'trace' file. - - -trace_options -------------- - -The trace_options file is used to control what gets printed in -the trace output. To see what is available, simply cat the file: - - cat /debug/tracing/trace_options - print-parent nosym-offset nosym-addr noverbose noraw nohex nobin \ - noblock nostacktrace nosched-tree nouserstacktrace nosym-userobj - -To disable one of the options, echo in the option prepended with -"no". - - echo noprint-parent > /debug/tracing/trace_options - -To enable an option, leave off the "no". - - echo sym-offset > /debug/tracing/trace_options - -Here are the available options: - - print-parent - On function traces, display the calling (parent) - function as well as the function being traced. - - print-parent: - bash-4000 [01] 1477.606694: simple_strtoul <-strict_strtoul - - noprint-parent: - bash-4000 [01] 1477.606694: simple_strtoul - - - sym-offset - Display not only the function name, but also the - offset in the function. For example, instead of - seeing just "ktime_get", you will see - "ktime_get+0xb/0x20". - - sym-offset: - bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0 - - sym-addr - this will also display the function address as well - as the function name. - - sym-addr: - bash-4000 [01] 1477.606694: simple_strtoul - - verbose - This deals with the latency_trace file. - - bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \ - (+0.000ms): simple_strtoul (strict_strtoul) - - raw - This will display raw numbers. This option is best for - use with user applications that can translate the raw - numbers better than having it done in the kernel. - - hex - Similar to raw, but the numbers will be in a hexadecimal - format. - - bin - This will print out the formats in raw binary. - - block - TBD (needs update) - - stacktrace - This is one of the options that changes the trace - itself. When a trace is recorded, so is the stack - of functions. This allows for back traces of - trace sites. - - userstacktrace - This option changes the trace. It records a - stacktrace of the current userspace thread. - - sym-userobj - when user stacktrace are enabled, look up which - object the address belongs to, and print a - relative address. This is especially useful when - ASLR is on, otherwise you don't get a chance to - resolve the address to object/file/line after - the app is no longer running - - The lookup is performed when you read - trace,trace_pipe,latency_trace. Example: - - a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0 -x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6] - - sched-tree - trace all tasks that are on the runqueue, at - every scheduling event. Will add overhead if - there's a lot of tasks running at once. - - -sched_switch ------------- - -This tracer simply records schedule switches. Here is an example -of how to use it. - - # echo sched_switch > /debug/tracing/current_tracer - # echo 1 > /debug/tracing/tracing_enabled - # sleep 1 - # echo 0 > /debug/tracing/tracing_enabled - # cat /debug/tracing/trace - -# tracer: sched_switch -# -# TASK-PID CPU# TIMESTAMP FUNCTION -# | | | | | - bash-3997 [01] 240.132281: 3997:120:R + 4055:120:R - bash-3997 [01] 240.132284: 3997:120:R ==> 4055:120:R - sleep-4055 [01] 240.132371: 4055:120:S ==> 3997:120:R - bash-3997 [01] 240.132454: 3997:120:R + 4055:120:S - bash-3997 [01] 240.132457: 3997:120:R ==> 4055:120:R - sleep-4055 [01] 240.132460: 4055:120:D ==> 3997:120:R - bash-3997 [01] 240.132463: 3997:120:R + 4055:120:D - bash-3997 [01] 240.132465: 3997:120:R ==> 4055:120:R - -0 [00] 240.132589: 0:140:R + 4:115:S - -0 [00] 240.132591: 0:140:R ==> 4:115:R - ksoftirqd/0-4 [00] 240.132595: 4:115:S ==> 0:140:R - -0 [00] 240.132598: 0:140:R + 4:115:S - -0 [00] 240.132599: 0:140:R ==> 4:115:R - ksoftirqd/0-4 [00] 240.132603: 4:115:S ==> 0:140:R - sleep-4055 [01] 240.133058: 4055:120:S ==> 3997:120:R - [...] - - -As we have discussed previously about this format, the header -shows the name of the trace and points to the options. The -"FUNCTION" is a misnomer since here it represents the wake ups -and context switches. - -The sched_switch file only lists the wake ups (represented with -'+') and context switches ('==>') with the previous task or -current task first followed by the next task or task waking up. -The format for both of these is PID:KERNEL-PRIO:TASK-STATE. -Remember that the KERNEL-PRIO is the inverse of the actual -priority with zero (0) being the highest priority and the nice -values starting at 100 (nice -20). Below is a quick chart to map -the kernel priority to user land priorities. - - Kernel priority: 0 to 99 ==> user RT priority 99 to 0 - Kernel priority: 100 to 139 ==> user nice -20 to 19 - Kernel priority: 140 ==> idle task priority - -The task states are: - - R - running : wants to run, may not actually be running - S - sleep : process is waiting to be woken up (handles signals) - D - disk sleep (uninterruptible sleep) : process must be woken up - (ignores signals) - T - stopped : process suspended - t - traced : process is being traced (with something like gdb) - Z - zombie : process waiting to be cleaned up - X - unknown - - -ftrace_enabled --------------- - -The following tracers (listed below) give different output -depending on whether or not the sysctl ftrace_enabled is set. To -set ftrace_enabled, one can either use the sysctl function or -set it via the proc file system interface. - - sysctl kernel.ftrace_enabled=1 - - or - - echo 1 > /proc/sys/kernel/ftrace_enabled - -To disable ftrace_enabled simply replace the '1' with '0' in the -above commands. - -When ftrace_enabled is set the tracers will also record the -functions that are within the trace. The descriptions of the -tracers will also show an example with ftrace enabled. - - -irqsoff -------- - -When interrupts are disabled, the CPU can not react to any other -external event (besides NMIs and SMIs). This prevents the timer -interrupt from triggering or the mouse interrupt from letting -the kernel know of a new mouse event. The result is a latency -with the reaction time. - -The irqsoff tracer tracks the time for which interrupts are -disabled. When a new maximum latency is hit, the tracer saves -the trace leading up to that latency point so that every time a -new maximum is reached, the old saved trace is discarded and the -new trace is saved. - -To reset the maximum, echo 0 into tracing_max_latency. Here is -an example: - - # echo irqsoff > /debug/tracing/current_tracer - # echo 0 > /debug/tracing/tracing_max_latency - # echo 1 > /debug/tracing/tracing_enabled - # ls -ltr - [...] - # echo 0 > /debug/tracing/tracing_enabled - # cat /debug/tracing/latency_trace -# tracer: irqsoff -# -irqsoff latency trace v1.1.5 on 2.6.26 --------------------------------------------------------------------- - latency: 12 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) - ----------------- - | task: bash-3730 (uid:0 nice:0 policy:0 rt_prio:0) - ----------------- - => started at: sys_setpgid - => ended at: sys_setpgid - -# _------=> CPU# -# / _-----=> irqs-off -# | / _----=> need-resched -# || / _---=> hardirq/softirq -# ||| / _--=> preempt-depth -# |||| / -# ||||| delay -# cmd pid ||||| time | caller -# \ / ||||| \ | / - bash-3730 1d... 0us : _write_lock_irq (sys_setpgid) - bash-3730 1d..1 1us+: _write_unlock_irq (sys_setpgid) - bash-3730 1d..2 14us : trace_hardirqs_on (sys_setpgid) - - -Here we see that that we had a latency of 12 microsecs (which is -very good). The _write_lock_irq in sys_setpgid disabled -interrupts. The difference between the 12 and the displayed -timestamp 14us occurred because the clock was incremented -between the time of recording the max latency and the time of -recording the function that had that latency. - -Note the above example had ftrace_enabled not set. If we set the -ftrace_enabled, we get a much larger output: - -# tracer: irqsoff -# -irqsoff latency trace v1.1.5 on 2.6.26-rc8 --------------------------------------------------------------------- - latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) - ----------------- - | task: ls-4339 (uid:0 nice:0 policy:0 rt_prio:0) - ----------------- - => started at: __alloc_pages_internal - => ended at: __alloc_pages_internal - -# _------=> CPU# -# / _-----=> irqs-off -# | / _----=> need-resched -# || / _---=> hardirq/softirq -# ||| / _--=> preempt-depth -# |||| / -# ||||| delay -# cmd pid ||||| time | caller -# \ / ||||| \ | / - ls-4339 0...1 0us+: get_page_from_freelist (__alloc_pages_internal) - ls-4339 0d..1 3us : rmqueue_bulk (get_page_from_freelist) - ls-4339 0d..1 3us : _spin_lock (rmqueue_bulk) - ls-4339 0d..1 4us : add_preempt_count (_spin_lock) - ls-4339 0d..2 4us : __rmqueue (rmqueue_bulk) - ls-4339 0d..2 5us : __rmqueue_smallest (__rmqueue) - ls-4339 0d..2 5us : __mod_zone_page_state (__rmqueue_smallest) - ls-4339 0d..2 6us : __rmqueue (rmqueue_bulk) - ls-4339 0d..2 6us : __rmqueue_smallest (__rmqueue) - ls-4339 0d..2 7us : __mod_zone_page_state (__rmqueue_smallest) - ls-4339 0d..2 7us : __rmqueue (rmqueue_bulk) - ls-4339 0d..2 8us : __rmqueue_smallest (__rmqueue) -[...] - ls-4339 0d..2 46us : __rmqueue_smallest (__rmqueue) - ls-4339 0d..2 47us : __mod_zone_page_state (__rmqueue_smallest) - ls-4339 0d..2 47us : __rmqueue (rmqueue_bulk) - ls-4339 0d..2 48us : __rmqueue_smallest (__rmqueue) - ls-4339 0d..2 48us : __mod_zone_page_state (__rmqueue_smallest) - ls-4339 0d..2 49us : _spin_unlock (rmqueue_bulk) - ls-4339 0d..2 49us : sub_preempt_count (_spin_unlock) - ls-4339 0d..1 50us : get_page_from_freelist (__alloc_pages_internal) - ls-4339 0d..2 51us : trace_hardirqs_on (__alloc_pages_internal) - - - -Here we traced a 50 microsecond latency. But we also see all the -functions that were called during that time. Note that by -enabling function tracing, we incur an added overhead. This -overhead may extend the latency times. But nevertheless, this -trace has provided some very helpful debugging information. - - -preemptoff ----------- - -When preemption is disabled, we may be able to receive -interrupts but the task cannot be preempted and a higher -priority task must wait for preemption to be enabled again -before it can preempt a lower priority task. - -The preemptoff tracer traces the places that disable preemption. -Like the irqsoff tracer, it records the maximum latency for -which preemption was disabled. The control of preemptoff tracer -is much like the irqsoff tracer. - - # echo preemptoff > /debug/tracing/current_tracer - # echo 0 > /debug/tracing/tracing_max_latency - # echo 1 > /debug/tracing/tracing_enabled - # ls -ltr - [...] - # echo 0 > /debug/tracing/tracing_enabled - # cat /debug/tracing/latency_trace -# tracer: preemptoff -# -preemptoff latency trace v1.1.5 on 2.6.26-rc8 --------------------------------------------------------------------- - latency: 29 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) - ----------------- - | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0) - ----------------- - => started at: do_IRQ - => ended at: __do_softirq - -# _------=> CPU# -# / _-----=> irqs-off -# | / _----=> need-resched -# || / _---=> hardirq/softirq -# ||| / _--=> preempt-depth -# |||| / -# ||||| delay -# cmd pid ||||| time | caller -# \ / ||||| \ | / - sshd-4261 0d.h. 0us+: irq_enter (do_IRQ) - sshd-4261 0d.s. 29us : _local_bh_enable (__do_softirq) - sshd-4261 0d.s1 30us : trace_preempt_on (__do_softirq) - - -This has some more changes. Preemption was disabled when an -interrupt came in (notice the 'h'), and was enabled while doing -a softirq. (notice the 's'). But we also see that interrupts -have been disabled when entering the preempt off section and -leaving it (the 'd'). We do not know if interrupts were enabled -in the mean time. - -# tracer: preemptoff -# -preemptoff latency trace v1.1.5 on 2.6.26-rc8 --------------------------------------------------------------------- - latency: 63 us, #87/87, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) - ----------------- - | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0) - ----------------- - => started at: remove_wait_queue - => ended at: __do_softirq - -# _------=> CPU# -# / _-----=> irqs-off -# | / _----=> need-resched -# || / _---=> hardirq/softirq -# ||| / _--=> preempt-depth -# |||| / -# ||||| delay -# cmd pid ||||| time | caller -# \ / ||||| \ | / - sshd-4261 0d..1 0us : _spin_lock_irqsave (remove_wait_queue) - sshd-4261 0d..1 1us : _spin_unlock_irqrestore (remove_wait_queue) - sshd-4261 0d..1 2us : do_IRQ (common_interrupt) - sshd-4261 0d..1 2us : irq_enter (do_IRQ) - sshd-4261 0d..1 2us : idle_cpu (irq_enter) - sshd-4261 0d..1 3us : add_preempt_count (irq_enter) - sshd-4261 0d.h1 3us : idle_cpu (irq_enter) - sshd-4261 0d.h. 4us : handle_fasteoi_irq (do_IRQ) -[...] - sshd-4261 0d.h. 12us : add_preempt_count (_spin_lock) - sshd-4261 0d.h1 12us : ack_ioapic_quirk_irq (handle_fasteoi_irq) - sshd-4261 0d.h1 13us : move_native_irq (ack_ioapic_quirk_irq) - sshd-4261 0d.h1 13us : _spin_unlock (handle_fasteoi_irq) - sshd-4261 0d.h1 14us : sub_preempt_count (_spin_unlock) - sshd-4261 0d.h1 14us : irq_exit (do_IRQ) - sshd-4261 0d.h1 15us : sub_preempt_count (irq_exit) - sshd-4261 0d..2 15us : do_softirq (irq_exit) - sshd-4261 0d... 15us : __do_softirq (do_softirq) - sshd-4261 0d... 16us : __local_bh_disable (__do_softirq) - sshd-4261 0d... 16us+: add_preempt_count (__local_bh_disable) - sshd-4261 0d.s4 20us : add_preempt_count (__local_bh_disable) - sshd-4261 0d.s4 21us : sub_preempt_count (local_bh_enable) - sshd-4261 0d.s5 21us : sub_preempt_count (local_bh_enable) -[...] - sshd-4261 0d.s6 41us : add_preempt_count (__local_bh_disable) - sshd-4261 0d.s6 42us : sub_preempt_count (local_bh_enable) - sshd-4261 0d.s7 42us : sub_preempt_count (local_bh_enable) - sshd-4261 0d.s5 43us : add_preempt_count (__local_bh_disable) - sshd-4261 0d.s5 43us : sub_preempt_count (local_bh_enable_ip) - sshd-4261 0d.s6 44us : sub_preempt_count (local_bh_enable_ip) - sshd-4261 0d.s5 44us : add_preempt_count (__local_bh_disable) - sshd-4261 0d.s5 45us : sub_preempt_count (local_bh_enable) -[...] - sshd-4261 0d.s. 63us : _local_bh_enable (__do_softirq) - sshd-4261 0d.s1 64us : trace_preempt_on (__do_softirq) - - -The above is an example of the preemptoff trace with -ftrace_enabled set. Here we see that interrupts were disabled -the entire time. The irq_enter code lets us know that we entered -an interrupt 'h'. Before that, the functions being traced still -show that it is not in an interrupt, but we can see from the -functions themselves that this is not the case. - -Notice that __do_softirq when called does not have a -preempt_count. It may seem that we missed a preempt enabling. -What really happened is that the preempt count is held on the -thread's stack and we switched to the softirq stack (4K stacks -in effect). The code does not copy the preempt count, but -because interrupts are disabled, we do not need to worry about -it. Having a tracer like this is good for letting people know -what really happens inside the kernel. - - -preemptirqsoff --------------- - -Knowing the locations that have interrupts disabled or -preemption disabled for the longest times is helpful. But -sometimes we would like to know when either preemption and/or -interrupts are disabled. - -Consider the following code: - - local_irq_disable(); - call_function_with_irqs_off(); - preempt_disable(); - call_function_with_irqs_and_preemption_off(); - local_irq_enable(); - call_function_with_preemption_off(); - preempt_enable(); - -The irqsoff tracer will record the total length of -call_function_with_irqs_off() and -call_function_with_irqs_and_preemption_off(). - -The preemptoff tracer will record the total length of -call_function_with_irqs_and_preemption_off() and -call_function_with_preemption_off(). - -But neither will trace the time that interrupts and/or -preemption is disabled. This total time is the time that we can -not schedule. To record this time, use the preemptirqsoff -tracer. - -Again, using this trace is much like the irqsoff and preemptoff -tracers. - - # echo preemptirqsoff > /debug/tracing/current_tracer - # echo 0 > /debug/tracing/tracing_max_latency - # echo 1 > /debug/tracing/tracing_enabled - # ls -ltr - [...] - # echo 0 > /debug/tracing/tracing_enabled - # cat /debug/tracing/latency_trace -# tracer: preemptirqsoff -# -preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8 --------------------------------------------------------------------- - latency: 293 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) - ----------------- - | task: ls-4860 (uid:0 nice:0 policy:0 rt_prio:0) - ----------------- - => started at: apic_timer_interrupt - => ended at: __do_softirq - -# _------=> CPU# -# / _-----=> irqs-off -# | / _----=> need-resched -# || / _---=> hardirq/softirq -# ||| / _--=> preempt-depth -# |||| / -# ||||| delay -# cmd pid ||||| time | caller -# \ / ||||| \ | / - ls-4860 0d... 0us!: trace_hardirqs_off_thunk (apic_timer_interrupt) - ls-4860 0d.s. 294us : _local_bh_enable (__do_softirq) - ls-4860 0d.s1 294us : trace_preempt_on (__do_softirq) - - - -The trace_hardirqs_off_thunk is called from assembly on x86 when -interrupts are disabled in the assembly code. Without the -function tracing, we do not know if interrupts were enabled -within the preemption points. We do see that it started with -preemption enabled. - -Here is a trace with ftrace_enabled set: - - -# tracer: preemptirqsoff -# -preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8 --------------------------------------------------------------------- - latency: 105 us, #183/183, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) - ----------------- - | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0) - ----------------- - => started at: write_chan - => ended at: __do_softirq - -# _------=> CPU# -# / _-----=> irqs-off -# | / _----=> need-resched -# || / _---=> hardirq/softirq -# ||| / _--=> preempt-depth -# |||| / -# ||||| delay -# cmd pid ||||| time | caller -# \ / ||||| \ | / - ls-4473 0.N.. 0us : preempt_schedule (write_chan) - ls-4473 0dN.1 1us : _spin_lock (schedule) - ls-4473 0dN.1 2us : add_preempt_count (_spin_lock) - ls-4473 0d..2 2us : put_prev_task_fair (schedule) -[...] - ls-4473 0d..2 13us : set_normalized_timespec (ktime_get_ts) - ls-4473 0d..2 13us : __switch_to (schedule) - sshd-4261 0d..2 14us : finish_task_switch (schedule) - sshd-4261 0d..2 14us : _spin_unlock_irq (finish_task_switch) - sshd-4261 0d..1 15us : add_preempt_count (_spin_lock_irqsave) - sshd-4261 0d..2 16us : _spin_unlock_irqrestore (hrtick_set) - sshd-4261 0d..2 16us : do_IRQ (common_interrupt) - sshd-4261 0d..2 17us : irq_enter (do_IRQ) - sshd-4261 0d..2 17us : idle_cpu (irq_enter) - sshd-4261 0d..2 18us : add_preempt_count (irq_enter) - sshd-4261 0d.h2 18us : idle_cpu (irq_enter) - sshd-4261 0d.h. 18us : handle_fasteoi_irq (do_IRQ) - sshd-4261 0d.h. 19us : _spin_lock (handle_fasteoi_irq) - sshd-4261 0d.h. 19us : add_preempt_count (_spin_lock) - sshd-4261 0d.h1 20us : _spin_unlock (handle_fasteoi_irq) - sshd-4261 0d.h1 20us : sub_preempt_count (_spin_unlock) -[...] - sshd-4261 0d.h1 28us : _spin_unlock (handle_fasteoi_irq) - sshd-4261 0d.h1 29us : sub_preempt_count (_spin_unlock) - sshd-4261 0d.h2 29us : irq_exit (do_IRQ) - sshd-4261 0d.h2 29us : sub_preempt_count (irq_exit) - sshd-4261 0d..3 30us : do_softirq (irq_exit) - sshd-4261 0d... 30us : __do_softirq (do_softirq) - sshd-4261 0d... 31us : __local_bh_disable (__do_softirq) - sshd-4261 0d... 31us+: add_preempt_count (__local_bh_disable) - sshd-4261 0d.s4 34us : add_preempt_count (__local_bh_disable) -[...] - sshd-4261 0d.s3 43us : sub_preempt_count (local_bh_enable_ip) - sshd-4261 0d.s4 44us : sub_preempt_count (local_bh_enable_ip) - sshd-4261 0d.s3 44us : smp_apic_timer_interrupt (apic_timer_interrupt) - sshd-4261 0d.s3 45us : irq_enter (smp_apic_timer_interrupt) - sshd-4261 0d.s3 45us : idle_cpu (irq_enter) - sshd-4261 0d.s3 46us : add_preempt_count (irq_enter) - sshd-4261 0d.H3 46us : idle_cpu (irq_enter) - sshd-4261 0d.H3 47us : hrtimer_interrupt (smp_apic_timer_interrupt) - sshd-4261 0d.H3 47us : ktime_get (hrtimer_interrupt) -[...] - sshd-4261 0d.H3 81us : tick_program_event (hrtimer_interrupt) - sshd-4261 0d.H3 82us : ktime_get (tick_program_event) - sshd-4261 0d.H3 82us : ktime_get_ts (ktime_get) - sshd-4261 0d.H3 83us : getnstimeofday (ktime_get_ts) - sshd-4261 0d.H3 83us : set_normalized_timespec (ktime_get_ts) - sshd-4261 0d.H3 84us : clockevents_program_event (tick_program_event) - sshd-4261 0d.H3 84us : lapic_next_event (clockevents_program_event) - sshd-4261 0d.H3 85us : irq_exit (smp_apic_timer_interrupt) - sshd-4261 0d.H3 85us : sub_preempt_count (irq_exit) - sshd-4261 0d.s4 86us : sub_preempt_count (irq_exit) - sshd-4261 0d.s3 86us : add_preempt_count (__local_bh_disable) -[...] - sshd-4261 0d.s1 98us : sub_preempt_count (net_rx_action) - sshd-4261 0d.s. 99us : add_preempt_count (_spin_lock_irq) - sshd-4261 0d.s1 99us+: _spin_unlock_irq (run_timer_softirq) - sshd-4261 0d.s. 104us : _local_bh_enable (__do_softirq) - sshd-4261 0d.s. 104us : sub_preempt_count (_local_bh_enable) - sshd-4261 0d.s. 105us : _local_bh_enable (__do_softirq) - sshd-4261 0d.s1 105us : trace_preempt_on (__do_softirq) - - -This is a very interesting trace. It started with the preemption -of the ls task. We see that the task had the "need_resched" bit -set via the 'N' in the trace. Interrupts were disabled before -the spin_lock at the beginning of the trace. We see that a -schedule took place to run sshd. When the interrupts were -enabled, we took an interrupt. On return from the interrupt -handler, the softirq ran. We took another interrupt while -running the softirq as we see from the capital 'H'. - - -wakeup ------- - -In a Real-Time environment it is very important to know the -wakeup time it takes for the highest priority task that is woken -up to the time that it executes. This is also known as "schedule -latency". I stress the point that this is about RT tasks. It is -also important to know the scheduling latency of non-RT tasks, -but the average schedule latency is better for non-RT tasks. -Tools like LatencyTop are more appropriate for such -measurements. - -Real-Time environments are interested in the worst case latency. -That is the longest latency it takes for something to happen, -and not the average. We can have a very fast scheduler that may -only have a large latency once in a while, but that would not -work well with Real-Time tasks. The wakeup tracer was designed -to record the worst case wakeups of RT tasks. Non-RT tasks are -not recorded because the tracer only records one worst case and -tracing non-RT tasks that are unpredictable will overwrite the -worst case latency of RT tasks. - -Since this tracer only deals with RT tasks, we will run this -slightly differently than we did with the previous tracers. -Instead of performing an 'ls', we will run 'sleep 1' under -'chrt' which changes the priority of the task. - - # echo wakeup > /debug/tracing/current_tracer - # echo 0 > /debug/tracing/tracing_max_latency - # echo 1 > /debug/tracing/tracing_enabled - # chrt -f 5 sleep 1 - # echo 0 > /debug/tracing/tracing_enabled - # cat /debug/tracing/latency_trace -# tracer: wakeup -# -wakeup latency trace v1.1.5 on 2.6.26-rc8 --------------------------------------------------------------------- - latency: 4 us, #2/2, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) - ----------------- - | task: sleep-4901 (uid:0 nice:0 policy:1 rt_prio:5) - ----------------- - -# _------=> CPU# -# / _-----=> irqs-off -# | / _----=> need-resched -# || / _---=> hardirq/softirq -# ||| / _--=> preempt-depth -# |||| / -# ||||| delay -# cmd pid ||||| time | caller -# \ / ||||| \ | / - -0 1d.h4 0us+: try_to_wake_up (wake_up_process) - -0 1d..4 4us : schedule (cpu_idle) - - -Running this on an idle system, we see that it only took 4 -microseconds to perform the task switch. Note, since the trace -marker in the schedule is before the actual "switch", we stop -the tracing when the recorded task is about to schedule in. This -may change if we add a new marker at the end of the scheduler. - -Notice that the recorded task is 'sleep' with the PID of 4901 -and it has an rt_prio of 5. This priority is user-space priority -and not the internal kernel priority. The policy is 1 for -SCHED_FIFO and 2 for SCHED_RR. - -Doing the same with chrt -r 5 and ftrace_enabled set. - -# tracer: wakeup -# -wakeup latency trace v1.1.5 on 2.6.26-rc8 --------------------------------------------------------------------- - latency: 50 us, #60/60, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) - ----------------- - | task: sleep-4068 (uid:0 nice:0 policy:2 rt_prio:5) - ----------------- - -# _------=> CPU# -# / _-----=> irqs-off -# | / _----=> need-resched -# || / _---=> hardirq/softirq -# ||| / _--=> preempt-depth -# |||| / -# ||||| delay -# cmd pid ||||| time | caller -# \ / ||||| \ | / -ksoftirq-7 1d.H3 0us : try_to_wake_up (wake_up_process) -ksoftirq-7 1d.H4 1us : sub_preempt_count (marker_probe_cb) -ksoftirq-7 1d.H3 2us : check_preempt_wakeup (try_to_wake_up) -ksoftirq-7 1d.H3 3us : update_curr (check_preempt_wakeup) -ksoftirq-7 1d.H3 4us : calc_delta_mine (update_curr) -ksoftirq-7 1d.H3 5us : __resched_task (check_preempt_wakeup) -ksoftirq-7 1d.H3 6us : task_wake_up_rt (try_to_wake_up) -ksoftirq-7 1d.H3 7us : _spin_unlock_irqrestore (try_to_wake_up) -[...] -ksoftirq-7 1d.H2 17us : irq_exit (smp_apic_timer_interrupt) -ksoftirq-7 1d.H2 18us : sub_preempt_count (irq_exit) -ksoftirq-7 1d.s3 19us : sub_preempt_count (irq_exit) -ksoftirq-7 1..s2 20us : rcu_process_callbacks (__do_softirq) -[...] -ksoftirq-7 1..s2 26us : __rcu_process_callbacks (rcu_process_callbacks) -ksoftirq-7 1d.s2 27us : _local_bh_enable (__do_softirq) -ksoftirq-7 1d.s2 28us : sub_preempt_count (_local_bh_enable) -ksoftirq-7 1.N.3 29us : sub_preempt_count (ksoftirqd) -ksoftirq-7 1.N.2 30us : _cond_resched (ksoftirqd) -ksoftirq-7 1.N.2 31us : __cond_resched (_cond_resched) -ksoftirq-7 1.N.2 32us : add_preempt_count (__cond_resched) -ksoftirq-7 1.N.2 33us : schedule (__cond_resched) -ksoftirq-7 1.N.2 33us : add_preempt_count (schedule) -ksoftirq-7 1.N.3 34us : hrtick_clear (schedule) -ksoftirq-7 1dN.3 35us : _spin_lock (schedule) -ksoftirq-7 1dN.3 36us : add_preempt_count (_spin_lock) -ksoftirq-7 1d..4 37us : put_prev_task_fair (schedule) -ksoftirq-7 1d..4 38us : update_curr (put_prev_task_fair) -[...] -ksoftirq-7 1d..5 47us : _spin_trylock (tracing_record_cmdline) -ksoftirq-7 1d..5 48us : add_preempt_count (_spin_trylock) -ksoftirq-7 1d..6 49us : _spin_unlock (tracing_record_cmdline) -ksoftirq-7 1d..6 49us : sub_preempt_count (_spin_unlock) -ksoftirq-7 1d..4 50us : schedule (__cond_resched) - -The interrupt went off while running ksoftirqd. This task runs -at SCHED_OTHER. Why did not we see the 'N' set early? This may -be a harmless bug with x86_32 and 4K stacks. On x86_32 with 4K -stacks configured, the interrupt and softirq run with their own -stack. Some information is held on the top of the task's stack -(need_resched and preempt_count are both stored there). The -setting of the NEED_RESCHED bit is done directly to the task's -stack, but the reading of the NEED_RESCHED is done by looking at -the current stack, which in this case is the stack for the hard -interrupt. This hides the fact that NEED_RESCHED has been set. -We do not see the 'N' until we switch back to the task's -assigned stack. - -function --------- - -This tracer is the function tracer. Enabling the function tracer -can be done from the debug file system. Make sure the -ftrace_enabled is set; otherwise this tracer is a nop. - - # sysctl kernel.ftrace_enabled=1 - # echo function > /debug/tracing/current_tracer - # echo 1 > /debug/tracing/tracing_enabled - # usleep 1 - # echo 0 > /debug/tracing/tracing_enabled - # cat /debug/tracing/trace -# tracer: function -# -# TASK-PID CPU# TIMESTAMP FUNCTION -# | | | | | - bash-4003 [00] 123.638713: finish_task_switch <-schedule - bash-4003 [00] 123.638714: _spin_unlock_irq <-finish_task_switch - bash-4003 [00] 123.638714: sub_preempt_count <-_spin_unlock_irq - bash-4003 [00] 123.638715: hrtick_set <-schedule - bash-4003 [00] 123.638715: _spin_lock_irqsave <-hrtick_set - bash-4003 [00] 123.638716: add_preempt_count <-_spin_lock_irqsave - bash-4003 [00] 123.638716: _spin_unlock_irqrestore <-hrtick_set - bash-4003 [00] 123.638717: sub_preempt_count <-_spin_unlock_irqrestore - bash-4003 [00] 123.638717: hrtick_clear <-hrtick_set - bash-4003 [00] 123.638718: sub_preempt_count <-schedule - bash-4003 [00] 123.638718: sub_preempt_count <-preempt_schedule - bash-4003 [00] 123.638719: wait_for_completion <-__stop_machine_run - bash-4003 [00] 123.638719: wait_for_common <-wait_for_completion - bash-4003 [00] 123.638720: _spin_lock_irq <-wait_for_common - bash-4003 [00] 123.638720: add_preempt_count <-_spin_lock_irq -[...] - - -Note: function tracer uses ring buffers to store the above -entries. The newest data may overwrite the oldest data. -Sometimes using echo to stop the trace is not sufficient because -the tracing could have overwritten the data that you wanted to -record. For this reason, it is sometimes better to disable -tracing directly from a program. This allows you to stop the -tracing at the point that you hit the part that you are -interested in. To disable the tracing directly from a C program, -something like following code snippet can be used: - -int trace_fd; -[...] -int main(int argc, char *argv[]) { - [...] - trace_fd = open("/debug/tracing/tracing_enabled", O_WRONLY); - [...] - if (condition_hit()) { - write(trace_fd, "0", 1); - } - [...] -} - -Note: Here we hard coded the path name. The debugfs mount is not -guaranteed to be at /debug (and is more commonly at -/sys/kernel/debug). For simple one time traces, the above is -sufficent. For anything else, a search through /proc/mounts may -be needed to find where the debugfs file-system is mounted. - - -Single thread tracing ---------------------- - -By writing into /debug/tracing/set_ftrace_pid you can trace a -single thread. For example: - -# cat /debug/tracing/set_ftrace_pid -no pid -# echo 3111 > /debug/tracing/set_ftrace_pid -# cat /debug/tracing/set_ftrace_pid -3111 -# echo function > /debug/tracing/current_tracer -# cat /debug/tracing/trace | head - # tracer: function - # - # TASK-PID CPU# TIMESTAMP FUNCTION - # | | | | | - yum-updatesd-3111 [003] 1637.254676: finish_task_switch <-thread_return - yum-updatesd-3111 [003] 1637.254681: hrtimer_cancel <-schedule_hrtimeout_range - yum-updatesd-3111 [003] 1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel - yum-updatesd-3111 [003] 1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel - yum-updatesd-3111 [003] 1637.254685: fget_light <-do_sys_poll - yum-updatesd-3111 [003] 1637.254686: pipe_poll <-do_sys_poll -# echo -1 > /debug/tracing/set_ftrace_pid -# cat /debug/tracing/trace |head - # tracer: function - # - # TASK-PID CPU# TIMESTAMP FUNCTION - # | | | | | - ##### CPU 3 buffer started #### - yum-updatesd-3111 [003] 1701.957688: free_poll_entry <-poll_freewait - yum-updatesd-3111 [003] 1701.957689: remove_wait_queue <-free_poll_entry - yum-updatesd-3111 [003] 1701.957691: fput <-free_poll_entry - yum-updatesd-3111 [003] 1701.957692: audit_syscall_exit <-sysret_audit - yum-updatesd-3111 [003] 1701.957693: path_put <-audit_syscall_exit - -If you want to trace a function when executing, you could use -something like this simple program: - -#include -#include -#include -#include -#include -#include - -int main (int argc, char **argv) -{ - if (argc < 1) - exit(-1); - - if (fork() > 0) { - int fd, ffd; - char line[64]; - int s; - - ffd = open("/debug/tracing/current_tracer", O_WRONLY); - if (ffd < 0) - exit(-1); - write(ffd, "nop", 3); - - fd = open("/debug/tracing/set_ftrace_pid", O_WRONLY); - s = sprintf(line, "%d\n", getpid()); - write(fd, line, s); - - write(ffd, "function", 8); - - close(fd); - close(ffd); - - execvp(argv[1], argv+1); - } - - return 0; -} - - -hw-branch-tracer (x86 only) ---------------------------- - -This tracer uses the x86 last branch tracing hardware feature to -collect a branch trace on all cpus with relatively low overhead. - -The tracer uses a fixed-size circular buffer per cpu and only -traces ring 0 branches. The trace file dumps that buffer in the -following format: - -# tracer: hw-branch-tracer -# -# CPU# TO <- FROM - 0 scheduler_tick+0xb5/0x1bf <- task_tick_idle+0x5/0x6 - 2 run_posix_cpu_timers+0x2b/0x72a <- run_posix_cpu_timers+0x25/0x72a - 0 scheduler_tick+0x139/0x1bf <- scheduler_tick+0xed/0x1bf - 0 scheduler_tick+0x17c/0x1bf <- scheduler_tick+0x148/0x1bf - 2 run_posix_cpu_timers+0x9e/0x72a <- run_posix_cpu_timers+0x5e/0x72a - 0 scheduler_tick+0x1b6/0x1bf <- scheduler_tick+0x1aa/0x1bf - - -The tracer may be used to dump the trace for the oops'ing cpu on -a kernel oops into the system log. To enable this, -ftrace_dump_on_oops must be set. To set ftrace_dump_on_oops, one -can either use the sysctl function or set it via the proc system -interface. - - sysctl kernel.ftrace_dump_on_oops=1 - -or - - echo 1 > /proc/sys/kernel/ftrace_dump_on_oops - - -Here's an example of such a dump after a null pointer -dereference in a kernel module: - -[57848.105921] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000 -[57848.106019] IP: [] open+0x6/0x14 [oops] -[57848.106019] PGD 2354e9067 PUD 2375e7067 PMD 0 -[57848.106019] Oops: 0002 [#1] SMP -[57848.106019] last sysfs file: /sys/devices/pci0000:00/0000:00:1e.0/0000:20:05.0/local_cpus -[57848.106019] Dumping ftrace buffer: -[57848.106019] --------------------------------- -[...] -[57848.106019] 0 chrdev_open+0xe6/0x165 <- cdev_put+0x23/0x24 -[57848.106019] 0 chrdev_open+0x117/0x165 <- chrdev_open+0xfa/0x165 -[57848.106019] 0 chrdev_open+0x120/0x165 <- chrdev_open+0x11c/0x165 -[57848.106019] 0 chrdev_open+0x134/0x165 <- chrdev_open+0x12b/0x165 -[57848.106019] 0 open+0x0/0x14 [oops] <- chrdev_open+0x144/0x165 -[57848.106019] 0 page_fault+0x0/0x30 <- open+0x6/0x14 [oops] -[57848.106019] 0 error_entry+0x0/0x5b <- page_fault+0x4/0x30 -[57848.106019] 0 error_kernelspace+0x0/0x31 <- error_entry+0x59/0x5b -[57848.106019] 0 error_sti+0x0/0x1 <- error_kernelspace+0x2d/0x31 -[57848.106019] 0 page_fault+0x9/0x30 <- error_sti+0x0/0x1 -[57848.106019] 0 do_page_fault+0x0/0x881 <- page_fault+0x1a/0x30 -[...] -[57848.106019] 0 do_page_fault+0x66b/0x881 <- is_prefetch+0x1ee/0x1f2 -[57848.106019] 0 do_page_fault+0x6e0/0x881 <- do_page_fault+0x67a/0x881 -[57848.106019] 0 oops_begin+0x0/0x96 <- do_page_fault+0x6e0/0x881 -[57848.106019] 0 trace_hw_branch_oops+0x0/0x2d <- oops_begin+0x9/0x96 -[...] -[57848.106019] 0 ds_suspend_bts+0x2a/0xe3 <- ds_suspend_bts+0x1a/0xe3 -[57848.106019] --------------------------------- -[57848.106019] CPU 0 -[57848.106019] Modules linked in: oops -[57848.106019] Pid: 5542, comm: cat Tainted: G W 2.6.28 #23 -[57848.106019] RIP: 0010:[] [] open+0x6/0x14 [oops] -[57848.106019] RSP: 0018:ffff880235457d48 EFLAGS: 00010246 -[...] - - -function graph tracer ---------------------------- - -This tracer is similar to the function tracer except that it -probes a function on its entry and its exit. This is done by -using a dynamically allocated stack of return addresses in each -task_struct. On function entry the tracer overwrites the return -address of each function traced to set a custom probe. Thus the -original return address is stored on the stack of return address -in the task_struct. - -Probing on both ends of a function leads to special features -such as: - -- measure of a function's time execution -- having a reliable call stack to draw function calls graph - -This tracer is useful in several situations: - -- you want to find the reason of a strange kernel behavior and - need to see what happens in detail on any areas (or specific - ones). - -- you are experiencing weird latencies but it's difficult to - find its origin. - -- you want to find quickly which path is taken by a specific - function - -- you just want to peek inside a working kernel and want to see - what happens there. - -# tracer: function_graph -# -# CPU DURATION FUNCTION CALLS -# | | | | | | | - - 0) | sys_open() { - 0) | do_sys_open() { - 0) | getname() { - 0) | kmem_cache_alloc() { - 0) 1.382 us | __might_sleep(); - 0) 2.478 us | } - 0) | strncpy_from_user() { - 0) | might_fault() { - 0) 1.389 us | __might_sleep(); - 0) 2.553 us | } - 0) 3.807 us | } - 0) 7.876 us | } - 0) | alloc_fd() { - 0) 0.668 us | _spin_lock(); - 0) 0.570 us | expand_files(); - 0) 0.586 us | _spin_unlock(); - - -There are several columns that can be dynamically -enabled/disabled. You can use every combination of options you -want, depending on your needs. - -- The cpu number on which the function executed is default - enabled. It is sometimes better to only trace one cpu (see - tracing_cpu_mask file) or you might sometimes see unordered - function calls while cpu tracing switch. - - hide: echo nofuncgraph-cpu > /debug/tracing/trace_options - show: echo funcgraph-cpu > /debug/tracing/trace_options - -- The duration (function's time of execution) is displayed on - the closing bracket line of a function or on the same line - than the current function in case of a leaf one. It is default - enabled. - - hide: echo nofuncgraph-duration > /debug/tracing/trace_options - show: echo funcgraph-duration > /debug/tracing/trace_options - -- The overhead field precedes the duration field in case of - reached duration thresholds. - - hide: echo nofuncgraph-overhead > /debug/tracing/trace_options - show: echo funcgraph-overhead > /debug/tracing/trace_options - depends on: funcgraph-duration - - ie: - - 0) | up_write() { - 0) 0.646 us | _spin_lock_irqsave(); - 0) 0.684 us | _spin_unlock_irqrestore(); - 0) 3.123 us | } - 0) 0.548 us | fput(); - 0) + 58.628 us | } - - [...] - - 0) | putname() { - 0) | kmem_cache_free() { - 0) 0.518 us | __phys_addr(); - 0) 1.757 us | } - 0) 2.861 us | } - 0) ! 115.305 us | } - 0) ! 116.402 us | } - - + means that the function exceeded 10 usecs. - ! means that the function exceeded 100 usecs. - - -- The task/pid field displays the thread cmdline and pid which - executed the function. It is default disabled. - - hide: echo nofuncgraph-proc > /debug/tracing/trace_options - show: echo funcgraph-proc > /debug/tracing/trace_options - - ie: - - # tracer: function_graph - # - # CPU TASK/PID DURATION FUNCTION CALLS - # | | | | | | | | | - 0) sh-4802 | | d_free() { - 0) sh-4802 | | call_rcu() { - 0) sh-4802 | | __call_rcu() { - 0) sh-4802 | 0.616 us | rcu_process_gp_end(); - 0) sh-4802 | 0.586 us | check_for_new_grace_period(); - 0) sh-4802 | 2.899 us | } - 0) sh-4802 | 4.040 us | } - 0) sh-4802 | 5.151 us | } - 0) sh-4802 | + 49.370 us | } - - -- The absolute time field is an absolute timestamp given by the - system clock since it started. A snapshot of this time is - given on each entry/exit of functions - - hide: echo nofuncgraph-abstime > /debug/tracing/trace_options - show: echo funcgraph-abstime > /debug/tracing/trace_options - - ie: - - # - # TIME CPU DURATION FUNCTION CALLS - # | | | | | | | | - 360.774522 | 1) 0.541 us | } - 360.774522 | 1) 4.663 us | } - 360.774523 | 1) 0.541 us | __wake_up_bit(); - 360.774524 | 1) 6.796 us | } - 360.774524 | 1) 7.952 us | } - 360.774525 | 1) 9.063 us | } - 360.774525 | 1) 0.615 us | journal_mark_dirty(); - 360.774527 | 1) 0.578 us | __brelse(); - 360.774528 | 1) | reiserfs_prepare_for_journal() { - 360.774528 | 1) | unlock_buffer() { - 360.774529 | 1) | wake_up_bit() { - 360.774529 | 1) | bit_waitqueue() { - 360.774530 | 1) 0.594 us | __phys_addr(); - - -You can put some comments on specific functions by using -trace_printk() For example, if you want to put a comment inside -the __might_sleep() function, you just have to include - and call trace_printk() inside __might_sleep() - -trace_printk("I'm a comment!\n") - -will produce: - - 1) | __might_sleep() { - 1) | /* I'm a comment! */ - 1) 1.449 us | } - - -You might find other useful features for this tracer in the -following "dynamic ftrace" section such as tracing only specific -functions or tasks. - -dynamic ftrace --------------- - -If CONFIG_DYNAMIC_FTRACE is set, the system will run with -virtually no overhead when function tracing is disabled. The way -this works is the mcount function call (placed at the start of -every kernel function, produced by the -pg switch in gcc), -starts of pointing to a simple return. (Enabling FTRACE will -include the -pg switch in the compiling of the kernel.) - -At compile time every C file object is run through the -recordmcount.pl script (located in the scripts directory). This -script will process the C object using objdump to find all the -locations in the .text section that call mcount. (Note, only the -.text section is processed, since processing other sections like -.init.text may cause races due to those sections being freed). - -A new section called "__mcount_loc" is created that holds -references to all the mcount call sites in the .text section. -This section is compiled back into the original object. The -final linker will add all these references into a single table. - -On boot up, before SMP is initialized, the dynamic ftrace code -scans this table and updates all the locations into nops. It -also records the locations, which are added to the -available_filter_functions list. Modules are processed as they -are loaded and before they are executed. When a module is -unloaded, it also removes its functions from the ftrace function -list. This is automatic in the module unload code, and the -module author does not need to worry about it. - -When tracing is enabled, kstop_machine is called to prevent -races with the CPUS executing code being modified (which can -cause the CPU to do undesireable things), and the nops are -patched back to calls. But this time, they do not call mcount -(which is just a function stub). They now call into the ftrace -infrastructure. - -One special side-effect to the recording of the functions being -traced is that we can now selectively choose which functions we -wish to trace and which ones we want the mcount calls to remain -as nops. - -Two files are used, one for enabling and one for disabling the -tracing of specified functions. They are: - - set_ftrace_filter - -and - - set_ftrace_notrace - -A list of available functions that you can add to these files is -listed in: - - available_filter_functions - - # cat /debug/tracing/available_filter_functions -put_prev_task_idle -kmem_cache_create -pick_next_task_rt -get_online_cpus -pick_next_task_fair -mutex_lock -[...] - -If I am only interested in sys_nanosleep and hrtimer_interrupt: - - # echo sys_nanosleep hrtimer_interrupt \ - > /debug/tracing/set_ftrace_filter - # echo ftrace > /debug/tracing/current_tracer - # echo 1 > /debug/tracing/tracing_enabled - # usleep 1 - # echo 0 > /debug/tracing/tracing_enabled - # cat /debug/tracing/trace -# tracer: ftrace -# -# TASK-PID CPU# TIMESTAMP FUNCTION -# | | | | | - usleep-4134 [00] 1317.070017: hrtimer_interrupt <-smp_apic_timer_interrupt - usleep-4134 [00] 1317.070111: sys_nanosleep <-syscall_call - -0 [00] 1317.070115: hrtimer_interrupt <-smp_apic_timer_interrupt - -To see which functions are being traced, you can cat the file: - - # cat /debug/tracing/set_ftrace_filter -hrtimer_interrupt -sys_nanosleep - - -Perhaps this is not enough. The filters also allow simple wild -cards. Only the following are currently available - - * - will match functions that begin with - * - will match functions that end with - ** - will match functions that have in it - -These are the only wild cards which are supported. - - * will not work. - -Note: It is better to use quotes to enclose the wild cards, - otherwise the shell may expand the parameters into names - of files in the local directory. - - # echo 'hrtimer_*' > /debug/tracing/set_ftrace_filter - -Produces: - -# tracer: ftrace -# -# TASK-PID CPU# TIMESTAMP FUNCTION -# | | | | | - bash-4003 [00] 1480.611794: hrtimer_init <-copy_process - bash-4003 [00] 1480.611941: hrtimer_start <-hrtick_set - bash-4003 [00] 1480.611956: hrtimer_cancel <-hrtick_clear - bash-4003 [00] 1480.611956: hrtimer_try_to_cancel <-hrtimer_cancel - -0 [00] 1480.612019: hrtimer_get_next_event <-get_next_timer_interrupt - -0 [00] 1480.612025: hrtimer_get_next_event <-get_next_timer_interrupt - -0 [00] 1480.612032: hrtimer_get_next_event <-get_next_timer_interrupt - -0 [00] 1480.612037: hrtimer_get_next_event <-get_next_timer_interrupt - -0 [00] 1480.612382: hrtimer_get_next_event <-get_next_timer_interrupt - - -Notice that we lost the sys_nanosleep. - - # cat /debug/tracing/set_ftrace_filter -hrtimer_run_queues -hrtimer_run_pending -hrtimer_init -hrtimer_cancel -hrtimer_try_to_cancel -hrtimer_forward -hrtimer_start -hrtimer_reprogram -hrtimer_force_reprogram -hrtimer_get_next_event -hrtimer_interrupt -hrtimer_nanosleep -hrtimer_wakeup -hrtimer_get_remaining -hrtimer_get_res -hrtimer_init_sleeper - - -This is because the '>' and '>>' act just like they do in bash. -To rewrite the filters, use '>' -To append to the filters, use '>>' - -To clear out a filter so that all functions will be recorded -again: - - # echo > /debug/tracing/set_ftrace_filter - # cat /debug/tracing/set_ftrace_filter - # - -Again, now we want to append. - - # echo sys_nanosleep > /debug/tracing/set_ftrace_filter - # cat /debug/tracing/set_ftrace_filter -sys_nanosleep - # echo 'hrtimer_*' >> /debug/tracing/set_ftrace_filter - # cat /debug/tracing/set_ftrace_filter -hrtimer_run_queues -hrtimer_run_pending -hrtimer_init -hrtimer_cancel -hrtimer_try_to_cancel -hrtimer_forward -hrtimer_start -hrtimer_reprogram -hrtimer_force_reprogram -hrtimer_get_next_event -hrtimer_interrupt -sys_nanosleep -hrtimer_nanosleep -hrtimer_wakeup -hrtimer_get_remaining -hrtimer_get_res -hrtimer_init_sleeper - - -The set_ftrace_notrace prevents those functions from being -traced. - - # echo '*preempt*' '*lock*' > /debug/tracing/set_ftrace_notrace - -Produces: - -# tracer: ftrace -# -# TASK-PID CPU# TIMESTAMP FUNCTION -# | | | | | - bash-4043 [01] 115.281644: finish_task_switch <-schedule - bash-4043 [01] 115.281645: hrtick_set <-schedule - bash-4043 [01] 115.281645: hrtick_clear <-hrtick_set - bash-4043 [01] 115.281646: wait_for_completion <-__stop_machine_run - bash-4043 [01] 115.281647: wait_for_common <-wait_for_completion - bash-4043 [01] 115.281647: kthread_stop <-stop_machine_run - bash-4043 [01] 115.281648: init_waitqueue_head <-kthread_stop - bash-4043 [01] 115.281648: wake_up_process <-kthread_stop - bash-4043 [01] 115.281649: try_to_wake_up <-wake_up_process - -We can see that there's no more lock or preempt tracing. - - -Dynamic ftrace with the function graph tracer ---------------------------------------------- - -Although what has been explained above concerns both the -function tracer and the function-graph-tracer, there are some -special features only available in the function-graph tracer. - -If you want to trace only one function and all of its children, -you just have to echo its name into set_graph_function: - - echo __do_fault > set_graph_function - -will produce the following "expanded" trace of the __do_fault() -function: - - 0) | __do_fault() { - 0) | filemap_fault() { - 0) | find_lock_page() { - 0) 0.804 us | find_get_page(); - 0) | __might_sleep() { - 0) 1.329 us | } - 0) 3.904 us | } - 0) 4.979 us | } - 0) 0.653 us | _spin_lock(); - 0) 0.578 us | page_add_file_rmap(); - 0) 0.525 us | native_set_pte_at(); - 0) 0.585 us | _spin_unlock(); - 0) | unlock_page() { - 0) 0.541 us | page_waitqueue(); - 0) 0.639 us | __wake_up_bit(); - 0) 2.786 us | } - 0) + 14.237 us | } - 0) | __do_fault() { - 0) | filemap_fault() { - 0) | find_lock_page() { - 0) 0.698 us | find_get_page(); - 0) | __might_sleep() { - 0) 1.412 us | } - 0) 3.950 us | } - 0) 5.098 us | } - 0) 0.631 us | _spin_lock(); - 0) 0.571 us | page_add_file_rmap(); - 0) 0.526 us | native_set_pte_at(); - 0) 0.586 us | _spin_unlock(); - 0) | unlock_page() { - 0) 0.533 us | page_waitqueue(); - 0) 0.638 us | __wake_up_bit(); - 0) 2.793 us | } - 0) + 14.012 us | } - -You can also expand several functions at once: - - echo sys_open > set_graph_function - echo sys_close >> set_graph_function - -Now if you want to go back to trace all functions you can clear -this special filter via: - - echo > set_graph_function - - -trace_pipe ----------- - -The trace_pipe outputs the same content as the trace file, but -the effect on the tracing is different. Every read from -trace_pipe is consumed. This means that subsequent reads will be -different. The trace is live. - - # echo function > /debug/tracing/current_tracer - # cat /debug/tracing/trace_pipe > /tmp/trace.out & -[1] 4153 - # echo 1 > /debug/tracing/tracing_enabled - # usleep 1 - # echo 0 > /debug/tracing/tracing_enabled - # cat /debug/tracing/trace -# tracer: function -# -# TASK-PID CPU# TIMESTAMP FUNCTION -# | | | | | - - # - # cat /tmp/trace.out - bash-4043 [00] 41.267106: finish_task_switch <-schedule - bash-4043 [00] 41.267106: hrtick_set <-schedule - bash-4043 [00] 41.267107: hrtick_clear <-hrtick_set - bash-4043 [00] 41.267108: wait_for_completion <-__stop_machine_run - bash-4043 [00] 41.267108: wait_for_common <-wait_for_completion - bash-4043 [00] 41.267109: kthread_stop <-stop_machine_run - bash-4043 [00] 41.267109: init_waitqueue_head <-kthread_stop - bash-4043 [00] 41.267110: wake_up_process <-kthread_stop - bash-4043 [00] 41.267110: try_to_wake_up <-wake_up_process - bash-4043 [00] 41.267111: select_task_rq_rt <-try_to_wake_up - - -Note, reading the trace_pipe file will block until more input is -added. By changing the tracer, trace_pipe will issue an EOF. We -needed to set the function tracer _before_ we "cat" the -trace_pipe file. - - -trace entries -------------- - -Having too much or not enough data can be troublesome in -diagnosing an issue in the kernel. The file buffer_size_kb is -used to modify the size of the internal trace buffers. The -number listed is the number of entries that can be recorded per -CPU. To know the full size, multiply the number of possible CPUS -with the number of entries. - - # cat /debug/tracing/buffer_size_kb -1408 (units kilobytes) - -Note, to modify this, you must have tracing completely disabled. -To do that, echo "nop" into the current_tracer. If the -current_tracer is not set to "nop", an EINVAL error will be -returned. - - # echo nop > /debug/tracing/current_tracer - # echo 10000 > /debug/tracing/buffer_size_kb - # cat /debug/tracing/buffer_size_kb -10000 (units kilobytes) - -The number of pages which will be allocated is limited to a -percentage of available memory. Allocating too much will produce -an error. - - # echo 1000000000000 > /debug/tracing/buffer_size_kb --bash: echo: write error: Cannot allocate memory - # cat /debug/tracing/buffer_size_kb -85 - ------------ - -More details can be found in the source code, in the -kernel/tracing/*.c files. diff --git a/Documentation/trace/ftrace.txt b/Documentation/trace/ftrace.txt new file mode 100644 index 000000000000..fd9a3e693813 --- /dev/null +++ b/Documentation/trace/ftrace.txt @@ -0,0 +1,1828 @@ + ftrace - Function Tracer + ======================== + +Copyright 2008 Red Hat Inc. + Author: Steven Rostedt + License: The GNU Free Documentation License, Version 1.2 + (dual licensed under the GPL v2) +Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton, + John Kacur, and David Teigland. + +Written for: 2.6.28-rc2 + +Introduction +------------ + +Ftrace is an internal tracer designed to help out developers and +designers of systems to find what is going on inside the kernel. +It can be used for debugging or analyzing latencies and +performance issues that take place outside of user-space. + +Although ftrace is the function tracer, it also includes an +infrastructure that allows for other types of tracing. Some of +the tracers that are currently in ftrace include a tracer to +trace context switches, the time it takes for a high priority +task to run after it was woken up, the time interrupts are +disabled, and more (ftrace allows for tracer plugins, which +means that the list of tracers can always grow). + + +The File System +--------------- + +Ftrace uses the debugfs file system to hold the control files as +well as the files to display output. + +To mount the debugfs system: + + # mkdir /debug + # mount -t debugfs nodev /debug + +( Note: it is more common to mount at /sys/kernel/debug, but for + simplicity this document will use /debug) + +That's it! (assuming that you have ftrace configured into your kernel) + +After mounting the debugfs, you can see a directory called +"tracing". This directory contains the control and output files +of ftrace. Here is a list of some of the key files: + + + Note: all time values are in microseconds. + + current_tracer: + + This is used to set or display the current tracer + that is configured. + + available_tracers: + + This holds the different types of tracers that + have been compiled into the kernel. The + tracers listed here can be configured by + echoing their name into current_tracer. + + tracing_enabled: + + This sets or displays whether the current_tracer + is activated and tracing or not. Echo 0 into this + file to disable the tracer or 1 to enable it. + + trace: + + This file holds the output of the trace in a human + readable format (described below). + + latency_trace: + + This file shows the same trace but the information + is organized more to display possible latencies + in the system (described below). + + trace_pipe: + + The output is the same as the "trace" file but this + file is meant to be streamed with live tracing. + Reads from this file will block until new data + is retrieved. Unlike the "trace" and "latency_trace" + files, this file is a consumer. This means reading + from this file causes sequential reads to display + more current data. Once data is read from this + file, it is consumed, and will not be read + again with a sequential read. The "trace" and + "latency_trace" files are static, and if the + tracer is not adding more data, they will display + the same information every time they are read. + + trace_options: + + This file lets the user control the amount of data + that is displayed in one of the above output + files. + + tracing_max_latency: + + Some of the tracers record the max latency. + For example, the time interrupts are disabled. + This time is saved in this file. The max trace + will also be stored, and displayed by either + "trace" or "latency_trace". A new max trace will + only be recorded if the latency is greater than + the value in this file. (in microseconds) + + buffer_size_kb: + + This sets or displays the number of kilobytes each CPU + buffer can hold. The tracer buffers are the same size + for each CPU. The displayed number is the size of the + CPU buffer and not total size of all buffers. The + trace buffers are allocated in pages (blocks of memory + that the kernel uses for allocation, usually 4 KB in size). + If the last page allocated has room for more bytes + than requested, the rest of the page will be used, + making the actual allocation bigger than requested. + ( Note, the size may not be a multiple of the page size + due to buffer managment overhead. ) + + This can only be updated when the current_tracer + is set to "nop". + + tracing_cpumask: + + This is a mask that lets the user only trace + on specified CPUS. The format is a hex string + representing the CPUS. + + set_ftrace_filter: + + When dynamic ftrace is configured in (see the + section below "dynamic ftrace"), the code is dynamically + modified (code text rewrite) to disable calling of the + function profiler (mcount). This lets tracing be configured + in with practically no overhead in performance. This also + has a side effect of enabling or disabling specific functions + to be traced. Echoing names of functions into this file + will limit the trace to only those functions. + + set_ftrace_notrace: + + This has an effect opposite to that of + set_ftrace_filter. Any function that is added here will not + be traced. If a function exists in both set_ftrace_filter + and set_ftrace_notrace, the function will _not_ be traced. + + set_ftrace_pid: + + Have the function tracer only trace a single thread. + + set_graph_function: + + Set a "trigger" function where tracing should start + with the function graph tracer (See the section + "dynamic ftrace" for more details). + + available_filter_functions: + + This lists the functions that ftrace + has processed and can trace. These are the function + names that you can pass to "set_ftrace_filter" or + "set_ftrace_notrace". (See the section "dynamic ftrace" + below for more details.) + + +The Tracers +----------- + +Here is the list of current tracers that may be configured. + + "function" + + Function call tracer to trace all kernel functions. + + "function_graph_tracer" + + Similar to the function tracer except that the + function tracer probes the functions on their entry + whereas the function graph tracer traces on both entry + and exit of the functions. It then provides the ability + to draw a graph of function calls similar to C code + source. + + "sched_switch" + + Traces the context switches and wakeups between tasks. + + "irqsoff" + + Traces the areas that disable interrupts and saves + the trace with the longest max latency. + See tracing_max_latency. When a new max is recorded, + it replaces the old trace. It is best to view this + trace via the latency_trace file. + + "preemptoff" + + Similar to irqsoff but traces and records the amount of + time for which preemption is disabled. + + "preemptirqsoff" + + Similar to irqsoff and preemptoff, but traces and + records the largest time for which irqs and/or preemption + is disabled. + + "wakeup" + + Traces and records the max latency that it takes for + the highest priority task to get scheduled after + it has been woken up. + + "hw-branch-tracer" + + Uses the BTS CPU feature on x86 CPUs to traces all + branches executed. + + "nop" + + This is the "trace nothing" tracer. To remove all + tracers from tracing simply echo "nop" into + current_tracer. + + +Examples of using the tracer +---------------------------- + +Here are typical examples of using the tracers when controlling +them only with the debugfs interface (without using any +user-land utilities). + +Output format: +-------------- + +Here is an example of the output format of the file "trace" + + -------- +# tracer: function +# +# TASK-PID CPU# TIMESTAMP FUNCTION +# | | | | | + bash-4251 [01] 10152.583854: path_put <-path_walk + bash-4251 [01] 10152.583855: dput <-path_put + bash-4251 [01] 10152.583855: _atomic_dec_and_lock <-dput + -------- + +A header is printed with the tracer name that is represented by +the trace. In this case the tracer is "function". Then a header +showing the format. Task name "bash", the task PID "4251", the +CPU that it was running on "01", the timestamp in . +format, the function name that was traced "path_put" and the +parent function that called this function "path_walk". The +timestamp is the time at which the function was entered. + +The sched_switch tracer also includes tracing of task wakeups +and context switches. + + ksoftirqd/1-7 [01] 1453.070013: 7:115:R + 2916:115:S + ksoftirqd/1-7 [01] 1453.070013: 7:115:R + 10:115:S + ksoftirqd/1-7 [01] 1453.070013: 7:115:R ==> 10:115:R + events/1-10 [01] 1453.070013: 10:115:S ==> 2916:115:R + kondemand/1-2916 [01] 1453.070013: 2916:115:S ==> 7:115:R + ksoftirqd/1-7 [01] 1453.070013: 7:115:S ==> 0:140:R + +Wake ups are represented by a "+" and the context switches are +shown as "==>". The format is: + + Context switches: + + Previous task Next Task + + :: ==> :: + + Wake ups: + + Current task Task waking up + + :: + :: + +The prio is the internal kernel priority, which is the inverse +of the priority that is usually displayed by user-space tools. +Zero represents the highest priority (99). Prio 100 starts the +"nice" priorities with 100 being equal to nice -20 and 139 being +nice 19. The prio "140" is reserved for the idle task which is +the lowest priority thread (pid 0). + + +Latency trace format +-------------------- + +For traces that display latency times, the latency_trace file +gives somewhat more information to see why a latency happened. +Here is a typical trace. + +# tracer: irqsoff +# +irqsoff latency trace v1.1.5 on 2.6.26-rc8 +-------------------------------------------------------------------- + latency: 97 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) + ----------------- + | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0) + ----------------- + => started at: apic_timer_interrupt + => ended at: do_softirq + +# _------=> CPU# +# / _-----=> irqs-off +# | / _----=> need-resched +# || / _---=> hardirq/softirq +# ||| / _--=> preempt-depth +# |||| / +# ||||| delay +# cmd pid ||||| time | caller +# \ / ||||| \ | / + -0 0d..1 0us+: trace_hardirqs_off_thunk (apic_timer_interrupt) + -0 0d.s. 97us : __do_softirq (do_softirq) + -0 0d.s1 98us : trace_hardirqs_on (do_softirq) + + +This shows that the current tracer is "irqsoff" tracing the time +for which interrupts were disabled. It gives the trace version +and the version of the kernel upon which this was executed on +(2.6.26-rc8). Then it displays the max latency in microsecs (97 +us). The number of trace entries displayed and the total number +recorded (both are three: #3/3). The type of preemption that was +used (PREEMPT). VP, KP, SP, and HP are always zero and are +reserved for later use. #P is the number of online CPUS (#P:2). + +The task is the process that was running when the latency +occurred. (swapper pid: 0). + +The start and stop (the functions in which the interrupts were +disabled and enabled respectively) that caused the latencies: + + apic_timer_interrupt is where the interrupts were disabled. + do_softirq is where they were enabled again. + +The next lines after the header are the trace itself. The header +explains which is which. + + cmd: The name of the process in the trace. + + pid: The PID of that process. + + CPU#: The CPU which the process was running on. + + irqs-off: 'd' interrupts are disabled. '.' otherwise. + Note: If the architecture does not support a way to + read the irq flags variable, an 'X' will always + be printed here. + + need-resched: 'N' task need_resched is set, '.' otherwise. + + hardirq/softirq: + 'H' - hard irq occurred inside a softirq. + 'h' - hard irq is running + 's' - soft irq is running + '.' - normal context. + + preempt-depth: The level of preempt_disabled + +The above is mostly meaningful for kernel developers. + + time: This differs from the trace file output. The trace file output + includes an absolute timestamp. The timestamp used by the + latency_trace file is relative to the start of the trace. + + delay: This is just to help catch your eye a bit better. And + needs to be fixed to be only relative to the same CPU. + The marks are determined by the difference between this + current trace and the next trace. + '!' - greater than preempt_mark_thresh (default 100) + '+' - greater than 1 microsecond + ' ' - less than or equal to 1 microsecond. + + The rest is the same as the 'trace' file. + + +trace_options +------------- + +The trace_options file is used to control what gets printed in +the trace output. To see what is available, simply cat the file: + + cat /debug/tracing/trace_options + print-parent nosym-offset nosym-addr noverbose noraw nohex nobin \ + noblock nostacktrace nosched-tree nouserstacktrace nosym-userobj + +To disable one of the options, echo in the option prepended with +"no". + + echo noprint-parent > /debug/tracing/trace_options + +To enable an option, leave off the "no". + + echo sym-offset > /debug/tracing/trace_options + +Here are the available options: + + print-parent - On function traces, display the calling (parent) + function as well as the function being traced. + + print-parent: + bash-4000 [01] 1477.606694: simple_strtoul <-strict_strtoul + + noprint-parent: + bash-4000 [01] 1477.606694: simple_strtoul + + + sym-offset - Display not only the function name, but also the + offset in the function. For example, instead of + seeing just "ktime_get", you will see + "ktime_get+0xb/0x20". + + sym-offset: + bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0 + + sym-addr - this will also display the function address as well + as the function name. + + sym-addr: + bash-4000 [01] 1477.606694: simple_strtoul + + verbose - This deals with the latency_trace file. + + bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \ + (+0.000ms): simple_strtoul (strict_strtoul) + + raw - This will display raw numbers. This option is best for + use with user applications that can translate the raw + numbers better than having it done in the kernel. + + hex - Similar to raw, but the numbers will be in a hexadecimal + format. + + bin - This will print out the formats in raw binary. + + block - TBD (needs update) + + stacktrace - This is one of the options that changes the trace + itself. When a trace is recorded, so is the stack + of functions. This allows for back traces of + trace sites. + + userstacktrace - This option changes the trace. It records a + stacktrace of the current userspace thread. + + sym-userobj - when user stacktrace are enabled, look up which + object the address belongs to, and print a + relative address. This is especially useful when + ASLR is on, otherwise you don't get a chance to + resolve the address to object/file/line after + the app is no longer running + + The lookup is performed when you read + trace,trace_pipe,latency_trace. Example: + + a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0 +x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6] + + sched-tree - trace all tasks that are on the runqueue, at + every scheduling event. Will add overhead if + there's a lot of tasks running at once. + + +sched_switch +------------ + +This tracer simply records schedule switches. Here is an example +of how to use it. + + # echo sched_switch > /debug/tracing/current_tracer + # echo 1 > /debug/tracing/tracing_enabled + # sleep 1 + # echo 0 > /debug/tracing/tracing_enabled + # cat /debug/tracing/trace + +# tracer: sched_switch +# +# TASK-PID CPU# TIMESTAMP FUNCTION +# | | | | | + bash-3997 [01] 240.132281: 3997:120:R + 4055:120:R + bash-3997 [01] 240.132284: 3997:120:R ==> 4055:120:R + sleep-4055 [01] 240.132371: 4055:120:S ==> 3997:120:R + bash-3997 [01] 240.132454: 3997:120:R + 4055:120:S + bash-3997 [01] 240.132457: 3997:120:R ==> 4055:120:R + sleep-4055 [01] 240.132460: 4055:120:D ==> 3997:120:R + bash-3997 [01] 240.132463: 3997:120:R + 4055:120:D + bash-3997 [01] 240.132465: 3997:120:R ==> 4055:120:R + -0 [00] 240.132589: 0:140:R + 4:115:S + -0 [00] 240.132591: 0:140:R ==> 4:115:R + ksoftirqd/0-4 [00] 240.132595: 4:115:S ==> 0:140:R + -0 [00] 240.132598: 0:140:R + 4:115:S + -0 [00] 240.132599: 0:140:R ==> 4:115:R + ksoftirqd/0-4 [00] 240.132603: 4:115:S ==> 0:140:R + sleep-4055 [01] 240.133058: 4055:120:S ==> 3997:120:R + [...] + + +As we have discussed previously about this format, the header +shows the name of the trace and points to the options. The +"FUNCTION" is a misnomer since here it represents the wake ups +and context switches. + +The sched_switch file only lists the wake ups (represented with +'+') and context switches ('==>') with the previous task or +current task first followed by the next task or task waking up. +The format for both of these is PID:KERNEL-PRIO:TASK-STATE. +Remember that the KERNEL-PRIO is the inverse of the actual +priority with zero (0) being the highest priority and the nice +values starting at 100 (nice -20). Below is a quick chart to map +the kernel priority to user land priorities. + + Kernel priority: 0 to 99 ==> user RT priority 99 to 0 + Kernel priority: 100 to 139 ==> user nice -20 to 19 + Kernel priority: 140 ==> idle task priority + +The task states are: + + R - running : wants to run, may not actually be running + S - sleep : process is waiting to be woken up (handles signals) + D - disk sleep (uninterruptible sleep) : process must be woken up + (ignores signals) + T - stopped : process suspended + t - traced : process is being traced (with something like gdb) + Z - zombie : process waiting to be cleaned up + X - unknown + + +ftrace_enabled +-------------- + +The following tracers (listed below) give different output +depending on whether or not the sysctl ftrace_enabled is set. To +set ftrace_enabled, one can either use the sysctl function or +set it via the proc file system interface. + + sysctl kernel.ftrace_enabled=1 + + or + + echo 1 > /proc/sys/kernel/ftrace_enabled + +To disable ftrace_enabled simply replace the '1' with '0' in the +above commands. + +When ftrace_enabled is set the tracers will also record the +functions that are within the trace. The descriptions of the +tracers will also show an example with ftrace enabled. + + +irqsoff +------- + +When interrupts are disabled, the CPU can not react to any other +external event (besides NMIs and SMIs). This prevents the timer +interrupt from triggering or the mouse interrupt from letting +the kernel know of a new mouse event. The result is a latency +with the reaction time. + +The irqsoff tracer tracks the time for which interrupts are +disabled. When a new maximum latency is hit, the tracer saves +the trace leading up to that latency point so that every time a +new maximum is reached, the old saved trace is discarded and the +new trace is saved. + +To reset the maximum, echo 0 into tracing_max_latency. Here is +an example: + + # echo irqsoff > /debug/tracing/current_tracer + # echo 0 > /debug/tracing/tracing_max_latency + # echo 1 > /debug/tracing/tracing_enabled + # ls -ltr + [...] + # echo 0 > /debug/tracing/tracing_enabled + # cat /debug/tracing/latency_trace +# tracer: irqsoff +# +irqsoff latency trace v1.1.5 on 2.6.26 +-------------------------------------------------------------------- + latency: 12 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) + ----------------- + | task: bash-3730 (uid:0 nice:0 policy:0 rt_prio:0) + ----------------- + => started at: sys_setpgid + => ended at: sys_setpgid + +# _------=> CPU# +# / _-----=> irqs-off +# | / _----=> need-resched +# || / _---=> hardirq/softirq +# ||| / _--=> preempt-depth +# |||| / +# ||||| delay +# cmd pid ||||| time | caller +# \ / ||||| \ | / + bash-3730 1d... 0us : _write_lock_irq (sys_setpgid) + bash-3730 1d..1 1us+: _write_unlock_irq (sys_setpgid) + bash-3730 1d..2 14us : trace_hardirqs_on (sys_setpgid) + + +Here we see that that we had a latency of 12 microsecs (which is +very good). The _write_lock_irq in sys_setpgid disabled +interrupts. The difference between the 12 and the displayed +timestamp 14us occurred because the clock was incremented +between the time of recording the max latency and the time of +recording the function that had that latency. + +Note the above example had ftrace_enabled not set. If we set the +ftrace_enabled, we get a much larger output: + +# tracer: irqsoff +# +irqsoff latency trace v1.1.5 on 2.6.26-rc8 +-------------------------------------------------------------------- + latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) + ----------------- + | task: ls-4339 (uid:0 nice:0 policy:0 rt_prio:0) + ----------------- + => started at: __alloc_pages_internal + => ended at: __alloc_pages_internal + +# _------=> CPU# +# / _-----=> irqs-off +# | / _----=> need-resched +# || / _---=> hardirq/softirq +# ||| / _--=> preempt-depth +# |||| / +# ||||| delay +# cmd pid ||||| time | caller +# \ / ||||| \ | / + ls-4339 0...1 0us+: get_page_from_freelist (__alloc_pages_internal) + ls-4339 0d..1 3us : rmqueue_bulk (get_page_from_freelist) + ls-4339 0d..1 3us : _spin_lock (rmqueue_bulk) + ls-4339 0d..1 4us : add_preempt_count (_spin_lock) + ls-4339 0d..2 4us : __rmqueue (rmqueue_bulk) + ls-4339 0d..2 5us : __rmqueue_smallest (__rmqueue) + ls-4339 0d..2 5us : __mod_zone_page_state (__rmqueue_smallest) + ls-4339 0d..2 6us : __rmqueue (rmqueue_bulk) + ls-4339 0d..2 6us : __rmqueue_smallest (__rmqueue) + ls-4339 0d..2 7us : __mod_zone_page_state (__rmqueue_smallest) + ls-4339 0d..2 7us : __rmqueue (rmqueue_bulk) + ls-4339 0d..2 8us : __rmqueue_smallest (__rmqueue) +[...] + ls-4339 0d..2 46us : __rmqueue_smallest (__rmqueue) + ls-4339 0d..2 47us : __mod_zone_page_state (__rmqueue_smallest) + ls-4339 0d..2 47us : __rmqueue (rmqueue_bulk) + ls-4339 0d..2 48us : __rmqueue_smallest (__rmqueue) + ls-4339 0d..2 48us : __mod_zone_page_state (__rmqueue_smallest) + ls-4339 0d..2 49us : _spin_unlock (rmqueue_bulk) + ls-4339 0d..2 49us : sub_preempt_count (_spin_unlock) + ls-4339 0d..1 50us : get_page_from_freelist (__alloc_pages_internal) + ls-4339 0d..2 51us : trace_hardirqs_on (__alloc_pages_internal) + + + +Here we traced a 50 microsecond latency. But we also see all the +functions that were called during that time. Note that by +enabling function tracing, we incur an added overhead. This +overhead may extend the latency times. But nevertheless, this +trace has provided some very helpful debugging information. + + +preemptoff +---------- + +When preemption is disabled, we may be able to receive +interrupts but the task cannot be preempted and a higher +priority task must wait for preemption to be enabled again +before it can preempt a lower priority task. + +The preemptoff tracer traces the places that disable preemption. +Like the irqsoff tracer, it records the maximum latency for +which preemption was disabled. The control of preemptoff tracer +is much like the irqsoff tracer. + + # echo preemptoff > /debug/tracing/current_tracer + # echo 0 > /debug/tracing/tracing_max_latency + # echo 1 > /debug/tracing/tracing_enabled + # ls -ltr + [...] + # echo 0 > /debug/tracing/tracing_enabled + # cat /debug/tracing/latency_trace +# tracer: preemptoff +# +preemptoff latency trace v1.1.5 on 2.6.26-rc8 +-------------------------------------------------------------------- + latency: 29 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) + ----------------- + | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0) + ----------------- + => started at: do_IRQ + => ended at: __do_softirq + +# _------=> CPU# +# / _-----=> irqs-off +# | / _----=> need-resched +# || / _---=> hardirq/softirq +# ||| / _--=> preempt-depth +# |||| / +# ||||| delay +# cmd pid ||||| time | caller +# \ / ||||| \ | / + sshd-4261 0d.h. 0us+: irq_enter (do_IRQ) + sshd-4261 0d.s. 29us : _local_bh_enable (__do_softirq) + sshd-4261 0d.s1 30us : trace_preempt_on (__do_softirq) + + +This has some more changes. Preemption was disabled when an +interrupt came in (notice the 'h'), and was enabled while doing +a softirq. (notice the 's'). But we also see that interrupts +have been disabled when entering the preempt off section and +leaving it (the 'd'). We do not know if interrupts were enabled +in the mean time. + +# tracer: preemptoff +# +preemptoff latency trace v1.1.5 on 2.6.26-rc8 +-------------------------------------------------------------------- + latency: 63 us, #87/87, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) + ----------------- + | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0) + ----------------- + => started at: remove_wait_queue + => ended at: __do_softirq + +# _------=> CPU# +# / _-----=> irqs-off +# | / _----=> need-resched +# || / _---=> hardirq/softirq +# ||| / _--=> preempt-depth +# |||| / +# ||||| delay +# cmd pid ||||| time | caller +# \ / ||||| \ | / + sshd-4261 0d..1 0us : _spin_lock_irqsave (remove_wait_queue) + sshd-4261 0d..1 1us : _spin_unlock_irqrestore (remove_wait_queue) + sshd-4261 0d..1 2us : do_IRQ (common_interrupt) + sshd-4261 0d..1 2us : irq_enter (do_IRQ) + sshd-4261 0d..1 2us : idle_cpu (irq_enter) + sshd-4261 0d..1 3us : add_preempt_count (irq_enter) + sshd-4261 0d.h1 3us : idle_cpu (irq_enter) + sshd-4261 0d.h. 4us : handle_fasteoi_irq (do_IRQ) +[...] + sshd-4261 0d.h. 12us : add_preempt_count (_spin_lock) + sshd-4261 0d.h1 12us : ack_ioapic_quirk_irq (handle_fasteoi_irq) + sshd-4261 0d.h1 13us : move_native_irq (ack_ioapic_quirk_irq) + sshd-4261 0d.h1 13us : _spin_unlock (handle_fasteoi_irq) + sshd-4261 0d.h1 14us : sub_preempt_count (_spin_unlock) + sshd-4261 0d.h1 14us : irq_exit (do_IRQ) + sshd-4261 0d.h1 15us : sub_preempt_count (irq_exit) + sshd-4261 0d..2 15us : do_softirq (irq_exit) + sshd-4261 0d... 15us : __do_softirq (do_softirq) + sshd-4261 0d... 16us : __local_bh_disable (__do_softirq) + sshd-4261 0d... 16us+: add_preempt_count (__local_bh_disable) + sshd-4261 0d.s4 20us : add_preempt_count (__local_bh_disable) + sshd-4261 0d.s4 21us : sub_preempt_count (local_bh_enable) + sshd-4261 0d.s5 21us : sub_preempt_count (local_bh_enable) +[...] + sshd-4261 0d.s6 41us : add_preempt_count (__local_bh_disable) + sshd-4261 0d.s6 42us : sub_preempt_count (local_bh_enable) + sshd-4261 0d.s7 42us : sub_preempt_count (local_bh_enable) + sshd-4261 0d.s5 43us : add_preempt_count (__local_bh_disable) + sshd-4261 0d.s5 43us : sub_preempt_count (local_bh_enable_ip) + sshd-4261 0d.s6 44us : sub_preempt_count (local_bh_enable_ip) + sshd-4261 0d.s5 44us : add_preempt_count (__local_bh_disable) + sshd-4261 0d.s5 45us : sub_preempt_count (local_bh_enable) +[...] + sshd-4261 0d.s. 63us : _local_bh_enable (__do_softirq) + sshd-4261 0d.s1 64us : trace_preempt_on (__do_softirq) + + +The above is an example of the preemptoff trace with +ftrace_enabled set. Here we see that interrupts were disabled +the entire time. The irq_enter code lets us know that we entered +an interrupt 'h'. Before that, the functions being traced still +show that it is not in an interrupt, but we can see from the +functions themselves that this is not the case. + +Notice that __do_softirq when called does not have a +preempt_count. It may seem that we missed a preempt enabling. +What really happened is that the preempt count is held on the +thread's stack and we switched to the softirq stack (4K stacks +in effect). The code does not copy the preempt count, but +because interrupts are disabled, we do not need to worry about +it. Having a tracer like this is good for letting people know +what really happens inside the kernel. + + +preemptirqsoff +-------------- + +Knowing the locations that have interrupts disabled or +preemption disabled for the longest times is helpful. But +sometimes we would like to know when either preemption and/or +interrupts are disabled. + +Consider the following code: + + local_irq_disable(); + call_function_with_irqs_off(); + preempt_disable(); + call_function_with_irqs_and_preemption_off(); + local_irq_enable(); + call_function_with_preemption_off(); + preempt_enable(); + +The irqsoff tracer will record the total length of +call_function_with_irqs_off() and +call_function_with_irqs_and_preemption_off(). + +The preemptoff tracer will record the total length of +call_function_with_irqs_and_preemption_off() and +call_function_with_preemption_off(). + +But neither will trace the time that interrupts and/or +preemption is disabled. This total time is the time that we can +not schedule. To record this time, use the preemptirqsoff +tracer. + +Again, using this trace is much like the irqsoff and preemptoff +tracers. + + # echo preemptirqsoff > /debug/tracing/current_tracer + # echo 0 > /debug/tracing/tracing_max_latency + # echo 1 > /debug/tracing/tracing_enabled + # ls -ltr + [...] + # echo 0 > /debug/tracing/tracing_enabled + # cat /debug/tracing/latency_trace +# tracer: preemptirqsoff +# +preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8 +-------------------------------------------------------------------- + latency: 293 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) + ----------------- + | task: ls-4860 (uid:0 nice:0 policy:0 rt_prio:0) + ----------------- + => started at: apic_timer_interrupt + => ended at: __do_softirq + +# _------=> CPU# +# / _-----=> irqs-off +# | / _----=> need-resched +# || / _---=> hardirq/softirq +# ||| / _--=> preempt-depth +# |||| / +# ||||| delay +# cmd pid ||||| time | caller +# \ / ||||| \ | / + ls-4860 0d... 0us!: trace_hardirqs_off_thunk (apic_timer_interrupt) + ls-4860 0d.s. 294us : _local_bh_enable (__do_softirq) + ls-4860 0d.s1 294us : trace_preempt_on (__do_softirq) + + + +The trace_hardirqs_off_thunk is called from assembly on x86 when +interrupts are disabled in the assembly code. Without the +function tracing, we do not know if interrupts were enabled +within the preemption points. We do see that it started with +preemption enabled. + +Here is a trace with ftrace_enabled set: + + +# tracer: preemptirqsoff +# +preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8 +-------------------------------------------------------------------- + latency: 105 us, #183/183, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) + ----------------- + | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0) + ----------------- + => started at: write_chan + => ended at: __do_softirq + +# _------=> CPU# +# / _-----=> irqs-off +# | / _----=> need-resched +# || / _---=> hardirq/softirq +# ||| / _--=> preempt-depth +# |||| / +# ||||| delay +# cmd pid ||||| time | caller +# \ / ||||| \ | / + ls-4473 0.N.. 0us : preempt_schedule (write_chan) + ls-4473 0dN.1 1us : _spin_lock (schedule) + ls-4473 0dN.1 2us : add_preempt_count (_spin_lock) + ls-4473 0d..2 2us : put_prev_task_fair (schedule) +[...] + ls-4473 0d..2 13us : set_normalized_timespec (ktime_get_ts) + ls-4473 0d..2 13us : __switch_to (schedule) + sshd-4261 0d..2 14us : finish_task_switch (schedule) + sshd-4261 0d..2 14us : _spin_unlock_irq (finish_task_switch) + sshd-4261 0d..1 15us : add_preempt_count (_spin_lock_irqsave) + sshd-4261 0d..2 16us : _spin_unlock_irqrestore (hrtick_set) + sshd-4261 0d..2 16us : do_IRQ (common_interrupt) + sshd-4261 0d..2 17us : irq_enter (do_IRQ) + sshd-4261 0d..2 17us : idle_cpu (irq_enter) + sshd-4261 0d..2 18us : add_preempt_count (irq_enter) + sshd-4261 0d.h2 18us : idle_cpu (irq_enter) + sshd-4261 0d.h. 18us : handle_fasteoi_irq (do_IRQ) + sshd-4261 0d.h. 19us : _spin_lock (handle_fasteoi_irq) + sshd-4261 0d.h. 19us : add_preempt_count (_spin_lock) + sshd-4261 0d.h1 20us : _spin_unlock (handle_fasteoi_irq) + sshd-4261 0d.h1 20us : sub_preempt_count (_spin_unlock) +[...] + sshd-4261 0d.h1 28us : _spin_unlock (handle_fasteoi_irq) + sshd-4261 0d.h1 29us : sub_preempt_count (_spin_unlock) + sshd-4261 0d.h2 29us : irq_exit (do_IRQ) + sshd-4261 0d.h2 29us : sub_preempt_count (irq_exit) + sshd-4261 0d..3 30us : do_softirq (irq_exit) + sshd-4261 0d... 30us : __do_softirq (do_softirq) + sshd-4261 0d... 31us : __local_bh_disable (__do_softirq) + sshd-4261 0d... 31us+: add_preempt_count (__local_bh_disable) + sshd-4261 0d.s4 34us : add_preempt_count (__local_bh_disable) +[...] + sshd-4261 0d.s3 43us : sub_preempt_count (local_bh_enable_ip) + sshd-4261 0d.s4 44us : sub_preempt_count (local_bh_enable_ip) + sshd-4261 0d.s3 44us : smp_apic_timer_interrupt (apic_timer_interrupt) + sshd-4261 0d.s3 45us : irq_enter (smp_apic_timer_interrupt) + sshd-4261 0d.s3 45us : idle_cpu (irq_enter) + sshd-4261 0d.s3 46us : add_preempt_count (irq_enter) + sshd-4261 0d.H3 46us : idle_cpu (irq_enter) + sshd-4261 0d.H3 47us : hrtimer_interrupt (smp_apic_timer_interrupt) + sshd-4261 0d.H3 47us : ktime_get (hrtimer_interrupt) +[...] + sshd-4261 0d.H3 81us : tick_program_event (hrtimer_interrupt) + sshd-4261 0d.H3 82us : ktime_get (tick_program_event) + sshd-4261 0d.H3 82us : ktime_get_ts (ktime_get) + sshd-4261 0d.H3 83us : getnstimeofday (ktime_get_ts) + sshd-4261 0d.H3 83us : set_normalized_timespec (ktime_get_ts) + sshd-4261 0d.H3 84us : clockevents_program_event (tick_program_event) + sshd-4261 0d.H3 84us : lapic_next_event (clockevents_program_event) + sshd-4261 0d.H3 85us : irq_exit (smp_apic_timer_interrupt) + sshd-4261 0d.H3 85us : sub_preempt_count (irq_exit) + sshd-4261 0d.s4 86us : sub_preempt_count (irq_exit) + sshd-4261 0d.s3 86us : add_preempt_count (__local_bh_disable) +[...] + sshd-4261 0d.s1 98us : sub_preempt_count (net_rx_action) + sshd-4261 0d.s. 99us : add_preempt_count (_spin_lock_irq) + sshd-4261 0d.s1 99us+: _spin_unlock_irq (run_timer_softirq) + sshd-4261 0d.s. 104us : _local_bh_enable (__do_softirq) + sshd-4261 0d.s. 104us : sub_preempt_count (_local_bh_enable) + sshd-4261 0d.s. 105us : _local_bh_enable (__do_softirq) + sshd-4261 0d.s1 105us : trace_preempt_on (__do_softirq) + + +This is a very interesting trace. It started with the preemption +of the ls task. We see that the task had the "need_resched" bit +set via the 'N' in the trace. Interrupts were disabled before +the spin_lock at the beginning of the trace. We see that a +schedule took place to run sshd. When the interrupts were +enabled, we took an interrupt. On return from the interrupt +handler, the softirq ran. We took another interrupt while +running the softirq as we see from the capital 'H'. + + +wakeup +------ + +In a Real-Time environment it is very important to know the +wakeup time it takes for the highest priority task that is woken +up to the time that it executes. This is also known as "schedule +latency". I stress the point that this is about RT tasks. It is +also important to know the scheduling latency of non-RT tasks, +but the average schedule latency is better for non-RT tasks. +Tools like LatencyTop are more appropriate for such +measurements. + +Real-Time environments are interested in the worst case latency. +That is the longest latency it takes for something to happen, +and not the average. We can have a very fast scheduler that may +only have a large latency once in a while, but that would not +work well with Real-Time tasks. The wakeup tracer was designed +to record the worst case wakeups of RT tasks. Non-RT tasks are +not recorded because the tracer only records one worst case and +tracing non-RT tasks that are unpredictable will overwrite the +worst case latency of RT tasks. + +Since this tracer only deals with RT tasks, we will run this +slightly differently than we did with the previous tracers. +Instead of performing an 'ls', we will run 'sleep 1' under +'chrt' which changes the priority of the task. + + # echo wakeup > /debug/tracing/current_tracer + # echo 0 > /debug/tracing/tracing_max_latency + # echo 1 > /debug/tracing/tracing_enabled + # chrt -f 5 sleep 1 + # echo 0 > /debug/tracing/tracing_enabled + # cat /debug/tracing/latency_trace +# tracer: wakeup +# +wakeup latency trace v1.1.5 on 2.6.26-rc8 +-------------------------------------------------------------------- + latency: 4 us, #2/2, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) + ----------------- + | task: sleep-4901 (uid:0 nice:0 policy:1 rt_prio:5) + ----------------- + +# _------=> CPU# +# / _-----=> irqs-off +# | / _----=> need-resched +# || / _---=> hardirq/softirq +# ||| / _--=> preempt-depth +# |||| / +# ||||| delay +# cmd pid ||||| time | caller +# \ / ||||| \ | / + -0 1d.h4 0us+: try_to_wake_up (wake_up_process) + -0 1d..4 4us : schedule (cpu_idle) + + +Running this on an idle system, we see that it only took 4 +microseconds to perform the task switch. Note, since the trace +marker in the schedule is before the actual "switch", we stop +the tracing when the recorded task is about to schedule in. This +may change if we add a new marker at the end of the scheduler. + +Notice that the recorded task is 'sleep' with the PID of 4901 +and it has an rt_prio of 5. This priority is user-space priority +and not the internal kernel priority. The policy is 1 for +SCHED_FIFO and 2 for SCHED_RR. + +Doing the same with chrt -r 5 and ftrace_enabled set. + +# tracer: wakeup +# +wakeup latency trace v1.1.5 on 2.6.26-rc8 +-------------------------------------------------------------------- + latency: 50 us, #60/60, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) + ----------------- + | task: sleep-4068 (uid:0 nice:0 policy:2 rt_prio:5) + ----------------- + +# _------=> CPU# +# / _-----=> irqs-off +# | / _----=> need-resched +# || / _---=> hardirq/softirq +# ||| / _--=> preempt-depth +# |||| / +# ||||| delay +# cmd pid ||||| time | caller +# \ / ||||| \ | / +ksoftirq-7 1d.H3 0us : try_to_wake_up (wake_up_process) +ksoftirq-7 1d.H4 1us : sub_preempt_count (marker_probe_cb) +ksoftirq-7 1d.H3 2us : check_preempt_wakeup (try_to_wake_up) +ksoftirq-7 1d.H3 3us : update_curr (check_preempt_wakeup) +ksoftirq-7 1d.H3 4us : calc_delta_mine (update_curr) +ksoftirq-7 1d.H3 5us : __resched_task (check_preempt_wakeup) +ksoftirq-7 1d.H3 6us : task_wake_up_rt (try_to_wake_up) +ksoftirq-7 1d.H3 7us : _spin_unlock_irqrestore (try_to_wake_up) +[...] +ksoftirq-7 1d.H2 17us : irq_exit (smp_apic_timer_interrupt) +ksoftirq-7 1d.H2 18us : sub_preempt_count (irq_exit) +ksoftirq-7 1d.s3 19us : sub_preempt_count (irq_exit) +ksoftirq-7 1..s2 20us : rcu_process_callbacks (__do_softirq) +[...] +ksoftirq-7 1..s2 26us : __rcu_process_callbacks (rcu_process_callbacks) +ksoftirq-7 1d.s2 27us : _local_bh_enable (__do_softirq) +ksoftirq-7 1d.s2 28us : sub_preempt_count (_local_bh_enable) +ksoftirq-7 1.N.3 29us : sub_preempt_count (ksoftirqd) +ksoftirq-7 1.N.2 30us : _cond_resched (ksoftirqd) +ksoftirq-7 1.N.2 31us : __cond_resched (_cond_resched) +ksoftirq-7 1.N.2 32us : add_preempt_count (__cond_resched) +ksoftirq-7 1.N.2 33us : schedule (__cond_resched) +ksoftirq-7 1.N.2 33us : add_preempt_count (schedule) +ksoftirq-7 1.N.3 34us : hrtick_clear (schedule) +ksoftirq-7 1dN.3 35us : _spin_lock (schedule) +ksoftirq-7 1dN.3 36us : add_preempt_count (_spin_lock) +ksoftirq-7 1d..4 37us : put_prev_task_fair (schedule) +ksoftirq-7 1d..4 38us : update_curr (put_prev_task_fair) +[...] +ksoftirq-7 1d..5 47us : _spin_trylock (tracing_record_cmdline) +ksoftirq-7 1d..5 48us : add_preempt_count (_spin_trylock) +ksoftirq-7 1d..6 49us : _spin_unlock (tracing_record_cmdline) +ksoftirq-7 1d..6 49us : sub_preempt_count (_spin_unlock) +ksoftirq-7 1d..4 50us : schedule (__cond_resched) + +The interrupt went off while running ksoftirqd. This task runs +at SCHED_OTHER. Why did not we see the 'N' set early? This may +be a harmless bug with x86_32 and 4K stacks. On x86_32 with 4K +stacks configured, the interrupt and softirq run with their own +stack. Some information is held on the top of the task's stack +(need_resched and preempt_count are both stored there). The +setting of the NEED_RESCHED bit is done directly to the task's +stack, but the reading of the NEED_RESCHED is done by looking at +the current stack, which in this case is the stack for the hard +interrupt. This hides the fact that NEED_RESCHED has been set. +We do not see the 'N' until we switch back to the task's +assigned stack. + +function +-------- + +This tracer is the function tracer. Enabling the function tracer +can be done from the debug file system. Make sure the +ftrace_enabled is set; otherwise this tracer is a nop. + + # sysctl kernel.ftrace_enabled=1 + # echo function > /debug/tracing/current_tracer + # echo 1 > /debug/tracing/tracing_enabled + # usleep 1 + # echo 0 > /debug/tracing/tracing_enabled + # cat /debug/tracing/trace +# tracer: function +# +# TASK-PID CPU# TIMESTAMP FUNCTION +# | | | | | + bash-4003 [00] 123.638713: finish_task_switch <-schedule + bash-4003 [00] 123.638714: _spin_unlock_irq <-finish_task_switch + bash-4003 [00] 123.638714: sub_preempt_count <-_spin_unlock_irq + bash-4003 [00] 123.638715: hrtick_set <-schedule + bash-4003 [00] 123.638715: _spin_lock_irqsave <-hrtick_set + bash-4003 [00] 123.638716: add_preempt_count <-_spin_lock_irqsave + bash-4003 [00] 123.638716: _spin_unlock_irqrestore <-hrtick_set + bash-4003 [00] 123.638717: sub_preempt_count <-_spin_unlock_irqrestore + bash-4003 [00] 123.638717: hrtick_clear <-hrtick_set + bash-4003 [00] 123.638718: sub_preempt_count <-schedule + bash-4003 [00] 123.638718: sub_preempt_count <-preempt_schedule + bash-4003 [00] 123.638719: wait_for_completion <-__stop_machine_run + bash-4003 [00] 123.638719: wait_for_common <-wait_for_completion + bash-4003 [00] 123.638720: _spin_lock_irq <-wait_for_common + bash-4003 [00] 123.638720: add_preempt_count <-_spin_lock_irq +[...] + + +Note: function tracer uses ring buffers to store the above +entries. The newest data may overwrite the oldest data. +Sometimes using echo to stop the trace is not sufficient because +the tracing could have overwritten the data that you wanted to +record. For this reason, it is sometimes better to disable +tracing directly from a program. This allows you to stop the +tracing at the point that you hit the part that you are +interested in. To disable the tracing directly from a C program, +something like following code snippet can be used: + +int trace_fd; +[...] +int main(int argc, char *argv[]) { + [...] + trace_fd = open("/debug/tracing/tracing_enabled", O_WRONLY); + [...] + if (condition_hit()) { + write(trace_fd, "0", 1); + } + [...] +} + +Note: Here we hard coded the path name. The debugfs mount is not +guaranteed to be at /debug (and is more commonly at +/sys/kernel/debug). For simple one time traces, the above is +sufficent. For anything else, a search through /proc/mounts may +be needed to find where the debugfs file-system is mounted. + + +Single thread tracing +--------------------- + +By writing into /debug/tracing/set_ftrace_pid you can trace a +single thread. For example: + +# cat /debug/tracing/set_ftrace_pid +no pid +# echo 3111 > /debug/tracing/set_ftrace_pid +# cat /debug/tracing/set_ftrace_pid +3111 +# echo function > /debug/tracing/current_tracer +# cat /debug/tracing/trace | head + # tracer: function + # + # TASK-PID CPU# TIMESTAMP FUNCTION + # | | | | | + yum-updatesd-3111 [003] 1637.254676: finish_task_switch <-thread_return + yum-updatesd-3111 [003] 1637.254681: hrtimer_cancel <-schedule_hrtimeout_range + yum-updatesd-3111 [003] 1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel + yum-updatesd-3111 [003] 1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel + yum-updatesd-3111 [003] 1637.254685: fget_light <-do_sys_poll + yum-updatesd-3111 [003] 1637.254686: pipe_poll <-do_sys_poll +# echo -1 > /debug/tracing/set_ftrace_pid +# cat /debug/tracing/trace |head + # tracer: function + # + # TASK-PID CPU# TIMESTAMP FUNCTION + # | | | | | + ##### CPU 3 buffer started #### + yum-updatesd-3111 [003] 1701.957688: free_poll_entry <-poll_freewait + yum-updatesd-3111 [003] 1701.957689: remove_wait_queue <-free_poll_entry + yum-updatesd-3111 [003] 1701.957691: fput <-free_poll_entry + yum-updatesd-3111 [003] 1701.957692: audit_syscall_exit <-sysret_audit + yum-updatesd-3111 [003] 1701.957693: path_put <-audit_syscall_exit + +If you want to trace a function when executing, you could use +something like this simple program: + +#include +#include +#include +#include +#include +#include + +int main (int argc, char **argv) +{ + if (argc < 1) + exit(-1); + + if (fork() > 0) { + int fd, ffd; + char line[64]; + int s; + + ffd = open("/debug/tracing/current_tracer", O_WRONLY); + if (ffd < 0) + exit(-1); + write(ffd, "nop", 3); + + fd = open("/debug/tracing/set_ftrace_pid", O_WRONLY); + s = sprintf(line, "%d\n", getpid()); + write(fd, line, s); + + write(ffd, "function", 8); + + close(fd); + close(ffd); + + execvp(argv[1], argv+1); + } + + return 0; +} + + +hw-branch-tracer (x86 only) +--------------------------- + +This tracer uses the x86 last branch tracing hardware feature to +collect a branch trace on all cpus with relatively low overhead. + +The tracer uses a fixed-size circular buffer per cpu and only +traces ring 0 branches. The trace file dumps that buffer in the +following format: + +# tracer: hw-branch-tracer +# +# CPU# TO <- FROM + 0 scheduler_tick+0xb5/0x1bf <- task_tick_idle+0x5/0x6 + 2 run_posix_cpu_timers+0x2b/0x72a <- run_posix_cpu_timers+0x25/0x72a + 0 scheduler_tick+0x139/0x1bf <- scheduler_tick+0xed/0x1bf + 0 scheduler_tick+0x17c/0x1bf <- scheduler_tick+0x148/0x1bf + 2 run_posix_cpu_timers+0x9e/0x72a <- run_posix_cpu_timers+0x5e/0x72a + 0 scheduler_tick+0x1b6/0x1bf <- scheduler_tick+0x1aa/0x1bf + + +The tracer may be used to dump the trace for the oops'ing cpu on +a kernel oops into the system log. To enable this, +ftrace_dump_on_oops must be set. To set ftrace_dump_on_oops, one +can either use the sysctl function or set it via the proc system +interface. + + sysctl kernel.ftrace_dump_on_oops=1 + +or + + echo 1 > /proc/sys/kernel/ftrace_dump_on_oops + + +Here's an example of such a dump after a null pointer +dereference in a kernel module: + +[57848.105921] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000 +[57848.106019] IP: [] open+0x6/0x14 [oops] +[57848.106019] PGD 2354e9067 PUD 2375e7067 PMD 0 +[57848.106019] Oops: 0002 [#1] SMP +[57848.106019] last sysfs file: /sys/devices/pci0000:00/0000:00:1e.0/0000:20:05.0/local_cpus +[57848.106019] Dumping ftrace buffer: +[57848.106019] --------------------------------- +[...] +[57848.106019] 0 chrdev_open+0xe6/0x165 <- cdev_put+0x23/0x24 +[57848.106019] 0 chrdev_open+0x117/0x165 <- chrdev_open+0xfa/0x165 +[57848.106019] 0 chrdev_open+0x120/0x165 <- chrdev_open+0x11c/0x165 +[57848.106019] 0 chrdev_open+0x134/0x165 <- chrdev_open+0x12b/0x165 +[57848.106019] 0 open+0x0/0x14 [oops] <- chrdev_open+0x144/0x165 +[57848.106019] 0 page_fault+0x0/0x30 <- open+0x6/0x14 [oops] +[57848.106019] 0 error_entry+0x0/0x5b <- page_fault+0x4/0x30 +[57848.106019] 0 error_kernelspace+0x0/0x31 <- error_entry+0x59/0x5b +[57848.106019] 0 error_sti+0x0/0x1 <- error_kernelspace+0x2d/0x31 +[57848.106019] 0 page_fault+0x9/0x30 <- error_sti+0x0/0x1 +[57848.106019] 0 do_page_fault+0x0/0x881 <- page_fault+0x1a/0x30 +[...] +[57848.106019] 0 do_page_fault+0x66b/0x881 <- is_prefetch+0x1ee/0x1f2 +[57848.106019] 0 do_page_fault+0x6e0/0x881 <- do_page_fault+0x67a/0x881 +[57848.106019] 0 oops_begin+0x0/0x96 <- do_page_fault+0x6e0/0x881 +[57848.106019] 0 trace_hw_branch_oops+0x0/0x2d <- oops_begin+0x9/0x96 +[...] +[57848.106019] 0 ds_suspend_bts+0x2a/0xe3 <- ds_suspend_bts+0x1a/0xe3 +[57848.106019] --------------------------------- +[57848.106019] CPU 0 +[57848.106019] Modules linked in: oops +[57848.106019] Pid: 5542, comm: cat Tainted: G W 2.6.28 #23 +[57848.106019] RIP: 0010:[] [] open+0x6/0x14 [oops] +[57848.106019] RSP: 0018:ffff880235457d48 EFLAGS: 00010246 +[...] + + +function graph tracer +--------------------------- + +This tracer is similar to the function tracer except that it +probes a function on its entry and its exit. This is done by +using a dynamically allocated stack of return addresses in each +task_struct. On function entry the tracer overwrites the return +address of each function traced to set a custom probe. Thus the +original return address is stored on the stack of return address +in the task_struct. + +Probing on both ends of a function leads to special features +such as: + +- measure of a function's time execution +- having a reliable call stack to draw function calls graph + +This tracer is useful in several situations: + +- you want to find the reason of a strange kernel behavior and + need to see what happens in detail on any areas (or specific + ones). + +- you are experiencing weird latencies but it's difficult to + find its origin. + +- you want to find quickly which path is taken by a specific + function + +- you just want to peek inside a working kernel and want to see + what happens there. + +# tracer: function_graph +# +# CPU DURATION FUNCTION CALLS +# | | | | | | | + + 0) | sys_open() { + 0) | do_sys_open() { + 0) | getname() { + 0) | kmem_cache_alloc() { + 0) 1.382 us | __might_sleep(); + 0) 2.478 us | } + 0) | strncpy_from_user() { + 0) | might_fault() { + 0) 1.389 us | __might_sleep(); + 0) 2.553 us | } + 0) 3.807 us | } + 0) 7.876 us | } + 0) | alloc_fd() { + 0) 0.668 us | _spin_lock(); + 0) 0.570 us | expand_files(); + 0) 0.586 us | _spin_unlock(); + + +There are several columns that can be dynamically +enabled/disabled. You can use every combination of options you +want, depending on your needs. + +- The cpu number on which the function executed is default + enabled. It is sometimes better to only trace one cpu (see + tracing_cpu_mask file) or you might sometimes see unordered + function calls while cpu tracing switch. + + hide: echo nofuncgraph-cpu > /debug/tracing/trace_options + show: echo funcgraph-cpu > /debug/tracing/trace_options + +- The duration (function's time of execution) is displayed on + the closing bracket line of a function or on the same line + than the current function in case of a leaf one. It is default + enabled. + + hide: echo nofuncgraph-duration > /debug/tracing/trace_options + show: echo funcgraph-duration > /debug/tracing/trace_options + +- The overhead field precedes the duration field in case of + reached duration thresholds. + + hide: echo nofuncgraph-overhead > /debug/tracing/trace_options + show: echo funcgraph-overhead > /debug/tracing/trace_options + depends on: funcgraph-duration + + ie: + + 0) | up_write() { + 0) 0.646 us | _spin_lock_irqsave(); + 0) 0.684 us | _spin_unlock_irqrestore(); + 0) 3.123 us | } + 0) 0.548 us | fput(); + 0) + 58.628 us | } + + [...] + + 0) | putname() { + 0) | kmem_cache_free() { + 0) 0.518 us | __phys_addr(); + 0) 1.757 us | } + 0) 2.861 us | } + 0) ! 115.305 us | } + 0) ! 116.402 us | } + + + means that the function exceeded 10 usecs. + ! means that the function exceeded 100 usecs. + + +- The task/pid field displays the thread cmdline and pid which + executed the function. It is default disabled. + + hide: echo nofuncgraph-proc > /debug/tracing/trace_options + show: echo funcgraph-proc > /debug/tracing/trace_options + + ie: + + # tracer: function_graph + # + # CPU TASK/PID DURATION FUNCTION CALLS + # | | | | | | | | | + 0) sh-4802 | | d_free() { + 0) sh-4802 | | call_rcu() { + 0) sh-4802 | | __call_rcu() { + 0) sh-4802 | 0.616 us | rcu_process_gp_end(); + 0) sh-4802 | 0.586 us | check_for_new_grace_period(); + 0) sh-4802 | 2.899 us | } + 0) sh-4802 | 4.040 us | } + 0) sh-4802 | 5.151 us | } + 0) sh-4802 | + 49.370 us | } + + +- The absolute time field is an absolute timestamp given by the + system clock since it started. A snapshot of this time is + given on each entry/exit of functions + + hide: echo nofuncgraph-abstime > /debug/tracing/trace_options + show: echo funcgraph-abstime > /debug/tracing/trace_options + + ie: + + # + # TIME CPU DURATION FUNCTION CALLS + # | | | | | | | | + 360.774522 | 1) 0.541 us | } + 360.774522 | 1) 4.663 us | } + 360.774523 | 1) 0.541 us | __wake_up_bit(); + 360.774524 | 1) 6.796 us | } + 360.774524 | 1) 7.952 us | } + 360.774525 | 1) 9.063 us | } + 360.774525 | 1) 0.615 us | journal_mark_dirty(); + 360.774527 | 1) 0.578 us | __brelse(); + 360.774528 | 1) | reiserfs_prepare_for_journal() { + 360.774528 | 1) | unlock_buffer() { + 360.774529 | 1) | wake_up_bit() { + 360.774529 | 1) | bit_waitqueue() { + 360.774530 | 1) 0.594 us | __phys_addr(); + + +You can put some comments on specific functions by using +trace_printk() For example, if you want to put a comment inside +the __might_sleep() function, you just have to include + and call trace_printk() inside __might_sleep() + +trace_printk("I'm a comment!\n") + +will produce: + + 1) | __might_sleep() { + 1) | /* I'm a comment! */ + 1) 1.449 us | } + + +You might find other useful features for this tracer in the +following "dynamic ftrace" section such as tracing only specific +functions or tasks. + +dynamic ftrace +-------------- + +If CONFIG_DYNAMIC_FTRACE is set, the system will run with +virtually no overhead when function tracing is disabled. The way +this works is the mcount function call (placed at the start of +every kernel function, produced by the -pg switch in gcc), +starts of pointing to a simple return. (Enabling FTRACE will +include the -pg switch in the compiling of the kernel.) + +At compile time every C file object is run through the +recordmcount.pl script (located in the scripts directory). This +script will process the C object using objdump to find all the +locations in the .text section that call mcount. (Note, only the +.text section is processed, since processing other sections like +.init.text may cause races due to those sections being freed). + +A new section called "__mcount_loc" is created that holds +references to all the mcount call sites in the .text section. +This section is compiled back into the original object. The +final linker will add all these references into a single table. + +On boot up, before SMP is initialized, the dynamic ftrace code +scans this table and updates all the locations into nops. It +also records the locations, which are added to the +available_filter_functions list. Modules are processed as they +are loaded and before they are executed. When a module is +unloaded, it also removes its functions from the ftrace function +list. This is automatic in the module unload code, and the +module author does not need to worry about it. + +When tracing is enabled, kstop_machine is called to prevent +races with the CPUS executing code being modified (which can +cause the CPU to do undesireable things), and the nops are +patched back to calls. But this time, they do not call mcount +(which is just a function stub). They now call into the ftrace +infrastructure. + +One special side-effect to the recording of the functions being +traced is that we can now selectively choose which functions we +wish to trace and which ones we want the mcount calls to remain +as nops. + +Two files are used, one for enabling and one for disabling the +tracing of specified functions. They are: + + set_ftrace_filter + +and + + set_ftrace_notrace + +A list of available functions that you can add to these files is +listed in: + + available_filter_functions + + # cat /debug/tracing/available_filter_functions +put_prev_task_idle +kmem_cache_create +pick_next_task_rt +get_online_cpus +pick_next_task_fair +mutex_lock +[...] + +If I am only interested in sys_nanosleep and hrtimer_interrupt: + + # echo sys_nanosleep hrtimer_interrupt \ + > /debug/tracing/set_ftrace_filter + # echo ftrace > /debug/tracing/current_tracer + # echo 1 > /debug/tracing/tracing_enabled + # usleep 1 + # echo 0 > /debug/tracing/tracing_enabled + # cat /debug/tracing/trace +# tracer: ftrace +# +# TASK-PID CPU# TIMESTAMP FUNCTION +# | | | | | + usleep-4134 [00] 1317.070017: hrtimer_interrupt <-smp_apic_timer_interrupt + usleep-4134 [00] 1317.070111: sys_nanosleep <-syscall_call + -0 [00] 1317.070115: hrtimer_interrupt <-smp_apic_timer_interrupt + +To see which functions are being traced, you can cat the file: + + # cat /debug/tracing/set_ftrace_filter +hrtimer_interrupt +sys_nanosleep + + +Perhaps this is not enough. The filters also allow simple wild +cards. Only the following are currently available + + * - will match functions that begin with + * - will match functions that end with + ** - will match functions that have in it + +These are the only wild cards which are supported. + + * will not work. + +Note: It is better to use quotes to enclose the wild cards, + otherwise the shell may expand the parameters into names + of files in the local directory. + + # echo 'hrtimer_*' > /debug/tracing/set_ftrace_filter + +Produces: + +# tracer: ftrace +# +# TASK-PID CPU# TIMESTAMP FUNCTION +# | | | | | + bash-4003 [00] 1480.611794: hrtimer_init <-copy_process + bash-4003 [00] 1480.611941: hrtimer_start <-hrtick_set + bash-4003 [00] 1480.611956: hrtimer_cancel <-hrtick_clear + bash-4003 [00] 1480.611956: hrtimer_try_to_cancel <-hrtimer_cancel + -0 [00] 1480.612019: hrtimer_get_next_event <-get_next_timer_interrupt + -0 [00] 1480.612025: hrtimer_get_next_event <-get_next_timer_interrupt + -0 [00] 1480.612032: hrtimer_get_next_event <-get_next_timer_interrupt + -0 [00] 1480.612037: hrtimer_get_next_event <-get_next_timer_interrupt + -0 [00] 1480.612382: hrtimer_get_next_event <-get_next_timer_interrupt + + +Notice that we lost the sys_nanosleep. + + # cat /debug/tracing/set_ftrace_filter +hrtimer_run_queues +hrtimer_run_pending +hrtimer_init +hrtimer_cancel +hrtimer_try_to_cancel +hrtimer_forward +hrtimer_start +hrtimer_reprogram +hrtimer_force_reprogram +hrtimer_get_next_event +hrtimer_interrupt +hrtimer_nanosleep +hrtimer_wakeup +hrtimer_get_remaining +hrtimer_get_res +hrtimer_init_sleeper + + +This is because the '>' and '>>' act just like they do in bash. +To rewrite the filters, use '>' +To append to the filters, use '>>' + +To clear out a filter so that all functions will be recorded +again: + + # echo > /debug/tracing/set_ftrace_filter + # cat /debug/tracing/set_ftrace_filter + # + +Again, now we want to append. + + # echo sys_nanosleep > /debug/tracing/set_ftrace_filter + # cat /debug/tracing/set_ftrace_filter +sys_nanosleep + # echo 'hrtimer_*' >> /debug/tracing/set_ftrace_filter + # cat /debug/tracing/set_ftrace_filter +hrtimer_run_queues +hrtimer_run_pending +hrtimer_init +hrtimer_cancel +hrtimer_try_to_cancel +hrtimer_forward +hrtimer_start +hrtimer_reprogram +hrtimer_force_reprogram +hrtimer_get_next_event +hrtimer_interrupt +sys_nanosleep +hrtimer_nanosleep +hrtimer_wakeup +hrtimer_get_remaining +hrtimer_get_res +hrtimer_init_sleeper + + +The set_ftrace_notrace prevents those functions from being +traced. + + # echo '*preempt*' '*lock*' > /debug/tracing/set_ftrace_notrace + +Produces: + +# tracer: ftrace +# +# TASK-PID CPU# TIMESTAMP FUNCTION +# | | | | | + bash-4043 [01] 115.281644: finish_task_switch <-schedule + bash-4043 [01] 115.281645: hrtick_set <-schedule + bash-4043 [01] 115.281645: hrtick_clear <-hrtick_set + bash-4043 [01] 115.281646: wait_for_completion <-__stop_machine_run + bash-4043 [01] 115.281647: wait_for_common <-wait_for_completion + bash-4043 [01] 115.281647: kthread_stop <-stop_machine_run + bash-4043 [01] 115.281648: init_waitqueue_head <-kthread_stop + bash-4043 [01] 115.281648: wake_up_process <-kthread_stop + bash-4043 [01] 115.281649: try_to_wake_up <-wake_up_process + +We can see that there's no more lock or preempt tracing. + + +Dynamic ftrace with the function graph tracer +--------------------------------------------- + +Although what has been explained above concerns both the +function tracer and the function-graph-tracer, there are some +special features only available in the function-graph tracer. + +If you want to trace only one function and all of its children, +you just have to echo its name into set_graph_function: + + echo __do_fault > set_graph_function + +will produce the following "expanded" trace of the __do_fault() +function: + + 0) | __do_fault() { + 0) | filemap_fault() { + 0) | find_lock_page() { + 0) 0.804 us | find_get_page(); + 0) | __might_sleep() { + 0) 1.329 us | } + 0) 3.904 us | } + 0) 4.979 us | } + 0) 0.653 us | _spin_lock(); + 0) 0.578 us | page_add_file_rmap(); + 0) 0.525 us | native_set_pte_at(); + 0) 0.585 us | _spin_unlock(); + 0) | unlock_page() { + 0) 0.541 us | page_waitqueue(); + 0) 0.639 us | __wake_up_bit(); + 0) 2.786 us | } + 0) + 14.237 us | } + 0) | __do_fault() { + 0) | filemap_fault() { + 0) | find_lock_page() { + 0) 0.698 us | find_get_page(); + 0) | __might_sleep() { + 0) 1.412 us | } + 0) 3.950 us | } + 0) 5.098 us | } + 0) 0.631 us | _spin_lock(); + 0) 0.571 us | page_add_file_rmap(); + 0) 0.526 us | native_set_pte_at(); + 0) 0.586 us | _spin_unlock(); + 0) | unlock_page() { + 0) 0.533 us | page_waitqueue(); + 0) 0.638 us | __wake_up_bit(); + 0) 2.793 us | } + 0) + 14.012 us | } + +You can also expand several functions at once: + + echo sys_open > set_graph_function + echo sys_close >> set_graph_function + +Now if you want to go back to trace all functions you can clear +this special filter via: + + echo > set_graph_function + + +trace_pipe +---------- + +The trace_pipe outputs the same content as the trace file, but +the effect on the tracing is different. Every read from +trace_pipe is consumed. This means that subsequent reads will be +different. The trace is live. + + # echo function > /debug/tracing/current_tracer + # cat /debug/tracing/trace_pipe > /tmp/trace.out & +[1] 4153 + # echo 1 > /debug/tracing/tracing_enabled + # usleep 1 + # echo 0 > /debug/tracing/tracing_enabled + # cat /debug/tracing/trace +# tracer: function +# +# TASK-PID CPU# TIMESTAMP FUNCTION +# | | | | | + + # + # cat /tmp/trace.out + bash-4043 [00] 41.267106: finish_task_switch <-schedule + bash-4043 [00] 41.267106: hrtick_set <-schedule + bash-4043 [00] 41.267107: hrtick_clear <-hrtick_set + bash-4043 [00] 41.267108: wait_for_completion <-__stop_machine_run + bash-4043 [00] 41.267108: wait_for_common <-wait_for_completion + bash-4043 [00] 41.267109: kthread_stop <-stop_machine_run + bash-4043 [00] 41.267109: init_waitqueue_head <-kthread_stop + bash-4043 [00] 41.267110: wake_up_process <-kthread_stop + bash-4043 [00] 41.267110: try_to_wake_up <-wake_up_process + bash-4043 [00] 41.267111: select_task_rq_rt <-try_to_wake_up + + +Note, reading the trace_pipe file will block until more input is +added. By changing the tracer, trace_pipe will issue an EOF. We +needed to set the function tracer _before_ we "cat" the +trace_pipe file. + + +trace entries +------------- + +Having too much or not enough data can be troublesome in +diagnosing an issue in the kernel. The file buffer_size_kb is +used to modify the size of the internal trace buffers. The +number listed is the number of entries that can be recorded per +CPU. To know the full size, multiply the number of possible CPUS +with the number of entries. + + # cat /debug/tracing/buffer_size_kb +1408 (units kilobytes) + +Note, to modify this, you must have tracing completely disabled. +To do that, echo "nop" into the current_tracer. If the +current_tracer is not set to "nop", an EINVAL error will be +returned. + + # echo nop > /debug/tracing/current_tracer + # echo 10000 > /debug/tracing/buffer_size_kb + # cat /debug/tracing/buffer_size_kb +10000 (units kilobytes) + +The number of pages which will be allocated is limited to a +percentage of available memory. Allocating too much will produce +an error. + + # echo 1000000000000 > /debug/tracing/buffer_size_kb +-bash: echo: write error: Cannot allocate memory + # cat /debug/tracing/buffer_size_kb +85 + +----------- + +More details can be found in the source code, in the +kernel/tracing/*.c files. diff --git a/Documentation/trace/kmemtrace.txt b/Documentation/trace/kmemtrace.txt new file mode 100644 index 000000000000..a956d9b7f943 --- /dev/null +++ b/Documentation/trace/kmemtrace.txt @@ -0,0 +1,126 @@ + kmemtrace - Kernel Memory Tracer + + by Eduard - Gabriel Munteanu + + +I. Introduction +=============== + +kmemtrace helps kernel developers figure out two things: +1) how different allocators (SLAB, SLUB etc.) perform +2) how kernel code allocates memory and how much + +To do this, we trace every allocation and export information to the userspace +through the relay interface. We export things such as the number of requested +bytes, the number of bytes actually allocated (i.e. including internal +fragmentation), whether this is a slab allocation or a plain kmalloc() and so +on. + +The actual analysis is performed by a userspace tool (see section III for +details on where to get it from). It logs the data exported by the kernel, +processes it and (as of writing this) can provide the following information: +- the total amount of memory allocated and fragmentation per call-site +- the amount of memory allocated and fragmentation per allocation +- total memory allocated and fragmentation in the collected dataset +- number of cross-CPU allocation and frees (makes sense in NUMA environments) + +Moreover, it can potentially find inconsistent and erroneous behavior in +kernel code, such as using slab free functions on kmalloc'ed memory or +allocating less memory than requested (but not truly failed allocations). + +kmemtrace also makes provisions for tracing on some arch and analysing the +data on another. + +II. Design and goals +==================== + +kmemtrace was designed to handle rather large amounts of data. Thus, it uses +the relay interface to export whatever is logged to userspace, which then +stores it. Analysis and reporting is done asynchronously, that is, after the +data is collected and stored. By design, it allows one to log and analyse +on different machines and different arches. + +As of writing this, the ABI is not considered stable, though it might not +change much. However, no guarantees are made about compatibility yet. When +deemed stable, the ABI should still allow easy extension while maintaining +backward compatibility. This is described further in Documentation/ABI. + +Summary of design goals: + - allow logging and analysis to be done across different machines + - be fast and anticipate usage in high-load environments (*) + - be reasonably extensible + - make it possible for GNU/Linux distributions to have kmemtrace + included in their repositories + +(*) - one of the reasons Pekka Enberg's original userspace data analysis + tool's code was rewritten from Perl to C (although this is more than a + simple conversion) + + +III. Quick usage guide +====================== + +1) Get a kernel that supports kmemtrace and build it accordingly (i.e. enable +CONFIG_KMEMTRACE). + +2) Get the userspace tool and build it: +$ git-clone git://repo.or.cz/kmemtrace-user.git # current repository +$ cd kmemtrace-user/ +$ ./autogen.sh +$ ./configure +$ make + +3) Boot the kmemtrace-enabled kernel if you haven't, preferably in the +'single' runlevel (so that relay buffers don't fill up easily), and run +kmemtrace: +# '$' does not mean user, but root here. +$ mount -t debugfs none /sys/kernel/debug +$ mount -t proc none /proc +$ cd path/to/kmemtrace-user/ +$ ./kmemtraced +Wait a bit, then stop it with CTRL+C. +$ cat /sys/kernel/debug/kmemtrace/total_overruns # Check if we didn't + # overrun, should + # be zero. +$ (Optionally) [Run kmemtrace_check separately on each cpu[0-9]*.out file to + check its correctness] +$ ./kmemtrace-report + +Now you should have a nice and short summary of how the allocator performs. + +IV. FAQ and known issues +======================== + +Q: 'cat /sys/kernel/debug/kmemtrace/total_overruns' is non-zero, how do I fix +this? Should I worry? +A: If it's non-zero, this affects kmemtrace's accuracy, depending on how +large the number is. You can fix it by supplying a higher +'kmemtrace.subbufs=N' kernel parameter. +--- + +Q: kmemtrace_check reports errors, how do I fix this? Should I worry? +A: This is a bug and should be reported. It can occur for a variety of +reasons: + - possible bugs in relay code + - possible misuse of relay by kmemtrace + - timestamps being collected unorderly +Or you may fix it yourself and send us a patch. +--- + +Q: kmemtrace_report shows many errors, how do I fix this? Should I worry? +A: This is a known issue and I'm working on it. These might be true errors +in kernel code, which may have inconsistent behavior (e.g. allocating memory +with kmem_cache_alloc() and freeing it with kfree()). Pekka Enberg pointed +out this behavior may work with SLAB, but may fail with other allocators. + +It may also be due to lack of tracing in some unusual allocator functions. + +We don't want bug reports regarding this issue yet. +--- + +V. See also +=========== + +Documentation/kernel-parameters.txt +Documentation/ABI/testing/debugfs-kmemtrace + diff --git a/Documentation/trace/mmiotrace.txt b/Documentation/trace/mmiotrace.txt new file mode 100644 index 000000000000..5731c67abc55 --- /dev/null +++ b/Documentation/trace/mmiotrace.txt @@ -0,0 +1,163 @@ + In-kernel memory-mapped I/O tracing + + +Home page and links to optional user space tools: + + http://nouveau.freedesktop.org/wiki/MmioTrace + +MMIO tracing was originally developed by Intel around 2003 for their Fault +Injection Test Harness. In Dec 2006 - Jan 2007, using the code from Intel, +Jeff Muizelaar created a tool for tracing MMIO accesses with the Nouveau +project in mind. Since then many people have contributed. + +Mmiotrace was built for reverse engineering any memory-mapped IO device with +the Nouveau project as the first real user. Only x86 and x86_64 architectures +are supported. + +Out-of-tree mmiotrace was originally modified for mainline inclusion and +ftrace framework by Pekka Paalanen . + + +Preparation +----------- + +Mmiotrace feature is compiled in by the CONFIG_MMIOTRACE option. Tracing is +disabled by default, so it is safe to have this set to yes. SMP systems are +supported, but tracing is unreliable and may miss events if more than one CPU +is on-line, therefore mmiotrace takes all but one CPU off-line during run-time +activation. You can re-enable CPUs by hand, but you have been warned, there +is no way to automatically detect if you are losing events due to CPUs racing. + + +Usage Quick Reference +--------------------- + +$ mount -t debugfs debugfs /debug +$ echo mmiotrace > /debug/tracing/current_tracer +$ cat /debug/tracing/trace_pipe > mydump.txt & +Start X or whatever. +$ echo "X is up" > /debug/tracing/trace_marker +$ echo nop > /debug/tracing/current_tracer +Check for lost events. + + +Usage +----- + +Make sure debugfs is mounted to /debug. If not, (requires root privileges) +$ mount -t debugfs debugfs /debug + +Check that the driver you are about to trace is not loaded. + +Activate mmiotrace (requires root privileges): +$ echo mmiotrace > /debug/tracing/current_tracer + +Start storing the trace: +$ cat /debug/tracing/trace_pipe > mydump.txt & +The 'cat' process should stay running (sleeping) in the background. + +Load the driver you want to trace and use it. Mmiotrace will only catch MMIO +accesses to areas that are ioremapped while mmiotrace is active. + +During tracing you can place comments (markers) into the trace by +$ echo "X is up" > /debug/tracing/trace_marker +This makes it easier to see which part of the (huge) trace corresponds to +which action. It is recommended to place descriptive markers about what you +do. + +Shut down mmiotrace (requires root privileges): +$ echo nop > /debug/tracing/current_tracer +The 'cat' process exits. If it does not, kill it by issuing 'fg' command and +pressing ctrl+c. + +Check that mmiotrace did not lose events due to a buffer filling up. Either +$ grep -i lost mydump.txt +which tells you exactly how many events were lost, or use +$ dmesg +to view your kernel log and look for "mmiotrace has lost events" warning. If +events were lost, the trace is incomplete. You should enlarge the buffers and +try again. Buffers are enlarged by first seeing how large the current buffers +are: +$ cat /debug/tracing/buffer_size_kb +gives you a number. Approximately double this number and write it back, for +instance: +$ echo 128000 > /debug/tracing/buffer_size_kb +Then start again from the top. + +If you are doing a trace for a driver project, e.g. Nouveau, you should also +do the following before sending your results: +$ lspci -vvv > lspci.txt +$ dmesg > dmesg.txt +$ tar zcf pciid-nick-mmiotrace.tar.gz mydump.txt lspci.txt dmesg.txt +and then send the .tar.gz file. The trace compresses considerably. Replace +"pciid" and "nick" with the PCI ID or model name of your piece of hardware +under investigation and your nick name. + + +How Mmiotrace Works +------------------- + +Access to hardware IO-memory is gained by mapping addresses from PCI bus by +calling one of the ioremap_*() functions. Mmiotrace is hooked into the +__ioremap() function and gets called whenever a mapping is created. Mapping is +an event that is recorded into the trace log. Note, that ISA range mappings +are not caught, since the mapping always exists and is returned directly. + +MMIO accesses are recorded via page faults. Just before __ioremap() returns, +the mapped pages are marked as not present. Any access to the pages causes a +fault. The page fault handler calls mmiotrace to handle the fault. Mmiotrace +marks the page present, sets TF flag to achieve single stepping and exits the +fault handler. The instruction that faulted is executed and debug trap is +entered. Here mmiotrace again marks the page as not present. The instruction +is decoded to get the type of operation (read/write), data width and the value +read or written. These are stored to the trace log. + +Setting the page present in the page fault handler has a race condition on SMP +machines. During the single stepping other CPUs may run freely on that page +and events can be missed without a notice. Re-enabling other CPUs during +tracing is discouraged. + + +Trace Log Format +---------------- + +The raw log is text and easily filtered with e.g. grep and awk. One record is +one line in the log. A record starts with a keyword, followed by keyword +dependant arguments. Arguments are separated by a space, or continue until the +end of line. The format for version 20070824 is as follows: + +Explanation Keyword Space separated arguments +--------------------------------------------------------------------------- + +read event R width, timestamp, map id, physical, value, PC, PID +write event W width, timestamp, map id, physical, value, PC, PID +ioremap event MAP timestamp, map id, physical, virtual, length, PC, PID +iounmap event UNMAP timestamp, map id, PC, PID +marker MARK timestamp, text +version VERSION the string "20070824" +info for reader LSPCI one line from lspci -v +PCI address map PCIDEV space separated /proc/bus/pci/devices data +unk. opcode UNKNOWN timestamp, map id, physical, data, PC, PID + +Timestamp is in seconds with decimals. Physical is a PCI bus address, virtual +is a kernel virtual address. Width is the data width in bytes and value is the +data value. Map id is an arbitrary id number identifying the mapping that was +used in an operation. PC is the program counter and PID is process id. PC is +zero if it is not recorded. PID is always zero as tracing MMIO accesses +originating in user space memory is not yet supported. + +For instance, the following awk filter will pass all 32-bit writes that target +physical addresses in the range [0xfb73ce40, 0xfb800000[ + +$ awk '/W 4 / { adr=strtonum($5); if (adr >= 0xfb73ce40 && +adr < 0xfb800000) print; }' + + +Tools for Developers +-------------------- + +The user space tools include utilities for: +- replacing numeric addresses and values with hardware register names +- replaying MMIO logs, i.e., re-executing the recorded writes + + diff --git a/Documentation/trace/tracepoints.txt b/Documentation/trace/tracepoints.txt new file mode 100644 index 000000000000..c0e1ceed75a4 --- /dev/null +++ b/Documentation/trace/tracepoints.txt @@ -0,0 +1,116 @@ + Using the Linux Kernel Tracepoints + + Mathieu Desnoyers + + +This document introduces Linux Kernel Tracepoints and their use. It +provides examples of how to insert tracepoints in the kernel and +connect probe functions to them and provides some examples of probe +functions. + + +* Purpose of tracepoints + +A tracepoint placed in code provides a hook to call a function (probe) +that you can provide at runtime. A tracepoint can be "on" (a probe is +connected to it) or "off" (no probe is attached). When a tracepoint is +"off" it has no effect, except for adding a tiny time penalty +(checking a condition for a branch) and space penalty (adding a few +bytes for the function call at the end of the instrumented function +and adds a data structure in a separate section). When a tracepoint +is "on", the function you provide is called each time the tracepoint +is executed, in the execution context of the caller. When the function +provided ends its execution, it returns to the caller (continuing from +the tracepoint site). + +You can put tracepoints at important locations in the code. They are +lightweight hooks that can pass an arbitrary number of parameters, +which prototypes are described in a tracepoint declaration placed in a +header file. + +They can be used for tracing and performance accounting. + + +* Usage + +Two elements are required for tracepoints : + +- A tracepoint definition, placed in a header file. +- The tracepoint statement, in C code. + +In order to use tracepoints, you should include linux/tracepoint.h. + +In include/trace/subsys.h : + +#include + +DECLARE_TRACE(subsys_eventname, + TP_PROTO(int firstarg, struct task_struct *p), + TP_ARGS(firstarg, p)); + +In subsys/file.c (where the tracing statement must be added) : + +#include + +DEFINE_TRACE(subsys_eventname); + +void somefct(void) +{ + ... + trace_subsys_eventname(arg, task); + ... +} + +Where : +- subsys_eventname is an identifier unique to your event + - subsys is the name of your subsystem. + - eventname is the name of the event to trace. + +- TP_PROTO(int firstarg, struct task_struct *p) is the prototype of the + function called by this tracepoint. + +- TP_ARGS(firstarg, p) are the parameters names, same as found in the + prototype. + +Connecting a function (probe) to a tracepoint is done by providing a +probe (function to call) for the specific tracepoint through +register_trace_subsys_eventname(). Removing a probe is done through +unregister_trace_subsys_eventname(); it will remove the probe. + +tracepoint_synchronize_unregister() must be called before the end of +the module exit function to make sure there is no caller left using +the probe. This, and the fact that preemption is disabled around the +probe call, make sure that probe removal and module unload are safe. +See the "Probe example" section below for a sample probe module. + +The tracepoint mechanism supports inserting multiple instances of the +same tracepoint, but a single definition must be made of a given +tracepoint name over all the kernel to make sure no type conflict will +occur. Name mangling of the tracepoints is done using the prototypes +to make sure typing is correct. Verification of probe type correctness +is done at the registration site by the compiler. Tracepoints can be +put in inline functions, inlined static functions, and unrolled loops +as well as regular functions. + +The naming scheme "subsys_event" is suggested here as a convention +intended to limit collisions. Tracepoint names are global to the +kernel: they are considered as being the same whether they are in the +core kernel image or in modules. + +If the tracepoint has to be used in kernel modules, an +EXPORT_TRACEPOINT_SYMBOL_GPL() or EXPORT_TRACEPOINT_SYMBOL() can be +used to export the defined tracepoints. + +* Probe / tracepoint example + +See the example provided in samples/tracepoints + +Compile them with your kernel. They are built during 'make' (not +'make modules') when CONFIG_SAMPLE_TRACEPOINTS=m. + +Run, as root : +modprobe tracepoint-sample (insmod order is not important) +modprobe tracepoint-probe-sample +cat /proc/tracepoint-sample (returns an expected error) +rmmod tracepoint-sample tracepoint-probe-sample +dmesg diff --git a/Documentation/tracepoints.txt b/Documentation/tracepoints.txt deleted file mode 100644 index c0e1ceed75a4..000000000000 --- a/Documentation/tracepoints.txt +++ /dev/null @@ -1,116 +0,0 @@ - Using the Linux Kernel Tracepoints - - Mathieu Desnoyers - - -This document introduces Linux Kernel Tracepoints and their use. It -provides examples of how to insert tracepoints in the kernel and -connect probe functions to them and provides some examples of probe -functions. - - -* Purpose of tracepoints - -A tracepoint placed in code provides a hook to call a function (probe) -that you can provide at runtime. A tracepoint can be "on" (a probe is -connected to it) or "off" (no probe is attached). When a tracepoint is -"off" it has no effect, except for adding a tiny time penalty -(checking a condition for a branch) and space penalty (adding a few -bytes for the function call at the end of the instrumented function -and adds a data structure in a separate section). When a tracepoint -is "on", the function you provide is called each time the tracepoint -is executed, in the execution context of the caller. When the function -provided ends its execution, it returns to the caller (continuing from -the tracepoint site). - -You can put tracepoints at important locations in the code. They are -lightweight hooks that can pass an arbitrary number of parameters, -which prototypes are described in a tracepoint declaration placed in a -header file. - -They can be used for tracing and performance accounting. - - -* Usage - -Two elements are required for tracepoints : - -- A tracepoint definition, placed in a header file. -- The tracepoint statement, in C code. - -In order to use tracepoints, you should include linux/tracepoint.h. - -In include/trace/subsys.h : - -#include - -DECLARE_TRACE(subsys_eventname, - TP_PROTO(int firstarg, struct task_struct *p), - TP_ARGS(firstarg, p)); - -In subsys/file.c (where the tracing statement must be added) : - -#include - -DEFINE_TRACE(subsys_eventname); - -void somefct(void) -{ - ... - trace_subsys_eventname(arg, task); - ... -} - -Where : -- subsys_eventname is an identifier unique to your event - - subsys is the name of your subsystem. - - eventname is the name of the event to trace. - -- TP_PROTO(int firstarg, struct task_struct *p) is the prototype of the - function called by this tracepoint. - -- TP_ARGS(firstarg, p) are the parameters names, same as found in the - prototype. - -Connecting a function (probe) to a tracepoint is done by providing a -probe (function to call) for the specific tracepoint through -register_trace_subsys_eventname(). Removing a probe is done through -unregister_trace_subsys_eventname(); it will remove the probe. - -tracepoint_synchronize_unregister() must be called before the end of -the module exit function to make sure there is no caller left using -the probe. This, and the fact that preemption is disabled around the -probe call, make sure that probe removal and module unload are safe. -See the "Probe example" section below for a sample probe module. - -The tracepoint mechanism supports inserting multiple instances of the -same tracepoint, but a single definition must be made of a given -tracepoint name over all the kernel to make sure no type conflict will -occur. Name mangling of the tracepoints is done using the prototypes -to make sure typing is correct. Verification of probe type correctness -is done at the registration site by the compiler. Tracepoints can be -put in inline functions, inlined static functions, and unrolled loops -as well as regular functions. - -The naming scheme "subsys_event" is suggested here as a convention -intended to limit collisions. Tracepoint names are global to the -kernel: they are considered as being the same whether they are in the -core kernel image or in modules. - -If the tracepoint has to be used in kernel modules, an -EXPORT_TRACEPOINT_SYMBOL_GPL() or EXPORT_TRACEPOINT_SYMBOL() can be -used to export the defined tracepoints. - -* Probe / tracepoint example - -See the example provided in samples/tracepoints - -Compile them with your kernel. They are built during 'make' (not -'make modules') when CONFIG_SAMPLE_TRACEPOINTS=m. - -Run, as root : -modprobe tracepoint-sample (insmod order is not important) -modprobe tracepoint-probe-sample -cat /proc/tracepoint-sample (returns an expected error) -rmmod tracepoint-sample tracepoint-probe-sample -dmesg diff --git a/Documentation/tracers/mmiotrace.txt b/Documentation/tracers/mmiotrace.txt deleted file mode 100644 index 5731c67abc55..000000000000 --- a/Documentation/tracers/mmiotrace.txt +++ /dev/null @@ -1,163 +0,0 @@ - In-kernel memory-mapped I/O tracing - - -Home page and links to optional user space tools: - - http://nouveau.freedesktop.org/wiki/MmioTrace - -MMIO tracing was originally developed by Intel around 2003 for their Fault -Injection Test Harness. In Dec 2006 - Jan 2007, using the code from Intel, -Jeff Muizelaar created a tool for tracing MMIO accesses with the Nouveau -project in mind. Since then many people have contributed. - -Mmiotrace was built for reverse engineering any memory-mapped IO device with -the Nouveau project as the first real user. Only x86 and x86_64 architectures -are supported. - -Out-of-tree mmiotrace was originally modified for mainline inclusion and -ftrace framework by Pekka Paalanen . - - -Preparation ------------ - -Mmiotrace feature is compiled in by the CONFIG_MMIOTRACE option. Tracing is -disabled by default, so it is safe to have this set to yes. SMP systems are -supported, but tracing is unreliable and may miss events if more than one CPU -is on-line, therefore mmiotrace takes all but one CPU off-line during run-time -activation. You can re-enable CPUs by hand, but you have been warned, there -is no way to automatically detect if you are losing events due to CPUs racing. - - -Usage Quick Reference ---------------------- - -$ mount -t debugfs debugfs /debug -$ echo mmiotrace > /debug/tracing/current_tracer -$ cat /debug/tracing/trace_pipe > mydump.txt & -Start X or whatever. -$ echo "X is up" > /debug/tracing/trace_marker -$ echo nop > /debug/tracing/current_tracer -Check for lost events. - - -Usage ------ - -Make sure debugfs is mounted to /debug. If not, (requires root privileges) -$ mount -t debugfs debugfs /debug - -Check that the driver you are about to trace is not loaded. - -Activate mmiotrace (requires root privileges): -$ echo mmiotrace > /debug/tracing/current_tracer - -Start storing the trace: -$ cat /debug/tracing/trace_pipe > mydump.txt & -The 'cat' process should stay running (sleeping) in the background. - -Load the driver you want to trace and use it. Mmiotrace will only catch MMIO -accesses to areas that are ioremapped while mmiotrace is active. - -During tracing you can place comments (markers) into the trace by -$ echo "X is up" > /debug/tracing/trace_marker -This makes it easier to see which part of the (huge) trace corresponds to -which action. It is recommended to place descriptive markers about what you -do. - -Shut down mmiotrace (requires root privileges): -$ echo nop > /debug/tracing/current_tracer -The 'cat' process exits. If it does not, kill it by issuing 'fg' command and -pressing ctrl+c. - -Check that mmiotrace did not lose events due to a buffer filling up. Either -$ grep -i lost mydump.txt -which tells you exactly how many events were lost, or use -$ dmesg -to view your kernel log and look for "mmiotrace has lost events" warning. If -events were lost, the trace is incomplete. You should enlarge the buffers and -try again. Buffers are enlarged by first seeing how large the current buffers -are: -$ cat /debug/tracing/buffer_size_kb -gives you a number. Approximately double this number and write it back, for -instance: -$ echo 128000 > /debug/tracing/buffer_size_kb -Then start again from the top. - -If you are doing a trace for a driver project, e.g. Nouveau, you should also -do the following before sending your results: -$ lspci -vvv > lspci.txt -$ dmesg > dmesg.txt -$ tar zcf pciid-nick-mmiotrace.tar.gz mydump.txt lspci.txt dmesg.txt -and then send the .tar.gz file. The trace compresses considerably. Replace -"pciid" and "nick" with the PCI ID or model name of your piece of hardware -under investigation and your nick name. - - -How Mmiotrace Works -------------------- - -Access to hardware IO-memory is gained by mapping addresses from PCI bus by -calling one of the ioremap_*() functions. Mmiotrace is hooked into the -__ioremap() function and gets called whenever a mapping is created. Mapping is -an event that is recorded into the trace log. Note, that ISA range mappings -are not caught, since the mapping always exists and is returned directly. - -MMIO accesses are recorded via page faults. Just before __ioremap() returns, -the mapped pages are marked as not present. Any access to the pages causes a -fault. The page fault handler calls mmiotrace to handle the fault. Mmiotrace -marks the page present, sets TF flag to achieve single stepping and exits the -fault handler. The instruction that faulted is executed and debug trap is -entered. Here mmiotrace again marks the page as not present. The instruction -is decoded to get the type of operation (read/write), data width and the value -read or written. These are stored to the trace log. - -Setting the page present in the page fault handler has a race condition on SMP -machines. During the single stepping other CPUs may run freely on that page -and events can be missed without a notice. Re-enabling other CPUs during -tracing is discouraged. - - -Trace Log Format ----------------- - -The raw log is text and easily filtered with e.g. grep and awk. One record is -one line in the log. A record starts with a keyword, followed by keyword -dependant arguments. Arguments are separated by a space, or continue until the -end of line. The format for version 20070824 is as follows: - -Explanation Keyword Space separated arguments ---------------------------------------------------------------------------- - -read event R width, timestamp, map id, physical, value, PC, PID -write event W width, timestamp, map id, physical, value, PC, PID -ioremap event MAP timestamp, map id, physical, virtual, length, PC, PID -iounmap event UNMAP timestamp, map id, PC, PID -marker MARK timestamp, text -version VERSION the string "20070824" -info for reader LSPCI one line from lspci -v -PCI address map PCIDEV space separated /proc/bus/pci/devices data -unk. opcode UNKNOWN timestamp, map id, physical, data, PC, PID - -Timestamp is in seconds with decimals. Physical is a PCI bus address, virtual -is a kernel virtual address. Width is the data width in bytes and value is the -data value. Map id is an arbitrary id number identifying the mapping that was -used in an operation. PC is the program counter and PID is process id. PC is -zero if it is not recorded. PID is always zero as tracing MMIO accesses -originating in user space memory is not yet supported. - -For instance, the following awk filter will pass all 32-bit writes that target -physical addresses in the range [0xfb73ce40, 0xfb800000[ - -$ awk '/W 4 / { adr=strtonum($5); if (adr >= 0xfb73ce40 && -adr < 0xfb800000) print; }' - - -Tools for Developers --------------------- - -The user space tools include utilities for: -- replacing numeric addresses and values with hardware register names -- replaying MMIO logs, i.e., re-executing the recorded writes - - diff --git a/Documentation/vm/kmemtrace.txt b/Documentation/vm/kmemtrace.txt deleted file mode 100644 index a956d9b7f943..000000000000 --- a/Documentation/vm/kmemtrace.txt +++ /dev/null @@ -1,126 +0,0 @@ - kmemtrace - Kernel Memory Tracer - - by Eduard - Gabriel Munteanu - - -I. Introduction -=============== - -kmemtrace helps kernel developers figure out two things: -1) how different allocators (SLAB, SLUB etc.) perform -2) how kernel code allocates memory and how much - -To do this, we trace every allocation and export information to the userspace -through the relay interface. We export things such as the number of requested -bytes, the number of bytes actually allocated (i.e. including internal -fragmentation), whether this is a slab allocation or a plain kmalloc() and so -on. - -The actual analysis is performed by a userspace tool (see section III for -details on where to get it from). It logs the data exported by the kernel, -processes it and (as of writing this) can provide the following information: -- the total amount of memory allocated and fragmentation per call-site -- the amount of memory allocated and fragmentation per allocation -- total memory allocated and fragmentation in the collected dataset -- number of cross-CPU allocation and frees (makes sense in NUMA environments) - -Moreover, it can potentially find inconsistent and erroneous behavior in -kernel code, such as using slab free functions on kmalloc'ed memory or -allocating less memory than requested (but not truly failed allocations). - -kmemtrace also makes provisions for tracing on some arch and analysing the -data on another. - -II. Design and goals -==================== - -kmemtrace was designed to handle rather large amounts of data. Thus, it uses -the relay interface to export whatever is logged to userspace, which then -stores it. Analysis and reporting is done asynchronously, that is, after the -data is collected and stored. By design, it allows one to log and analyse -on different machines and different arches. - -As of writing this, the ABI is not considered stable, though it might not -change much. However, no guarantees are made about compatibility yet. When -deemed stable, the ABI should still allow easy extension while maintaining -backward compatibility. This is described further in Documentation/ABI. - -Summary of design goals: - - allow logging and analysis to be done across different machines - - be fast and anticipate usage in high-load environments (*) - - be reasonably extensible - - make it possible for GNU/Linux distributions to have kmemtrace - included in their repositories - -(*) - one of the reasons Pekka Enberg's original userspace data analysis - tool's code was rewritten from Perl to C (although this is more than a - simple conversion) - - -III. Quick usage guide -====================== - -1) Get a kernel that supports kmemtrace and build it accordingly (i.e. enable -CONFIG_KMEMTRACE). - -2) Get the userspace tool and build it: -$ git-clone git://repo.or.cz/kmemtrace-user.git # current repository -$ cd kmemtrace-user/ -$ ./autogen.sh -$ ./configure -$ make - -3) Boot the kmemtrace-enabled kernel if you haven't, preferably in the -'single' runlevel (so that relay buffers don't fill up easily), and run -kmemtrace: -# '$' does not mean user, but root here. -$ mount -t debugfs none /sys/kernel/debug -$ mount -t proc none /proc -$ cd path/to/kmemtrace-user/ -$ ./kmemtraced -Wait a bit, then stop it with CTRL+C. -$ cat /sys/kernel/debug/kmemtrace/total_overruns # Check if we didn't - # overrun, should - # be zero. -$ (Optionally) [Run kmemtrace_check separately on each cpu[0-9]*.out file to - check its correctness] -$ ./kmemtrace-report - -Now you should have a nice and short summary of how the allocator performs. - -IV. FAQ and known issues -======================== - -Q: 'cat /sys/kernel/debug/kmemtrace/total_overruns' is non-zero, how do I fix -this? Should I worry? -A: If it's non-zero, this affects kmemtrace's accuracy, depending on how -large the number is. You can fix it by supplying a higher -'kmemtrace.subbufs=N' kernel parameter. ---- - -Q: kmemtrace_check reports errors, how do I fix this? Should I worry? -A: This is a bug and should be reported. It can occur for a variety of -reasons: - - possible bugs in relay code - - possible misuse of relay by kmemtrace - - timestamps being collected unorderly -Or you may fix it yourself and send us a patch. ---- - -Q: kmemtrace_report shows many errors, how do I fix this? Should I worry? -A: This is a known issue and I'm working on it. These might be true errors -in kernel code, which may have inconsistent behavior (e.g. allocating memory -with kmem_cache_alloc() and freeing it with kfree()). Pekka Enberg pointed -out this behavior may work with SLAB, but may fail with other allocators. - -It may also be due to lack of tracing in some unusual allocator functions. - -We don't want bug reports regarding this issue yet. ---- - -V. See also -=========== - -Documentation/kernel-parameters.txt -Documentation/ABI/testing/debugfs-kmemtrace - -- cgit v1.2.1 From c7bb349e7c25df1ae1bbb72675b9bb02e1d9c464 Mon Sep 17 00:00:00 2001 From: Sam Ravnborg Date: Fri, 10 Apr 2009 08:52:43 +0200 Subject: kbuild: introduce destination-y for exported headers xtensa and arm have asked for a possibility to export headers and locate them in a specific directory when exported. Introduce destiantion-y to support this. This patch in additiona adds some limited documentation for the variables used for exported headers. Signed-off-by: Sam Ravnborg Cc: Oskar Schirmer Cc: Mikael Starvik --- Documentation/kbuild/makefiles.txt | 83 ++++++++++++++++++++++++++++++++++---- 1 file changed, 75 insertions(+), 8 deletions(-) (limited to 'Documentation') diff --git a/Documentation/kbuild/makefiles.txt b/Documentation/kbuild/makefiles.txt index 51104f9194a5..d4b05672f9f7 100644 --- a/Documentation/kbuild/makefiles.txt +++ b/Documentation/kbuild/makefiles.txt @@ -40,10 +40,16 @@ This document describes the Linux kernel Makefiles. --- 6.7 Custom kbuild commands --- 6.8 Preprocessing linker scripts - === 7 Kbuild Variables - === 8 Makefile language - === 9 Credits - === 10 TODO + === 7 Kbuild syntax for exported headers + --- 7.1 header-y + --- 7.2 objhdr-y + --- 7.3 destination-y + --- 7.4 unifdef-y (deprecated) + + === 8 Kbuild Variables + === 9 Makefile language + === 10 Credits + === 11 TODO === 1 Overview @@ -1143,8 +1149,69 @@ When kbuild executes, the following steps are followed (roughly): The kbuild infrastructure for *lds file are used in several architecture-specific files. +=== 7 Kbuild syntax for exported headers + +The kernel include a set of headers that is exported to userspace. +Many headers can be exported as-is but other headers requires a +minimal pre-processing before they are ready for user-space. +The pre-processing does: +- drop kernel specific annotations +- drop include of compiler.h +- drop all sections that is kernel internat (guarded by ifdef __KERNEL__) + +Each relevant directory contain a file name "Kbuild" which specify the +headers to be exported. +See subsequent chapter for the syntax of the Kbuild file. + + --- 7.1 header-y + + header-y specify header files to be exported. + + Example: + #include/linux/Kbuild + header-y += usb/ + header-y += aio_abi.h + + The convention is to list one file per line and + preferably in alphabetic order. + + header-y also specify which subdirectories to visit. + A subdirectory is identified by a trailing '/' which + can be seen in the example above for the usb subdirectory. + + Subdirectories are visited before their parent directories. + + --- 7.2 objhdr-y + + objhdr-y specifies generated files to be exported. + Generated files are special as they need to be looked + up in another directory when doing 'make O=...' builds. + + Example: + #include/linux/Kbuild + objhdr-y += version.h + + --- 7.3 destination-y + + When an architecture have a set of exported headers that needs to be + exported to a different directory destination-y is used. + destination-y specify the destination directory for all exported + headers in the file where it is present. + + Example: + #arch/xtensa/platforms/s6105/include/platform/Kbuild + destination-y := include/linux + + In the example above all exported headers in the Kbuild file + will be located in the directory "include/linux" when exported. + + + --- 7.4 unifdef-y (deprecated) + + unifdef-y is deprecated. A direct replacement is header-y. + -=== 7 Kbuild Variables +=== 8 Kbuild Variables The top Makefile exports the following variables: @@ -1206,7 +1273,7 @@ The top Makefile exports the following variables: INSTALL_MOD_STRIP will used as the option(s) to the strip command. -=== 8 Makefile language +=== 9 Makefile language The kernel Makefiles are designed to be run with GNU Make. The Makefiles use only the documented features of GNU Make, but they do use many @@ -1225,14 +1292,14 @@ time the left-hand side is used. There are some cases where "=" is appropriate. Usually, though, ":=" is the right choice. -=== 9 Credits +=== 10 Credits Original version made by Michael Elizabeth Chastain, Updates by Kai Germaschewski Updates by Sam Ravnborg Language QA by Jan Engelhardt -=== 10 TODO +=== 11 TODO - Describe how kbuild supports shipped files with _shipped. - Generating offset header files. -- cgit v1.2.1 From 20375bf82567b5fecd331048c6cc1fc292b67710 Mon Sep 17 00:00:00 2001 From: Sam Ravnborg Date: Fri, 10 Apr 2009 13:18:08 +0200 Subject: Documentation: explain the difference between __bitwise and __bitwise__ Simply added explanation from Al Viro in the following mail: http://lkml.indiana.edu/hypermail/linux/kernel/0802.2/3164.html Cc: Al Viro Cc: Randy Dunlap Signed-off-by: Sam Ravnborg --- Documentation/sparse.txt | 8 ++++++++ 1 file changed, 8 insertions(+) (limited to 'Documentation') diff --git a/Documentation/sparse.txt b/Documentation/sparse.txt index 42f43fa59f24..34c76a55bc04 100644 --- a/Documentation/sparse.txt +++ b/Documentation/sparse.txt @@ -42,6 +42,14 @@ sure that bitwise types don't get mixed up (little-endian vs big-endian vs cpu-endian vs whatever), and there the constant "0" really _is_ special. +__bitwise__ - to be used for relatively compact stuff (gfp_t, etc.) that +is mostly warning-free and is supposed to stay that way. Warnings will +be generated without __CHECK_ENDIAN__. + +__bitwise - noisy stuff; in particular, __le*/__be* are that. We really +don't want to drown in noise unless we'd explicitly asked for it. + + Getting sparse ~~~~~~~~~~~~~~ -- cgit v1.2.1 From 2810ae8c73cbfb37891aa99dfbca46ffd40dbc91 Mon Sep 17 00:00:00 2001 From: Randy Dunlap Date: Fri, 10 Apr 2009 14:20:54 -0700 Subject: docbook: make cleandocs Add a 'make cleandocs' target to clean up all generated DocBook files. Signed-off-by: Randy Dunlap Signed-off-by: Sam Ravnborg --- Documentation/DocBook/Makefile | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) (limited to 'Documentation') diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index a3a83d38f96f..8918a32c6b3a 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile @@ -31,7 +31,7 @@ PS_METHOD = $(prefer-db2x) ### # The targets that may be used. -PHONY += xmldocs sgmldocs psdocs pdfdocs htmldocs mandocs installmandocs +PHONY += xmldocs sgmldocs psdocs pdfdocs htmldocs mandocs installmandocs cleandocs BOOKS := $(addprefix $(obj)/,$(DOCBOOKS)) xmldocs: $(BOOKS) @@ -213,11 +213,12 @@ silent_gen_xml = : dochelp: @echo ' Linux kernel internal documentation in different formats:' @echo ' htmldocs - HTML' - @echo ' installmandocs - install man pages generated by mandocs' - @echo ' mandocs - man pages' @echo ' pdfdocs - PDF' @echo ' psdocs - Postscript' @echo ' xmldocs - XML DocBook' + @echo ' mandocs - man pages' + @echo ' installmandocs - install man pages generated by mandocs' + @echo ' cleandocs - clean all generated DocBook files' ### # Temporary files left by various tools @@ -235,6 +236,10 @@ clean-files := $(DOCBOOKS) \ clean-dirs := $(patsubst %.xml,%,$(DOCBOOKS)) man +cleandocs: + $(Q)rm -f $(call objectify, $(clean-files)) + $(Q)rm -rf $(call objectify, $(clean-dirs)) + # Declare the contents of the .PHONY variable as phony. We keep that # information in a variable se we can use it in if_changed and friends. -- cgit v1.2.1 From 5a31bec014449dc9ca994e4c1dbf2802b7ca458a Mon Sep 17 00:00:00 2001 From: Brian Haley Date: Mon, 13 Apr 2009 00:11:30 -0700 Subject: Bonding: fix zero address hole bug in arp_ip_target list Fix a zero address hole bug in the bonding arp_ip_target list that was causing the bond to ignore ARP replies (bugz 13006). Instead of just setting the array entry to zero, we now copy any additional entries down one slot, putting the zero entry at the end. With this change we can now have all the loops that walk the array stop when they hit a zero since there will be no addresses after it. Changes are based in part on code fragment provided in kernel: bugzilla 13006: http://bugzilla.kernel.org/show_bug.cgi?id=13006 by Steve Howard Signed-off-by: Brian Haley Signed-off-by: Jay Vosburgh Signed-off-by: David S. Miller --- Documentation/networking/bonding.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'Documentation') diff --git a/Documentation/networking/bonding.txt b/Documentation/networking/bonding.txt index 5ede7473b425..08762750f121 100644 --- a/Documentation/networking/bonding.txt +++ b/Documentation/networking/bonding.txt @@ -1242,7 +1242,7 @@ monitoring is enabled, and vice-versa. To add ARP targets: # echo +192.168.0.100 > /sys/class/net/bond0/bonding/arp_ip_target # echo +192.168.0.101 > /sys/class/net/bond0/bonding/arp_ip_target - NOTE: up to 10 target addresses may be specified. + NOTE: up to 16 target addresses may be specified. To remove an ARP target: # echo -192.168.0.100 > /sys/class/net/bond0/bonding/arp_ip_target -- cgit v1.2.1 From 3f307fb37a6dd65b7eabda9c6208a9bd161dc16e Mon Sep 17 00:00:00 2001 From: Jean Delvare Date: Mon, 13 Apr 2009 17:02:13 +0200 Subject: i2c-voodoo3: Deprecate in favor of tdfxfb Support for I2C/DDC was recently added to the tdfxfb driver, which means that the i2c-voodoo3 driver can be deprecated. Signed-off-by: Jean Delvare Cc: Krzysztof Helt --- Documentation/feature-removal-schedule.txt | 9 +++++++++ 1 file changed, 9 insertions(+) (limited to 'Documentation') diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt index 7e2af10e8264..de491a3e2313 100644 --- a/Documentation/feature-removal-schedule.txt +++ b/Documentation/feature-removal-schedule.txt @@ -428,3 +428,12 @@ Why: In 2.6.27, the semantics of /sys/bus/pci/slots was redefined to After a reasonable transition period, we will remove the legacy fakephp interface. Who: Alex Chiang + +--------------------------- + +What: i2c-voodoo3 driver +When: October 2009 +Why: Superseded by tdfxfb. I2C/DDC support used to live in a separate + driver but this caused driver conflicts. +Who: Jean Delvare + Krzysztof Helt -- cgit v1.2.1 From ca8b9950298c84ca528a5943409a727c04ec88f8 Mon Sep 17 00:00:00 2001 From: Li Zefan Date: Mon, 13 Apr 2009 14:39:36 -0700 Subject: Documentation/sysctl/net.txt: fix a typo s/spicified/specified Signed-off-by: Li Zefan Cc: "David S. Miller" Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- Documentation/sysctl/net.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'Documentation') diff --git a/Documentation/sysctl/net.txt b/Documentation/sysctl/net.txt index a34d55b65441..df38ef046f8d 100644 --- a/Documentation/sysctl/net.txt +++ b/Documentation/sysctl/net.txt @@ -95,7 +95,7 @@ of struct cmsghdr structures with appended data. There is only one file in this directory. unix_dgram_qlen limits the max number of datagrams queued in Unix domain -socket's buffer. It will not take effect unless PF_UNIX flag is spicified. +socket's buffer. It will not take effect unless PF_UNIX flag is specified. 3. /proc/sys/net/ipv4 - IPV4 settings -- cgit v1.2.1 From 5341cfab94ec05b8a45726f9fe15e71c0cd9b915 Mon Sep 17 00:00:00 2001 From: Andrea Righi Date: Mon, 13 Apr 2009 14:39:58 -0700 Subject: res_counter: update documentation After the introduction of resource counters hierarchies (28dbc4b6a01fb579a9441c7b81e3d3413dc452df) the prototypes of res_counter_init() and res_counter_charge() have been changed. Keep the documentation consistent with the actual function prototypes. Signed-off-by: Andrea Righi Cc: Paul Menage Cc: Pavel Emelyanov Cc: Balbir Singh Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- Documentation/cgroups/resource_counter.txt | 27 +++++++++++++++++++++------ 1 file changed, 21 insertions(+), 6 deletions(-) (limited to 'Documentation') diff --git a/Documentation/cgroups/resource_counter.txt b/Documentation/cgroups/resource_counter.txt index f196ac1d7d25..95b24d766eab 100644 --- a/Documentation/cgroups/resource_counter.txt +++ b/Documentation/cgroups/resource_counter.txt @@ -47,13 +47,18 @@ to work with it. 2. Basic accounting routines - a. void res_counter_init(struct res_counter *rc) + a. void res_counter_init(struct res_counter *rc, + struct res_counter *rc_parent) Initializes the resource counter. As usual, should be the first routine called for a new counter. - b. int res_counter_charge[_locked] - (struct res_counter *rc, unsigned long val) + The struct res_counter *parent can be used to define a hierarchical + child -> parent relationship directly in the res_counter structure, + NULL can be used to define no relationship. + + c. int res_counter_charge(struct res_counter *rc, unsigned long val, + struct res_counter **limit_fail_at) When a resource is about to be allocated it has to be accounted with the appropriate resource counter (controller should determine @@ -67,15 +72,25 @@ to work with it. * if the charging is performed first, then it should be uncharged on error path (if the one is called). - c. void res_counter_uncharge[_locked] + If the charging fails and a hierarchical dependency exists, the + limit_fail_at parameter is set to the particular res_counter element + where the charging failed. + + d. int res_counter_charge_locked + (struct res_counter *rc, unsigned long val) + + The same as res_counter_charge(), but it must not acquire/release the + res_counter->lock internally (it must be called with res_counter->lock + held). + + e. void res_counter_uncharge[_locked] (struct res_counter *rc, unsigned long val) When a resource is released (freed) it should be de-accounted from the resource counter it was accounted to. This is called "uncharging". - The _locked routines imply that the res_counter->lock is taken. - + The _locked routines imply that the res_counter->lock is taken. 2.1 Other accounting routines -- cgit v1.2.1 From c24b720188e9a1f83caa5b6d49b4cb5b843256f1 Mon Sep 17 00:00:00 2001 From: David Howells Date: Mon, 13 Apr 2009 14:40:01 -0700 Subject: mm: reformat the Unevictable-LRU documentation Do a bit of reformatting on the Unevictable-LRU documentation. Signed-off-by: David Howells Acked-by: Lee Schermerhorn Cc: Rik van Riel Cc: KOSAKI Motohiro Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- Documentation/vm/unevictable-lru.txt | 1041 +++++++++++++++++++--------------- 1 file changed, 572 insertions(+), 469 deletions(-) (limited to 'Documentation') diff --git a/Documentation/vm/unevictable-lru.txt b/Documentation/vm/unevictable-lru.txt index 0706a7282a8c..2d70d0d95108 100644 --- a/Documentation/vm/unevictable-lru.txt +++ b/Documentation/vm/unevictable-lru.txt @@ -1,588 +1,691 @@ - -This document describes the Linux memory management "Unevictable LRU" -infrastructure and the use of this infrastructure to manage several types -of "unevictable" pages. The document attempts to provide the overall -rationale behind this mechanism and the rationale for some of the design -decisions that drove the implementation. The latter design rationale is -discussed in the context of an implementation description. Admittedly, one -can obtain the implementation details--the "what does it do?"--by reading the -code. One hopes that the descriptions below add value by provide the answer -to "why does it do that?". - -Unevictable LRU Infrastructure: - -The Unevictable LRU adds an additional LRU list to track unevictable pages -and to hide these pages from vmscan. This mechanism is based on a patch by -Larry Woodman of Red Hat to address several scalability problems with page + ============================== + UNEVICTABLE LRU INFRASTRUCTURE + ============================== + +======== +CONTENTS +======== + + (*) The Unevictable LRU + + - The unevictable page list. + - Memory control group interaction. + - Marking address spaces unevictable. + - Detecting Unevictable Pages. + - vmscan's handling of unevictable pages. + + (*) mlock()'d pages. + + - History. + - Basic management. + - mlock()/mlockall() system call handling. + - Filtering special vmas. + - munlock()/munlockall() system call handling. + - Migrating mlocked pages. + - mmap(MAP_LOCKED) system call handling. + - munmap()/exit()/exec() system call handling. + - try_to_unmap(). + - try_to_munlock() reverse map scan. + - Page reclaim in shrink_*_list(). + + +============ +INTRODUCTION +============ + +This document describes the Linux memory manager's "Unevictable LRU" +infrastructure and the use of this to manage several types of "unevictable" +pages. + +The document attempts to provide the overall rationale behind this mechanism +and the rationale for some of the design decisions that drove the +implementation. The latter design rationale is discussed in the context of an +implementation description. Admittedly, one can obtain the implementation +details - the "what does it do?" - by reading the code. One hopes that the +descriptions below add value by provide the answer to "why does it do that?". + + +=================== +THE UNEVICTABLE LRU +=================== + +The Unevictable LRU facility adds an additional LRU list to track unevictable +pages and to hide these pages from vmscan. This mechanism is based on a patch +by Larry Woodman of Red Hat to address several scalability problems with page reclaim in Linux. The problems have been observed at customer sites on large -memory x86_64 systems. For example, a non-numal x86_64 platform with 128GB -of main memory will have over 32 million 4k pages in a single zone. When a -large fraction of these pages are not evictable for any reason [see below], -vmscan will spend a lot of time scanning the LRU lists looking for the small -fraction of pages that are evictable. This can result in a situation where -all cpus are spending 100% of their time in vmscan for hours or days on end, -with the system completely unresponsive. - -The Unevictable LRU infrastructure addresses the following classes of -unevictable pages: - -+ page owned by ramfs -+ page mapped into SHM_LOCKed shared memory regions -+ page mapped into VM_LOCKED [mlock()ed] vmas - -The infrastructure might be able to handle other conditions that make pages +memory x86_64 systems. + +To illustrate this with an example, a non-NUMA x86_64 platform with 128GB of +main memory will have over 32 million 4k pages in a single zone. When a large +fraction of these pages are not evictable for any reason [see below], vmscan +will spend a lot of time scanning the LRU lists looking for the small fraction +of pages that are evictable. This can result in a situation where all CPUs are +spending 100% of their time in vmscan for hours or days on end, with the system +completely unresponsive. + +The unevictable list addresses the following classes of unevictable pages: + + (*) Those owned by ramfs. + + (*) Those mapped into SHM_LOCK'd shared memory regions. + + (*) Those mapped into VM_LOCKED [mlock()ed] VMAs. + +The infrastructure may also be able to handle other conditions that make pages unevictable, either by definition or by circumstance, in the future. -The Unevictable LRU List +THE UNEVICTABLE PAGE LIST +------------------------- The Unevictable LRU infrastructure consists of an additional, per-zone, LRU list called the "unevictable" list and an associated page flag, PG_unevictable, to -indicate that the page is being managed on the unevictable list. The -PG_unevictable flag is analogous to, and mutually exclusive with, the PG_active -flag in that it indicates on which LRU list a page resides when PG_lru is set. -The unevictable LRU list is source configurable based on the UNEVICTABLE_LRU -Kconfig option. +indicate that the page is being managed on the unevictable list. + +The PG_unevictable flag is analogous to, and mutually exclusive with, the +PG_active flag in that it indicates on which LRU list a page resides when +PG_lru is set. The unevictable list is compile-time configurable based on the +UNEVICTABLE_LRU Kconfig option. The Unevictable LRU infrastructure maintains unevictable pages on an additional LRU list for a few reasons: -1) We get to "treat unevictable pages just like we treat other pages in the - system, which means we get to use the same code to manipulate them, the - same code to isolate them (for migrate, etc.), the same code to keep track - of the statistics, etc..." [Rik van Riel] + (1) We get to "treat unevictable pages just like we treat other pages in the + system - which means we get to use the same code to manipulate them, the + same code to isolate them (for migrate, etc.), the same code to keep track + of the statistics, etc..." [Rik van Riel] + + (2) We want to be able to migrate unevictable pages between nodes for memory + defragmentation, workload management and memory hotplug. The linux kernel + can only migrate pages that it can successfully isolate from the LRU + lists. If we were to maintain pages elsewhere than on an LRU-like list, + where they can be found by isolate_lru_page(), we would prevent their + migration, unless we reworked migration code to find the unevictable pages + itself. -2) We want to be able to migrate unevictable pages between nodes--for memory - defragmentation, workload management and memory hotplug. The linux kernel - can only migrate pages that it can successfully isolate from the lru lists. - If we were to maintain pages elsewise than on an lru-like list, where they - can be found by isolate_lru_page(), we would prevent their migration, unless - we reworked migration code to find the unevictable pages. +The unevictable list does not differentiate between file-backed and anonymous, +swap-backed pages. This differentiation is only important while the pages are, +in fact, evictable. -The unevictable LRU list does not differentiate between file backed and swap -backed [anon] pages. This differentiation is only important while the pages -are, in fact, evictable. +The unevictable list benefits from the "arrayification" of the per-zone LRU +lists and statistics originally proposed and posted by Christoph Lameter. -The unevictable LRU list benefits from the "arrayification" of the per-zone -LRU lists and statistics originally proposed and posted by Christoph Lameter. +The unevictable list does not use the LRU pagevec mechanism. Rather, +unevictable pages are placed directly on the page's zone's unevictable list +under the zone lru_lock. This allows us to prevent the stranding of pages on +the unevictable list when one task has the page isolated from the LRU and other +tasks are changing the "evictability" state of the page. -The unevictable list does not use the lru pagevec mechanism. Rather, -unevictable pages are placed directly on the page's zone's unevictable -list under the zone lru_lock. The reason for this is to prevent stranding -of pages on the unevictable list when one task has the page isolated from the -lru and other tasks are changing the "evictability" state of the page. +MEMORY CONTROL GROUP INTERACTION +-------------------------------- -Unevictable LRU and Memory Controller Interaction +The unevictable LRU facility interacts with the memory control group [aka +memory controller; see Documentation/cgroups/memory.txt] by extending the +lru_list enum. + +The memory controller data structure automatically gets a per-zone unevictable +list as a result of the "arrayification" of the per-zone LRU lists (one per +lru_list enum element). The memory controller tracks the movement of pages to +and from the unevictable list. -The memory controller data structure automatically gets a per zone unevictable -lru list as a result of the "arrayification" of the per-zone LRU lists. The -memory controller tracks the movement of pages to and from the unevictable list. When a memory control group comes under memory pressure, the controller will not attempt to reclaim pages on the unevictable list. This has a couple of -effects. Because the pages are "hidden" from reclaim on the unevictable list, -the reclaim process can be more efficient, dealing only with pages that have -a chance of being reclaimed. On the other hand, if too many of the pages -charged to the control group are unevictable, the evictable portion of the -working set of the tasks in the control group may not fit into the available -memory. This can cause the control group to thrash or to oom-kill tasks. - - -Unevictable LRU: Detecting Unevictable Pages - -The function page_evictable(page, vma) in vmscan.c determines whether a -page is evictable or not. For ramfs pages and pages in SHM_LOCKed regions, -page_evictable() tests a new address space flag, AS_UNEVICTABLE, in the page's -address space using a wrapper function. Wrapper functions are used to set, -clear and test the flag to reduce the requirement for #ifdef's throughout the -source code. AS_UNEVICTABLE is set on ramfs inode/mapping when it is created. -This flag remains for the life of the inode. - -For shared memory regions, AS_UNEVICTABLE is set when an application -successfully SHM_LOCKs the region and is removed when the region is -SHM_UNLOCKed. Note that shmctl(SHM_LOCK, ...) does not populate the page -tables for the region as does, for example, mlock(). So, we make no special -effort to push any pages in the SHM_LOCKed region to the unevictable list. -Vmscan will do this when/if it encounters the pages during reclaim. On -SHM_UNLOCK, shmctl() scans the pages in the region and "rescues" them from the -unevictable list if no other condition keeps them unevictable. If a SHM_LOCKed -region is destroyed, the pages are also "rescued" from the unevictable list in -the process of freeing them. - -page_evictable() detects mlock()ed pages by testing an additional page flag, -PG_mlocked via the PageMlocked() wrapper. If the page is NOT mlocked, and a -non-NULL vma is supplied, page_evictable() will check whether the vma is +effects: + + (1) Because the pages are "hidden" from reclaim on the unevictable list, the + reclaim process can be more efficient, dealing only with pages that have a + chance of being reclaimed. + + (2) On the other hand, if too many of the pages charged to the control group + are unevictable, the evictable portion of the working set of the tasks in + the control group may not fit into the available memory. This can cause + the control group to thrash or to OOM-kill tasks. + + +MARKING ADDRESS SPACES UNEVICTABLE +---------------------------------- + +For facilities such as ramfs none of the pages attached to the address space +may be evicted. To prevent eviction of any such pages, the AS_UNEVICTABLE +address space flag is provided, and this can be manipulated by a filesystem +using a number of wrapper functions: + + (*) void mapping_set_unevictable(struct address_space *mapping); + + Mark the address space as being completely unevictable. + + (*) void mapping_clear_unevictable(struct address_space *mapping); + + Mark the address space as being evictable. + + (*) int mapping_unevictable(struct address_space *mapping); + + Query the address space, and return true if it is completely + unevictable. + +These are currently used in two places in the kernel: + + (1) By ramfs to mark the address spaces of its inodes when they are created, + and this mark remains for the life of the inode. + + (2) By SYSV SHM to mark SHM_LOCK'd address spaces until SHM_UNLOCK is called. + + Note that SHM_LOCK is not required to page in the locked pages if they're + swapped out; the application must touch the pages manually if it wants to + ensure they're in memory. + + +DETECTING UNEVICTABLE PAGES +--------------------------- + +The function page_evictable() in vmscan.c determines whether a page is +evictable or not using the query function outlined above [see section "Marking +address spaces unevictable"] to check the AS_UNEVICTABLE flag. + +For address spaces that are so marked after being populated (as SHM regions +might be), the lock action (eg: SHM_LOCK) can be lazy, and need not populate +the page tables for the region as does, for example, mlock(), nor need it make +any special effort to push any pages in the SHM_LOCK'd area to the unevictable +list. Instead, vmscan will do this if and when it encounters the pages during +a reclamation scan. + +On an unlock action (such as SHM_UNLOCK), the unlocker (eg: shmctl()) must scan +the pages in the region and "rescue" them from the unevictable list if no other +condition is keeping them unevictable. If an unevictable region is destroyed, +the pages are also "rescued" from the unevictable list in the process of +freeing them. + +page_evictable() also checks for mlocked pages by testing an additional page +flag, PG_mlocked (as wrapped by PageMlocked()). If the page is NOT mlocked, +and a non-NULL VMA is supplied, page_evictable() will check whether the VMA is VM_LOCKED via is_mlocked_vma(). is_mlocked_vma() will SetPageMlocked() and update the appropriate statistics if the vma is VM_LOCKED. This method allows efficient "culling" of pages in the fault path that are being faulted in to -VM_LOCKED vmas. +VM_LOCKED VMAs. -Unevictable Pages and Vmscan [shrink_*_list()] +VMSCAN'S HANDLING OF UNEVICTABLE PAGES +-------------------------------------- If unevictable pages are culled in the fault path, or moved to the unevictable -list at mlock() or mmap() time, vmscan will never encounter the pages until -they have become evictable again, for example, via munlock() and have been -"rescued" from the unevictable list. However, there may be situations where we -decide, for the sake of expediency, to leave a unevictable page on one of the -regular active/inactive LRU lists for vmscan to deal with. Vmscan checks for -such pages in all of the shrink_{active|inactive|page}_list() functions and -will "cull" such pages that it encounters--that is, it diverts those pages to -the unevictable list for the zone being scanned. - -There may be situations where a page is mapped into a VM_LOCKED vma, but the -page is not marked as PageMlocked. Such pages will make it all the way to +list at mlock() or mmap() time, vmscan will not encounter the pages until they +have become evictable again (via munlock() for example) and have been "rescued" +from the unevictable list. However, there may be situations where we decide, +for the sake of expediency, to leave a unevictable page on one of the regular +active/inactive LRU lists for vmscan to deal with. vmscan checks for such +pages in all of the shrink_{active|inactive|page}_list() functions and will +"cull" such pages that it encounters: that is, it diverts those pages to the +unevictable list for the zone being scanned. + +There may be situations where a page is mapped into a VM_LOCKED VMA, but the +page is not marked as PG_mlocked. Such pages will make it all the way to shrink_page_list() where they will be detected when vmscan walks the reverse -map in try_to_unmap(). If try_to_unmap() returns SWAP_MLOCK, shrink_page_list() -will cull the page at that point. +map in try_to_unmap(). If try_to_unmap() returns SWAP_MLOCK, +shrink_page_list() will cull the page at that point. -To "cull" an unevictable page, vmscan simply puts the page back on the lru -list using putback_lru_page()--the inverse operation to isolate_lru_page()-- -after dropping the page lock. Because the condition which makes the page -unevictable may change once the page is unlocked, putback_lru_page() will -recheck the unevictable state of a page that it places on the unevictable lru -list. If the page has become unevictable, putback_lru_page() removes it from -the list and retries, including the page_unevictable() test. Because such a -race is a rare event and movement of pages onto the unevictable list should be -rare, these extra evictabilty checks should not occur in the majority of calls -to putback_lru_page(). +To "cull" an unevictable page, vmscan simply puts the page back on the LRU list +using putback_lru_page() - the inverse operation to isolate_lru_page() - after +dropping the page lock. Because the condition which makes the page unevictable +may change once the page is unlocked, putback_lru_page() will recheck the +unevictable state of a page that it places on the unevictable list. If the +page has become unevictable, putback_lru_page() removes it from the list and +retries, including the page_unevictable() test. Because such a race is a rare +event and movement of pages onto the unevictable list should be rare, these +extra evictabilty checks should not occur in the majority of calls to +putback_lru_page(). -Mlocked Page: Prior Work +============= +MLOCKED PAGES +============= -The "Unevictable Mlocked Pages" infrastructure is based on work originally +The unevictable page list is also useful for mlock(), in addition to ramfs and +SYSV SHM. Note that mlock() is only available in CONFIG_MMU=y situations; in +NOMMU situations, all mappings are effectively mlocked. + + +HISTORY +------- + +The "Unevictable mlocked Pages" infrastructure is based on work originally posted by Nick Piggin in an RFC patch entitled "mm: mlocked pages off LRU". -Nick posted his patch as an alternative to a patch posted by Christoph -Lameter to achieve the same objective--hiding mlocked pages from vmscan. -In Nick's patch, he used one of the struct page lru list link fields as a count -of VM_LOCKED vmas that map the page. This use of the link field for a count -prevented the management of the pages on an LRU list. Thus, mlocked pages were -not migratable as isolate_lru_page() could not find them and the lru list link -field was not available to the migration subsystem. Nick resolved this by -putting mlocked pages back on the lru list before attempting to isolate them, -thus abandoning the count of VM_LOCKED vmas. When Nick's patch was integrated -with the Unevictable LRU work, the count was replaced by walking the reverse -map to determine whether any VM_LOCKED vmas mapped the page. More on this -below. - - -Mlocked Pages: Basic Management - -Mlocked pages--pages mapped into a VM_LOCKED vma--represent one class of -unevictable pages. When such a page has been "noticed" by the memory -management subsystem, the page is marked with the PG_mlocked [PageMlocked()] -flag. A PageMlocked() page will be placed on the unevictable LRU list when -it is added to the LRU. Pages can be "noticed" by memory management in -several places: - -1) in the mlock()/mlockall() system call handlers. -2) in the mmap() system call handler when mmap()ing a region with the - MAP_LOCKED flag, or mmap()ing a region in a task that has called - mlockall() with the MCL_FUTURE flag. Both of these conditions result - in the VM_LOCKED flag being set for the vma. -3) in the fault path, if mlocked pages are "culled" in the fault path, - and when a VM_LOCKED stack segment is expanded. -4) as mentioned above, in vmscan:shrink_page_list() when attempting to - reclaim a page in a VM_LOCKED vma via try_to_unmap(). - -Mlocked pages become unlocked and rescued from the unevictable list when: - -1) mapped in a range unlocked via the munlock()/munlockall() system calls. -2) munmapped() out of the last VM_LOCKED vma that maps the page, including - unmapping at task exit. -3) when the page is truncated from the last VM_LOCKED vma of an mmap()ed file. -4) before a page is COWed in a VM_LOCKED vma. - - -Mlocked Pages: mlock()/mlockall() System Call Handling +Nick posted his patch as an alternative to a patch posted by Christoph Lameter +to achieve the same objective: hiding mlocked pages from vmscan. + +In Nick's patch, he used one of the struct page LRU list link fields as a count +of VM_LOCKED VMAs that map the page. This use of the link field for a count +prevented the management of the pages on an LRU list, and thus mlocked pages +were not migratable as isolate_lru_page() could not find them, and the LRU list +link field was not available to the migration subsystem. + +Nick resolved this by putting mlocked pages back on the lru list before +attempting to isolate them, thus abandoning the count of VM_LOCKED VMAs. When +Nick's patch was integrated with the Unevictable LRU work, the count was +replaced by walking the reverse map to determine whether any VM_LOCKED VMAs +mapped the page. More on this below. + + +BASIC MANAGEMENT +---------------- + +mlocked pages - pages mapped into a VM_LOCKED VMA - are a class of unevictable +pages. When such a page has been "noticed" by the memory management subsystem, +the page is marked with the PG_mlocked flag. This can be manipulated using the +PageMlocked() functions. + +A PG_mlocked page will be placed on the unevictable list when it is added to +the LRU. Such pages can be "noticed" by memory management in several places: + + (1) in the mlock()/mlockall() system call handlers; + + (2) in the mmap() system call handler when mmapping a region with the + MAP_LOCKED flag; + + (3) mmapping a region in a task that has called mlockall() with the MCL_FUTURE + flag + + (4) in the fault path, if mlocked pages are "culled" in the fault path, + and when a VM_LOCKED stack segment is expanded; or + + (5) as mentioned above, in vmscan:shrink_page_list() when attempting to + reclaim a page in a VM_LOCKED VMA via try_to_unmap() + +all of which result in the VM_LOCKED flag being set for the VMA if it doesn't +already have it set. + +mlocked pages become unlocked and rescued from the unevictable list when: + + (1) mapped in a range unlocked via the munlock()/munlockall() system calls; + + (2) munmap()'d out of the last VM_LOCKED VMA that maps the page, including + unmapping at task exit; + + (3) when the page is truncated from the last VM_LOCKED VMA of an mmapped file; + or + + (4) before a page is COW'd in a VM_LOCKED VMA. + + +mlock()/mlockall() SYSTEM CALL HANDLING +--------------------------------------- Both [do_]mlock() and [do_]mlockall() system call handlers call mlock_fixup() -for each vma in the range specified by the call. In the case of mlockall(), +for each VMA in the range specified by the call. In the case of mlockall(), this is the entire active address space of the task. Note that mlock_fixup() -is used for both mlock()ing and munlock()ing a range of memory. A call to -mlock() an already VM_LOCKED vma, or to munlock() a vma that is not VM_LOCKED -is treated as a no-op--mlock_fixup() simply returns. - -If the vma passes some filtering described in "Mlocked Pages: Filtering Vmas" -below, mlock_fixup() will attempt to merge the vma with its neighbors or split -off a subset of the vma if the range does not cover the entire vma. Once the -vma has been merged or split or neither, mlock_fixup() will call -__mlock_vma_pages_range() to fault in the pages via get_user_pages() and -to mark the pages as mlocked via mlock_vma_page(). - -Note that the vma being mlocked might be mapped with PROT_NONE. In this case, -get_user_pages() will be unable to fault in the pages. That's OK. If pages -do end up getting faulted into this VM_LOCKED vma, we'll handle them in the +is used for both mlocking and munlocking a range of memory. A call to mlock() +an already VM_LOCKED VMA, or to munlock() a VMA that is not VM_LOCKED is +treated as a no-op, and mlock_fixup() simply returns. + +If the VMA passes some filtering as described in "Filtering Special Vmas" +below, mlock_fixup() will attempt to merge the VMA with its neighbors or split +off a subset of the VMA if the range does not cover the entire VMA. Once the +VMA has been merged or split or neither, mlock_fixup() will call +__mlock_vma_pages_range() to fault in the pages via get_user_pages() and to +mark the pages as mlocked via mlock_vma_page(). + +Note that the VMA being mlocked might be mapped with PROT_NONE. In this case, +get_user_pages() will be unable to fault in the pages. That's okay. If pages +do end up getting faulted into this VM_LOCKED VMA, we'll handle them in the fault path or in vmscan. Also note that a page returned by get_user_pages() could be truncated or -migrated out from under us, while we're trying to mlock it. To detect -this, __mlock_vma_pages_range() tests the page_mapping after acquiring -the page lock. If the page is still associated with its mapping, we'll -go ahead and call mlock_vma_page(). If the mapping is gone, we just -unlock the page and move on. Worse case, this results in page mapped -in a VM_LOCKED vma remaining on a normal LRU list without being -PageMlocked(). Again, vmscan will detect and cull such pages. - -mlock_vma_page(), called with the page locked [N.B., not "mlocked"], will -TestSetPageMlocked() for each page returned by get_user_pages(). We use -TestSetPageMlocked() because the page might already be mlocked by another -task/vma and we don't want to do extra work. We especially do not want to -count an mlocked page more than once in the statistics. If the page was -already mlocked, mlock_vma_page() is done. +migrated out from under us, while we're trying to mlock it. To detect this, +__mlock_vma_pages_range() checks page_mapping() after acquiring the page lock. +If the page is still associated with its mapping, we'll go ahead and call +mlock_vma_page(). If the mapping is gone, we just unlock the page and move on. +In the worst case, this will result in a page mapped in a VM_LOCKED VMA +remaining on a normal LRU list without being PageMlocked(). Again, vmscan will +detect and cull such pages. + +mlock_vma_page() will call TestSetPageMlocked() for each page returned by +get_user_pages(). We use TestSetPageMlocked() because the page might already +be mlocked by another task/VMA and we don't want to do extra work. We +especially do not want to count an mlocked page more than once in the +statistics. If the page was already mlocked, mlock_vma_page() need do nothing +more. If the page was NOT already mlocked, mlock_vma_page() attempts to isolate the page from the LRU, as it is likely on the appropriate active or inactive list -at that time. If the isolate_lru_page() succeeds, mlock_vma_page() will -putback the page--putback_lru_page()--which will notice that the page is now -mlocked and divert the page to the zone's unevictable LRU list. If +at that time. If the isolate_lru_page() succeeds, mlock_vma_page() will put +back the page - by calling putback_lru_page() - which will notice that the page +is now mlocked and divert the page to the zone's unevictable list. If mlock_vma_page() is unable to isolate the page from the LRU, vmscan will handle -it later if/when it attempts to reclaim the page. +it later if and when it attempts to reclaim the page. -Mlocked Pages: Filtering Special Vmas +FILTERING SPECIAL VMAS +---------------------- -mlock_fixup() filters several classes of "special" vmas: +mlock_fixup() filters several classes of "special" VMAs: -1) vmas with VM_IO|VM_PFNMAP set are skipped entirely. The pages behind +1) VMAs with VM_IO or VM_PFNMAP set are skipped entirely. The pages behind these mappings are inherently pinned, so we don't need to mark them as - mlocked. In any case, most of the pages have no struct page in which to - so mark the page. Because of this, get_user_pages() will fail for these - vmas, so there is no sense in attempting to visit them. - -2) vmas mapping hugetlbfs page are already effectively pinned into memory. - We don't need nor want to mlock() these pages. However, to preserve the - prior behavior of mlock()--before the unevictable/mlock changes-- - mlock_fixup() will call make_pages_present() in the hugetlbfs vma range - to allocate the huge pages and populate the ptes. - -3) vmas with VM_DONTEXPAND|VM_RESERVED are generally user space mappings of - kernel pages, such as the vdso page, relay channel pages, etc. These pages + mlocked. In any case, most of the pages have no struct page in which to so + mark the page. Because of this, get_user_pages() will fail for these VMAs, + so there is no sense in attempting to visit them. + +2) VMAs mapping hugetlbfs page are already effectively pinned into memory. We + neither need nor want to mlock() these pages. However, to preserve the + prior behavior of mlock() - before the unevictable/mlock changes - + mlock_fixup() will call make_pages_present() in the hugetlbfs VMA range to + allocate the huge pages and populate the ptes. + +3) VMAs with VM_DONTEXPAND or VM_RESERVED are generally userspace mappings of + kernel pages, such as the VDSO page, relay channel pages, etc. These pages are inherently unevictable and are not managed on the LRU lists. - mlock_fixup() treats these vmas the same as hugetlbfs vmas. It calls + mlock_fixup() treats these VMAs the same as hugetlbfs VMAs. It calls make_pages_present() to populate the ptes. -Note that for all of these special vmas, mlock_fixup() does not set the +Note that for all of these special VMAs, mlock_fixup() does not set the VM_LOCKED flag. Therefore, we won't have to deal with them later during -munlock() or munmap()--for example, at task exit. Neither does mlock_fixup() -account these vmas against the task's "locked_vm". - -Mlocked Pages: Downgrading the Mmap Semaphore. - -mlock_fixup() must be called with the mmap semaphore held for write, because -it may have to merge or split vmas. However, mlocking a large region of -memory can take a long time--especially if vmscan must reclaim pages to -satisfy the regions requirements. Faulting in a large region with the mmap -semaphore held for write can hold off other faults on the address space, in -the case of a multi-threaded task. It can also hold off scans of the task's -address space via /proc. While testing under heavy load, it was observed that -the ps(1) command could be held off for many minutes while a large segment was -mlock()ed down. - -To address this issue, and to make the system more responsive during mlock()ing -of large segments, mlock_fixup() downgrades the mmap semaphore to read mode -during the call to __mlock_vma_pages_range(). This works fine. However, the -callers of mlock_fixup() expect the semaphore to be returned in write mode. -So, mlock_fixup() "upgrades" the semphore to write mode. Linux does not -support an atomic upgrade_sem() call, so mlock_fixup() must drop the semaphore -and reacquire it in write mode. In a multi-threaded task, it is possible for -the task memory map to change while the semaphore is dropped. Therefore, -mlock_fixup() looks up the vma at the range start address after reacquiring -the semaphore in write mode and verifies that it still covers the original -range. If not, mlock_fixup() returns an error [-EAGAIN]. All callers of -mlock_fixup() have been changed to deal with this new error condition. - -Note: when munlocking a region, all of the pages should already be resident-- -unless we have racing threads mlocking() and munlocking() regions. So, -unlocking should not have to wait for page allocations nor faults of any kind. -Therefore mlock_fixup() does not downgrade the semaphore for munlock(). - - -Mlocked Pages: munlock()/munlockall() System Call Handling - -The munlock() and munlockall() system calls are handled by the same functions-- -do_mlock[all]()--as the mlock() and mlockall() system calls with the unlock -vs lock operation indicated by an argument. So, these system calls are also -handled by mlock_fixup(). Again, if called for an already munlock()ed vma, -mlock_fixup() simply returns. Because of the vma filtering discussed above, -VM_LOCKED will not be set in any "special" vmas. So, these vmas will be +munlock(), munmap() or task exit. Neither does mlock_fixup() account these +VMAs against the task's "locked_vm". + + +munlock()/munlockall() SYSTEM CALL HANDLING +------------------------------------------- + +The munlock() and munlockall() system calls are handled by the same functions - +do_mlock[all]() - as the mlock() and mlockall() system calls with the unlock vs +lock operation indicated by an argument. So, these system calls are also +handled by mlock_fixup(). Again, if called for an already munlocked VMA, +mlock_fixup() simply returns. Because of the VMA filtering discussed above, +VM_LOCKED will not be set in any "special" VMAs. So, these VMAs will be ignored for munlock. -If the vma is VM_LOCKED, mlock_fixup() again attempts to merge or split off -the specified range. The range is then munlocked via the function -__mlock_vma_pages_range()--the same function used to mlock a vma range-- +If the VMA is VM_LOCKED, mlock_fixup() again attempts to merge or split off the +specified range. The range is then munlocked via the function +__mlock_vma_pages_range() - the same function used to mlock a VMA range - passing a flag to indicate that munlock() is being performed. -Because the vma access protections could have been changed to PROT_NONE after +Because the VMA access protections could have been changed to PROT_NONE after faulting in and mlocking pages, get_user_pages() was unreliable for visiting -these pages for munlocking. Because we don't want to leave pages mlocked(), +these pages for munlocking. Because we don't want to leave pages mlocked, get_user_pages() was enhanced to accept a flag to ignore the permissions when -fetching the pages--all of which should be resident as a result of previous -mlock()ing. +fetching the pages - all of which should be resident as a result of previous +mlocking. For munlock(), __mlock_vma_pages_range() unlocks individual pages by calling munlock_vma_page(). munlock_vma_page() unconditionally clears the PG_mlocked -flag using TestClearPageMlocked(). As with mlock_vma_page(), munlock_vma_page() -use the Test*PageMlocked() function to handle the case where the page might -have already been unlocked by another task. If the page was mlocked, -munlock_vma_page() updates that zone statistics for the number of mlocked -pages. Note, however, that at this point we haven't checked whether the page -is mapped by other VM_LOCKED vmas. - -We can't call try_to_munlock(), the function that walks the reverse map to check -for other VM_LOCKED vmas, without first isolating the page from the LRU. +flag using TestClearPageMlocked(). As with mlock_vma_page(), +munlock_vma_page() use the Test*PageMlocked() function to handle the case where +the page might have already been unlocked by another task. If the page was +mlocked, munlock_vma_page() updates that zone statistics for the number of +mlocked pages. Note, however, that at this point we haven't checked whether +the page is mapped by other VM_LOCKED VMAs. + +We can't call try_to_munlock(), the function that walks the reverse map to +check for other VM_LOCKED VMAs, without first isolating the page from the LRU. try_to_munlock() is a variant of try_to_unmap() and thus requires that the page -not be on an lru list. [More on these below.] However, the call to -isolate_lru_page() could fail, in which case we couldn't try_to_munlock(). -So, we go ahead and clear PG_mlocked up front, as this might be the only chance -we have. If we can successfully isolate the page, we go ahead and +not be on an LRU list [more on these below]. However, the call to +isolate_lru_page() could fail, in which case we couldn't try_to_munlock(). So, +we go ahead and clear PG_mlocked up front, as this might be the only chance we +have. If we can successfully isolate the page, we go ahead and try_to_munlock(), which will restore the PG_mlocked flag and update the zone -page statistics if it finds another vma holding the page mlocked. If we fail +page statistics if it finds another VMA holding the page mlocked. If we fail to isolate the page, we'll have left a potentially mlocked page on the LRU. -This is fine, because we'll catch it later when/if vmscan tries to reclaim the -page. This should be relatively rare. - -Mlocked Pages: Migrating Them... - -A page that is being migrated has been isolated from the lru lists and is -held locked across unmapping of the page, updating the page's mapping -[address_space] entry and copying the contents and state, until the -page table entry has been replaced with an entry that refers to the new -page. Linux supports migration of mlocked pages and other unevictable -pages. This involves simply moving the PageMlocked and PageUnevictable states -from the old page to the new page. - -Note that page migration can race with mlocking or munlocking of the same -page. This has been discussed from the mlock/munlock perspective in the -respective sections above. Both processes [migration, m[un]locking], hold -the page locked. This provides the first level of synchronization. Page -migration zeros out the page_mapping of the old page before unlocking it, -so m[un]lock can skip these pages by testing the page mapping under page -lock. - -When completing page migration, we place the new and old pages back onto the -lru after dropping the page lock. The "unneeded" page--old page on success, -new page on failure--will be freed when the reference count held by the -migration process is released. To ensure that we don't strand pages on the -unevictable list because of a race between munlock and migration, page -migration uses the putback_lru_page() function to add migrated pages back to -the lru. - - -Mlocked Pages: mmap(MAP_LOCKED) System Call Handling +This is fine, because we'll catch it later if and if vmscan tries to reclaim +the page. This should be relatively rare. + + +MIGRATING MLOCKED PAGES +----------------------- + +A page that is being migrated has been isolated from the LRU lists and is held +locked across unmapping of the page, updating the page's address space entry +and copying the contents and state, until the page table entry has been +replaced with an entry that refers to the new page. Linux supports migration +of mlocked pages and other unevictable pages. This involves simply moving the +PG_mlocked and PG_unevictable states from the old page to the new page. + +Note that page migration can race with mlocking or munlocking of the same page. +This has been discussed from the mlock/munlock perspective in the respective +sections above. Both processes (migration and m[un]locking) hold the page +locked. This provides the first level of synchronization. Page migration +zeros out the page_mapping of the old page before unlocking it, so m[un]lock +can skip these pages by testing the page mapping under page lock. + +To complete page migration, we place the new and old pages back onto the LRU +after dropping the page lock. The "unneeded" page - old page on success, new +page on failure - will be freed when the reference count held by the migration +process is released. To ensure that we don't strand pages on the unevictable +list because of a race between munlock and migration, page migration uses the +putback_lru_page() function to add migrated pages back to the LRU. + + +mmap(MAP_LOCKED) SYSTEM CALL HANDLING +------------------------------------- In addition the the mlock()/mlockall() system calls, an application can request -that a region of memory be mlocked using the MAP_LOCKED flag with the mmap() +that a region of memory be mlocked supplying the MAP_LOCKED flag to the mmap() call. Furthermore, any mmap() call or brk() call that expands the heap by a task that has previously called mlockall() with the MCL_FUTURE flag will result -in the newly mapped memory being mlocked. Before the unevictable/mlock changes, -the kernel simply called make_pages_present() to allocate pages and populate -the page table. +in the newly mapped memory being mlocked. Before the unevictable/mlock +changes, the kernel simply called make_pages_present() to allocate pages and +populate the page table. To mlock a range of memory under the unevictable/mlock infrastructure, the mmap() handler and task address space expansion functions call mlock_vma_pages_range() specifying the vma and the address range to mlock. -mlock_vma_pages_range() filters vmas like mlock_fixup(), as described above in -"Mlocked Pages: Filtering Vmas". It will clear the VM_LOCKED flag, which will -have already been set by the caller, in filtered vmas. Thus these vma's need -not be visited for munlock when the region is unmapped. +mlock_vma_pages_range() filters VMAs like mlock_fixup(), as described above in +"Filtering Special VMAs". It will clear the VM_LOCKED flag, which will have +already been set by the caller, in filtered VMAs. Thus these VMA's need not be +visited for munlock when the region is unmapped. -For "normal" vmas, mlock_vma_pages_range() calls __mlock_vma_pages_range() to +For "normal" VMAs, mlock_vma_pages_range() calls __mlock_vma_pages_range() to fault/allocate the pages and mlock them. Again, like mlock_fixup(), mlock_vma_pages_range() downgrades the mmap semaphore to read mode before -attempting to fault/allocate and mlock the pages; and "upgrades" the semaphore +attempting to fault/allocate and mlock the pages and "upgrades" the semaphore back to write mode before returning. -The callers of mlock_vma_pages_range() will have already added the memory -range to be mlocked to the task's "locked_vm". To account for filtered vmas, +The callers of mlock_vma_pages_range() will have already added the memory range +to be mlocked to the task's "locked_vm". To account for filtered VMAs, mlock_vma_pages_range() returns the number of pages NOT mlocked. All of the -callers then subtract a non-negative return value from the task's locked_vm. -A negative return value represent an error--for example, from get_user_pages() -attempting to fault in a vma with PROT_NONE access. In this case, we leave -the memory range accounted as locked_vm, as the protections could be changed -later and pages allocated into that region. +callers then subtract a non-negative return value from the task's locked_vm. A +negative return value represent an error - for example, from get_user_pages() +attempting to fault in a VMA with PROT_NONE access. In this case, we leave the +memory range accounted as locked_vm, as the protections could be changed later +and pages allocated into that region. -Mlocked Pages: munmap()/exit()/exec() System Call Handling +munmap()/exit()/exec() SYSTEM CALL HANDLING +------------------------------------------- When unmapping an mlocked region of memory, whether by an explicit call to munmap() or via an internal unmap from exit() or exec() processing, we must -munlock the pages if we're removing the last VM_LOCKED vma that maps the pages. +munlock the pages if we're removing the last VM_LOCKED VMA that maps the pages. Before the unevictable/mlock changes, mlocking did not mark the pages in any way, so unmapping them required no processing. To munlock a range of memory under the unevictable/mlock infrastructure, the -munmap() hander and task address space tear down function call +munmap() handler and task address space call tear down function munlock_vma_pages_all(). The name reflects the observation that one always -specifies the entire vma range when munlock()ing during unmap of a region. -Because of the vma filtering when mlocking() regions, only "normal" vmas that +specifies the entire VMA range when munlock()ing during unmap of a region. +Because of the VMA filtering when mlocking() regions, only "normal" VMAs that actually contain mlocked pages will be passed to munlock_vma_pages_all(). -munlock_vma_pages_all() clears the VM_LOCKED vma flag and, like mlock_fixup() +munlock_vma_pages_all() clears the VM_LOCKED VMA flag and, like mlock_fixup() for the munlock case, calls __munlock_vma_pages_range() to walk the page table -for the vma's memory range and munlock_vma_page() each resident page mapped by -the vma. This effectively munlocks the page, only if this is the last -VM_LOCKED vma that maps the page. - +for the VMA's memory range and munlock_vma_page() each resident page mapped by +the VMA. This effectively munlocks the page, only if this is the last +VM_LOCKED VMA that maps the page. -Mlocked Page: try_to_unmap() -[Note: the code changes represented by this section are really quite small -compared to the text to describe what happening and why, and to discuss the -implications.] +try_to_unmap() +-------------- -Pages can, of course, be mapped into multiple vmas. Some of these vmas may +Pages can, of course, be mapped into multiple VMAs. Some of these VMAs may have VM_LOCKED flag set. It is possible for a page mapped into one or more -VM_LOCKED vmas not to have the PG_mlocked flag set and therefore reside on one -of the active or inactive LRU lists. This could happen if, for example, a -task in the process of munlock()ing the page could not isolate the page from -the LRU. As a result, vmscan/shrink_page_list() might encounter such a page -as described in "Unevictable Pages and Vmscan [shrink_*_list()]". To -handle this situation, try_to_unmap() has been enhanced to check for VM_LOCKED -vmas while it is walking a page's reverse map. +VM_LOCKED VMAs not to have the PG_mlocked flag set and therefore reside on one +of the active or inactive LRU lists. This could happen if, for example, a task +in the process of munlocking the page could not isolate the page from the LRU. +As a result, vmscan/shrink_page_list() might encounter such a page as described +in section "vmscan's handling of unevictable pages". To handle this situation, +try_to_unmap() checks for VM_LOCKED VMAs while it is walking a page's reverse +map. try_to_unmap() is always called, by either vmscan for reclaim or for page -migration, with the argument page locked and isolated from the LRU. BUG_ON() -assertions enforce this requirement. Separate functions handle anonymous and -mapped file pages, as these types of pages have different reverse map -mechanisms. - - try_to_unmap_anon() - -To unmap anonymous pages, each vma in the list anchored in the anon_vma must be -visited--at least until a VM_LOCKED vma is encountered. If the page is being -unmapped for migration, VM_LOCKED vmas do not stop the process because mlocked -pages are migratable. However, for reclaim, if the page is mapped into a -VM_LOCKED vma, the scan stops. try_to_unmap() attempts to acquire the mmap -semphore of the mm_struct to which the vma belongs in read mode. If this is -successful, try_to_unmap() will mlock the page via mlock_vma_page()--we -wouldn't have gotten to try_to_unmap() if the page were already mlocked--and -will return SWAP_MLOCK, indicating that the page is unevictable. If the -mmap semaphore cannot be acquired, we are not sure whether the page is really -unevictable or not. In this case, try_to_unmap() will return SWAP_AGAIN. - - try_to_unmap_file() -- linear mappings - -Unmapping of a mapped file page works the same, except that the scan visits -all vmas that maps the page's index/page offset in the page's mapping's -reverse map priority search tree. It must also visit each vma in the page's -mapping's non-linear list, if the list is non-empty. As for anonymous pages, -on encountering a VM_LOCKED vma for a mapped file page, try_to_unmap() will -attempt to acquire the associated mm_struct's mmap semaphore to mlock the page, -returning SWAP_MLOCK if this is successful, and SWAP_AGAIN, if not. - - try_to_unmap_file() -- non-linear mappings - -If a page's mapping contains a non-empty non-linear mapping vma list, then -try_to_un{map|lock}() must also visit each vma in that list to determine -whether the page is mapped in a VM_LOCKED vma. Again, the scan must visit -all vmas in the non-linear list to ensure that the pages is not/should not be -mlocked. If a VM_LOCKED vma is found in the list, the scan could terminate. -However, there is no easy way to determine whether the page is actually mapped -in a given vma--either for unmapping or testing whether the VM_LOCKED vma -actually pins the page. - -So, try_to_unmap_file() handles non-linear mappings by scanning a certain -number of pages--a "cluster"--in each non-linear vma associated with the page's -mapping, for each file mapped page that vmscan tries to unmap. If this happens -to unmap the page we're trying to unmap, try_to_unmap() will notice this on -return--(page_mapcount(page) == 0)--and return SWAP_SUCCESS. Otherwise, it -will return SWAP_AGAIN, causing vmscan to recirculate this page. We take -advantage of the cluster scan in try_to_unmap_cluster() as follows: - -For each non-linear vma, try_to_unmap_cluster() attempts to acquire the mmap -semaphore of the associated mm_struct for read without blocking. If this -attempt is successful and the vma is VM_LOCKED, try_to_unmap_cluster() will -retain the mmap semaphore for the scan; otherwise it drops it here. Then, -for each page in the cluster, if we're holding the mmap semaphore for a locked -vma, try_to_unmap_cluster() calls mlock_vma_page() to mlock the page. This -call is a no-op if the page is already locked, but will mlock any pages in -the non-linear mapping that happen to be unlocked. If one of the pages so -mlocked is the page passed in to try_to_unmap(), try_to_unmap_cluster() will -return SWAP_MLOCK, rather than the default SWAP_AGAIN. This will allow vmscan -to cull the page, rather than recirculating it on the inactive list. Again, -if try_to_unmap_cluster() cannot acquire the vma's mmap sem, it returns -SWAP_AGAIN, indicating that the page is mapped by a VM_LOCKED vma, but -couldn't be mlocked. - - -Mlocked pages: try_to_munlock() Reverse Map Scan - -TODO/FIXME: a better name might be page_mlocked()--analogous to the -page_referenced() reverse map walker. - -When munlock_vma_page()--see "Mlocked Pages: munlock()/munlockall() -System Call Handling" above--tries to munlock a page, it needs to -determine whether or not the page is mapped by any VM_LOCKED vma, without -actually attempting to unmap all ptes from the page. For this purpose, the -unevictable/mlock infrastructure introduced a variant of try_to_unmap() called -try_to_munlock(). +migration, with the argument page locked and isolated from the LRU. Separate +functions handle anonymous and mapped file pages, as these types of pages have +different reverse map mechanisms. + + (*) try_to_unmap_anon() + + To unmap anonymous pages, each VMA in the list anchored in the anon_vma + must be visited - at least until a VM_LOCKED VMA is encountered. If the + page is being unmapped for migration, VM_LOCKED VMAs do not stop the + process because mlocked pages are migratable. However, for reclaim, if + the page is mapped into a VM_LOCKED VMA, the scan stops. + + try_to_unmap_anon() attempts to acquire in read mode the mmap semphore of + the mm_struct to which the VMA belongs. If this is successful, it will + mlock the page via mlock_vma_page() - we wouldn't have gotten to + try_to_unmap_anon() if the page were already mlocked - and will return + SWAP_MLOCK, indicating that the page is unevictable. + + If the mmap semaphore cannot be acquired, we are not sure whether the page + is really unevictable or not. In this case, try_to_unmap_anon() will + return SWAP_AGAIN. + + (*) try_to_unmap_file() - linear mappings + + Unmapping of a mapped file page works the same as for anonymous mappings, + except that the scan visits all VMAs that map the page's index/page offset + in the page's mapping's reverse map priority search tree. It also visits + each VMA in the page's mapping's non-linear list, if the list is + non-empty. + + As for anonymous pages, on encountering a VM_LOCKED VMA for a mapped file + page, try_to_unmap_file() will attempt to acquire the associated + mm_struct's mmap semaphore to mlock the page, returning SWAP_MLOCK if this + is successful, and SWAP_AGAIN, if not. + + (*) try_to_unmap_file() - non-linear mappings + + If a page's mapping contains a non-empty non-linear mapping VMA list, then + try_to_un{map|lock}() must also visit each VMA in that list to determine + whether the page is mapped in a VM_LOCKED VMA. Again, the scan must visit + all VMAs in the non-linear list to ensure that the pages is not/should not + be mlocked. + + If a VM_LOCKED VMA is found in the list, the scan could terminate. + However, there is no easy way to determine whether the page is actually + mapped in a given VMA - either for unmapping or testing whether the + VM_LOCKED VMA actually pins the page. + + try_to_unmap_file() handles non-linear mappings by scanning a certain + number of pages - a "cluster" - in each non-linear VMA associated with the + page's mapping, for each file mapped page that vmscan tries to unmap. If + this happens to unmap the page we're trying to unmap, try_to_unmap() will + notice this on return (page_mapcount(page) will be 0) and return + SWAP_SUCCESS. Otherwise, it will return SWAP_AGAIN, causing vmscan to + recirculate this page. We take advantage of the cluster scan in + try_to_unmap_cluster() as follows: + + For each non-linear VMA, try_to_unmap_cluster() attempts to acquire the + mmap semaphore of the associated mm_struct for read without blocking. + + If this attempt is successful and the VMA is VM_LOCKED, + try_to_unmap_cluster() will retain the mmap semaphore for the scan; + otherwise it drops it here. + + Then, for each page in the cluster, if we're holding the mmap semaphore + for a locked VMA, try_to_unmap_cluster() calls mlock_vma_page() to + mlock the page. This call is a no-op if the page is already locked, + but will mlock any pages in the non-linear mapping that happen to be + unlocked. + + If one of the pages so mlocked is the page passed in to try_to_unmap(), + try_to_unmap_cluster() will return SWAP_MLOCK, rather than the default + SWAP_AGAIN. This will allow vmscan to cull the page, rather than + recirculating it on the inactive list. + + Again, if try_to_unmap_cluster() cannot acquire the VMA's mmap sem, it + returns SWAP_AGAIN, indicating that the page is mapped by a VM_LOCKED + VMA, but couldn't be mlocked. + + +try_to_munlock() REVERSE MAP SCAN +--------------------------------- + + [!] TODO/FIXME: a better name might be page_mlocked() - analogous to the + page_referenced() reverse map walker. + +When munlock_vma_page() [see section "munlock()/munlockall() System Call +Handling" above] tries to munlock a page, it needs to determine whether or not +the page is mapped by any VM_LOCKED VMA without actually attempting to unmap +all PTEs from the page. For this purpose, the unevictable/mlock infrastructure +introduced a variant of try_to_unmap() called try_to_munlock(). try_to_munlock() calls the same functions as try_to_unmap() for anonymous and mapped file pages with an additional argument specifing unlock versus unmap processing. Again, these functions walk the respective reverse maps looking -for VM_LOCKED vmas. When such a vma is found for anonymous pages and file +for VM_LOCKED VMAs. When such a VMA is found for anonymous pages and file pages mapped in linear VMAs, as in the try_to_unmap() case, the functions attempt to acquire the associated mmap semphore, mlock the page via mlock_vma_page() and return SWAP_MLOCK. This effectively undoes the pre-clearing of the page's PG_mlocked done by munlock_vma_page. -If try_to_unmap() is unable to acquire a VM_LOCKED vma's associated mmap -semaphore, it will return SWAP_AGAIN. This will allow shrink_page_list() -to recycle the page on the inactive list and hope that it has better luck -with the page next time. - -For file pages mapped into non-linear vmas, the try_to_munlock() logic works -slightly differently. On encountering a VM_LOCKED non-linear vma that might -map the page, try_to_munlock() returns SWAP_AGAIN without actually mlocking -the page. munlock_vma_page() will just leave the page unlocked and let -vmscan deal with it--the usual fallback position. - -Note that try_to_munlock()'s reverse map walk must visit every vma in a pages' -reverse map to determine that a page is NOT mapped into any VM_LOCKED vma. -However, the scan can terminate when it encounters a VM_LOCKED vma and can -successfully acquire the vma's mmap semphore for read and mlock the page. -Although try_to_munlock() can be called many [very many!] times when -munlock()ing a large region or tearing down a large address space that has been -mlocked via mlockall(), overall this is a fairly rare event. - -Mlocked Page: Page Reclaim in shrink_*_list() - -shrink_active_list() culls any obviously unevictable pages--i.e., -!page_evictable(page, NULL)--diverting these to the unevictable lru -list. However, shrink_active_list() only sees unevictable pages that -made it onto the active/inactive lru lists. Note that these pages do not -have PageUnevictable set--otherwise, they would be on the unevictable list and -shrink_active_list would never see them. +If try_to_unmap() is unable to acquire a VM_LOCKED VMA's associated mmap +semaphore, it will return SWAP_AGAIN. This will allow shrink_page_list() to +recycle the page on the inactive list and hope that it has better luck with the +page next time. + +For file pages mapped into non-linear VMAs, the try_to_munlock() logic works +slightly differently. On encountering a VM_LOCKED non-linear VMA that might +map the page, try_to_munlock() returns SWAP_AGAIN without actually mlocking the +page. munlock_vma_page() will just leave the page unlocked and let vmscan deal +with it - the usual fallback position. + +Note that try_to_munlock()'s reverse map walk must visit every VMA in a page's +reverse map to determine that a page is NOT mapped into any VM_LOCKED VMA. +However, the scan can terminate when it encounters a VM_LOCKED VMA and can +successfully acquire the VMA's mmap semphore for read and mlock the page. +Although try_to_munlock() might be called a great many times when munlocking a +large region or tearing down a large address space that has been mlocked via +mlockall(), overall this is a fairly rare event. + + +PAGE RECLAIM IN shrink_*_list() +------------------------------- + +shrink_active_list() culls any obviously unevictable pages - i.e. +!page_evictable(page, NULL) - diverting these to the unevictable list. +However, shrink_active_list() only sees unevictable pages that made it onto the +active/inactive lru lists. Note that these pages do not have PageUnevictable +set - otherwise they would be on the unevictable list and shrink_active_list +would never see them. Some examples of these unevictable pages on the LRU lists are: -1) ramfs pages that have been placed on the lru lists when first allocated. + (1) ramfs pages that have been placed on the LRU lists when first allocated. + + (2) SHM_LOCK'd shared memory pages. shmctl(SHM_LOCK) does not attempt to + allocate or fault in the pages in the shared memory region. This happens + when an application accesses the page the first time after SHM_LOCK'ing + the segment. -2) SHM_LOCKed shared memory pages. shmctl(SHM_LOCK) does not attempt to - allocate or fault in the pages in the shared memory region. This happens - when an application accesses the page the first time after SHM_LOCKing - the segment. + (3) mlocked pages that could not be isolated from the LRU and moved to the + unevictable list in mlock_vma_page(). -3) Mlocked pages that could not be isolated from the lru and moved to the - unevictable list in mlock_vma_page(). + (4) Pages mapped into multiple VM_LOCKED VMAs, but try_to_munlock() couldn't + acquire the VMA's mmap semaphore to test the flags and set PageMlocked. + munlock_vma_page() was forced to let the page back on to the normal LRU + list for vmscan to handle. -3) Pages mapped into multiple VM_LOCKED vmas, but try_to_munlock() couldn't - acquire the vma's mmap semaphore to test the flags and set PageMlocked. - munlock_vma_page() was forced to let the page back on to the normal - LRU list for vmscan to handle. +shrink_inactive_list() also diverts any unevictable pages that it finds on the +inactive lists to the appropriate zone's unevictable list. -shrink_inactive_list() also culls any unevictable pages that it finds on -the inactive lists, again diverting them to the appropriate zone's unevictable -lru list. shrink_inactive_list() should only see SHM_LOCKed pages that became -SHM_LOCKed after shrink_active_list() had moved them to the inactive list, or -pages mapped into VM_LOCKED vmas that munlock_vma_page() couldn't isolate from -the lru to recheck via try_to_munlock(). shrink_inactive_list() won't notice -the latter, but will pass on to shrink_page_list(). +shrink_inactive_list() should only see SHM_LOCK'd pages that became SHM_LOCK'd +after shrink_active_list() had moved them to the inactive list, or pages mapped +into VM_LOCKED VMAs that munlock_vma_page() couldn't isolate from the LRU to +recheck via try_to_munlock(). shrink_inactive_list() won't notice the latter, +but will pass on to shrink_page_list(). shrink_page_list() again culls obviously unevictable pages that it could encounter for similar reason to shrink_inactive_list(). Pages mapped into -VM_LOCKED vmas but without PG_mlocked set will make it all the way to +VM_LOCKED VMAs but without PG_mlocked set will make it all the way to try_to_unmap(). shrink_page_list() will divert them to the unevictable list when try_to_unmap() returns SWAP_MLOCK, as discussed above. -- cgit v1.2.1 From a55ce6dc705c9ed0bb0d4f629dbcaf3b3ced5172 Mon Sep 17 00:00:00 2001 From: Michael Ellerman Date: Mon, 13 Apr 2009 14:40:09 -0700 Subject: mm: add documentation describing what tsk->active_mm means vs tsk->mm I'm sure everyone knows this, but I didn't, so I googled it, and found a nice explanation from Linus. Might be worth sticking in Documentation. Signed-off-by: Michael Ellerman Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- Documentation/vm/00-INDEX | 2 + Documentation/vm/active_mm.txt | 83 ++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 85 insertions(+) create mode 100644 Documentation/vm/active_mm.txt (limited to 'Documentation') diff --git a/Documentation/vm/00-INDEX b/Documentation/vm/00-INDEX index 2131b00b63f6..2f77ced35df7 100644 --- a/Documentation/vm/00-INDEX +++ b/Documentation/vm/00-INDEX @@ -1,5 +1,7 @@ 00-INDEX - this file. +active_mm.txt + - An explanation from Linus about tsk->active_mm vs tsk->mm. balance - various information on memory balancing. hugetlbpage.txt diff --git a/Documentation/vm/active_mm.txt b/Documentation/vm/active_mm.txt new file mode 100644 index 000000000000..4ee1f643d897 --- /dev/null +++ b/Documentation/vm/active_mm.txt @@ -0,0 +1,83 @@ +List: linux-kernel +Subject: Re: active_mm +From: Linus Torvalds +Date: 1999-07-30 21:36:24 + +Cc'd to linux-kernel, because I don't write explanations all that often, +and when I do I feel better about more people reading them. + +On Fri, 30 Jul 1999, David Mosberger wrote: +> +> Is there a brief description someplace on how "mm" vs. "active_mm" in +> the task_struct are supposed to be used? (My apologies if this was +> discussed on the mailing lists---I just returned from vacation and +> wasn't able to follow linux-kernel for a while). + +Basically, the new setup is: + + - we have "real address spaces" and "anonymous address spaces". The + difference is that an anonymous address space doesn't care about the + user-level page tables at all, so when we do a context switch into an + anonymous address space we just leave the previous address space + active. + + The obvious use for a "anonymous address space" is any thread that + doesn't need any user mappings - all kernel threads basically fall into + this category, but even "real" threads can temporarily say that for + some amount of time they are not going to be interested in user space, + and that the scheduler might as well try to avoid wasting time on + switching the VM state around. Currently only the old-style bdflush + sync does that. + + - "tsk->mm" points to the "real address space". For an anonymous process, + tsk->mm will be NULL, for the logical reason that an anonymous process + really doesn't _have_ a real address space at all. + + - however, we obviously need to keep track of which address space we + "stole" for such an anonymous user. For that, we have "tsk->active_mm", + which shows what the currently active address space is. + + The rule is that for a process with a real address space (ie tsk->mm is + non-NULL) the active_mm obviously always has to be the same as the real + one. + + For a anonymous process, tsk->mm == NULL, and tsk->active_mm is the + "borrowed" mm while the anonymous process is running. When the + anonymous process gets scheduled away, the borrowed address space is + returned and cleared. + +To support all that, the "struct mm_struct" now has two counters: a +"mm_users" counter that is how many "real address space users" there are, +and a "mm_count" counter that is the number of "lazy" users (ie anonymous +users) plus one if there are any real users. + +Usually there is at least one real user, but it could be that the real +user exited on another CPU while a lazy user was still active, so you do +actually get cases where you have a address space that is _only_ used by +lazy users. That is often a short-lived state, because once that thread +gets scheduled away in favour of a real thread, the "zombie" mm gets +released because "mm_users" becomes zero. + +Also, a new rule is that _nobody_ ever has "init_mm" as a real MM any +more. "init_mm" should be considered just a "lazy context when no other +context is available", and in fact it is mainly used just at bootup when +no real VM has yet been created. So code that used to check + + if (current->mm == &init_mm) + +should generally just do + + if (!current->mm) + +instead (which makes more sense anyway - the test is basically one of "do +we have a user context", and is generally done by the page fault handler +and things like that). + +Anyway, I put a pre-patch-2.3.13-1 on ftp.kernel.org just a moment ago, +because it slightly changes the interfaces to accomodate the alpha (who +would have thought it, but the alpha actually ends up having one of the +ugliest context switch codes - unlike the other architectures where the MM +and register state is separate, the alpha PALcode joins the two, and you +need to switch both together). + +(From http://marc.info/?l=linux-kernel&m=93337278602211&w=2) -- cgit v1.2.1 From c863d835b7cd9a3c08a941d4ae59b8faefa31422 Mon Sep 17 00:00:00 2001 From: Bharata B Rao Date: Mon, 13 Apr 2009 14:40:15 -0700 Subject: memcg: fix documentation The description about various statistics from memory.stat is not accurate and confusing at times. Correct this along with a few other minor cleanups. Signed-off-by: Bharata B Rao Acked-by: Balbir Singh Acked-by: KAMEZAWA Hiroyuki Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- Documentation/cgroups/memory.txt | 55 +++++++++++++++++++++++----------------- 1 file changed, 32 insertions(+), 23 deletions(-) (limited to 'Documentation') diff --git a/Documentation/cgroups/memory.txt b/Documentation/cgroups/memory.txt index a98a7fe7aabb..1a608877b14e 100644 --- a/Documentation/cgroups/memory.txt +++ b/Documentation/cgroups/memory.txt @@ -6,15 +6,14 @@ used here with the memory controller that is used in hardware. Salient features -a. Enable control of both RSS (mapped) and Page Cache (unmapped) pages +a. Enable control of Anonymous, Page Cache (mapped and unmapped) and + Swap Cache memory pages. b. The infrastructure allows easy addition of other types of memory to control c. Provides *zero overhead* for non memory controller users d. Provides a double LRU: global memory pressure causes reclaim from the global LRU; a cgroup on hitting a limit, reclaims from the per cgroup LRU -NOTE: Swap Cache (unmapped) is not accounted now. - Benefits and Purpose of the memory controller The memory controller isolates the memory behaviour of a group of tasks @@ -290,34 +289,44 @@ will be charged as a new owner of it. moved to the parent. If you want to avoid that, force_empty will be useful. 5.2 stat file - memory.stat file includes following statistics (now) - cache - # of pages from page-cache and shmem. - rss - # of pages from anonymous memory. - pgpgin - # of event of charging - pgpgout - # of event of uncharging - active_anon - # of pages on active lru of anon, shmem. - inactive_anon - # of pages on active lru of anon, shmem - active_file - # of pages on active lru of file-cache - inactive_file - # of pages on inactive lru of file cache - unevictable - # of pages cannot be reclaimed.(mlocked etc) - - Below is depend on CONFIG_DEBUG_VM. - inactive_ratio - VM internal parameter. (see mm/page_alloc.c) - recent_rotated_anon - VM internal parameter. (see mm/vmscan.c) - recent_rotated_file - VM internal parameter. (see mm/vmscan.c) - recent_scanned_anon - VM internal parameter. (see mm/vmscan.c) - recent_scanned_file - VM internal parameter. (see mm/vmscan.c) - - Memo: + +memory.stat file includes following statistics + +cache - # of bytes of page cache memory. +rss - # of bytes of anonymous and swap cache memory. +pgpgin - # of pages paged in (equivalent to # of charging events). +pgpgout - # of pages paged out (equivalent to # of uncharging events). +active_anon - # of bytes of anonymous and swap cache memory on active + lru list. +inactive_anon - # of bytes of anonymous memory and swap cache memory on + inactive lru list. +active_file - # of bytes of file-backed memory on active lru list. +inactive_file - # of bytes of file-backed memory on inactive lru list. +unevictable - # of bytes of memory that cannot be reclaimed (mlocked etc). + +The following additional stats are dependent on CONFIG_DEBUG_VM. + +inactive_ratio - VM internal parameter. (see mm/page_alloc.c) +recent_rotated_anon - VM internal parameter. (see mm/vmscan.c) +recent_rotated_file - VM internal parameter. (see mm/vmscan.c) +recent_scanned_anon - VM internal parameter. (see mm/vmscan.c) +recent_scanned_file - VM internal parameter. (see mm/vmscan.c) + +Memo: recent_rotated means recent frequency of lru rotation. recent_scanned means recent # of scans to lru. showing for better debug please see the code for meanings. +Note: + Only anonymous and swap cache memory is listed as part of 'rss' stat. + This should not be confused with the true 'resident set size' or the + amount of physical memory used by the cgroup. Per-cgroup rss + accounting is not done yet. 5.3 swappiness Similar to /proc/sys/vm/swappiness, but affecting a hierarchy of groups only. - Following cgroup's swapiness can't be changed. + Following cgroups' swapiness can't be changed. - root cgroup (uses /proc/sys/vm/swappiness). - a cgroup which uses hierarchy and it has child cgroup. - a cgroup which uses hierarchy and not the root of hierarchy. -- cgit v1.2.1 From bbdba2737443ae7b530a453d8152f2068ca4cf56 Mon Sep 17 00:00:00 2001 From: Shen Feng Date: Mon, 13 Apr 2009 14:40:16 -0700 Subject: doc: use correct debugfs mountpoint Use the default mountpoint of debugfs in the pktcdvd ABI. Signed-off-by: Shen Feng Cc: Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- Documentation/ABI/testing/debugfs-pktcdvd | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'Documentation') diff --git a/Documentation/ABI/testing/debugfs-pktcdvd b/Documentation/ABI/testing/debugfs-pktcdvd index bf9c16b64c34..cf11736acb76 100644 --- a/Documentation/ABI/testing/debugfs-pktcdvd +++ b/Documentation/ABI/testing/debugfs-pktcdvd @@ -1,4 +1,4 @@ -What: /debug/pktcdvd/pktcdvd[0-7] +What: /sys/kernel/debug/pktcdvd/pktcdvd[0-7] Date: Oct. 2006 KernelVersion: 2.6.20 Contact: Thomas Maier @@ -10,10 +10,10 @@ debugfs interface The pktcdvd module (packet writing driver) creates these files in debugfs: -/debug/pktcdvd/pktcdvd[0-7]/ +/sys/kernel/debug/pktcdvd/pktcdvd[0-7]/ info (0444) Lots of driver statistics and infos. Example: ------- -cat /debug/pktcdvd/pktcdvd0/info +cat /sys/kernel/debug/pktcdvd/pktcdvd0/info -- cgit v1.2.1 From 17a7b7b39056a82c5012539311850f202e6c3cd4 Mon Sep 17 00:00:00 2001 From: Tetsuo Handa Date: Mon, 13 Apr 2009 11:04:19 +0900 Subject: tomoyo: add Documentation/tomoyo.txt Signed-off-by: Kentaro Takeda Signed-off-by: Tetsuo Handa Signed-off-by: Toshiharu Harada Signed-off-by: James Morris --- Documentation/tomoyo.txt | 55 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 55 insertions(+) create mode 100644 Documentation/tomoyo.txt (limited to 'Documentation') diff --git a/Documentation/tomoyo.txt b/Documentation/tomoyo.txt new file mode 100644 index 000000000000..b3a232cae7f8 --- /dev/null +++ b/Documentation/tomoyo.txt @@ -0,0 +1,55 @@ +--- What is TOMOYO? --- + +TOMOYO is a name-based MAC extension (LSM module) for the Linux kernel. + +LiveCD-based tutorials are available at +http://tomoyo.sourceforge.jp/en/1.6.x/1st-step/ubuntu8.04-live/ +http://tomoyo.sourceforge.jp/en/1.6.x/1st-step/centos5-live/ . +Though these tutorials use non-LSM version of TOMOYO, they are useful for you +to know what TOMOYO is. + +--- How to enable TOMOYO? --- + +Build the kernel with CONFIG_SECURITY_TOMOYO=y and pass "security=tomoyo" on +kernel's command line. + +Please see http://tomoyo.sourceforge.jp/en/2.2.x/ for details. + +--- Where is documentation? --- + +User <-> Kernel interface documentation is available at +http://tomoyo.sourceforge.jp/en/2.2.x/policy-reference.html . + +Materials we prepared for seminars and symposiums are available at +http://sourceforge.jp/projects/tomoyo/docs/?category_id=532&language_id=1 . +Below lists are chosen from three aspects. + +What is TOMOYO? + TOMOYO Linux Overview + http://sourceforge.jp/projects/tomoyo/docs/lca2009-takeda.pdf + TOMOYO Linux: pragmatic and manageable security for Linux + http://sourceforge.jp/projects/tomoyo/docs/freedomhectaipei-tomoyo.pdf + TOMOYO Linux: A Practical Method to Understand and Protect Your Own Linux Box + http://sourceforge.jp/projects/tomoyo/docs/PacSec2007-en-no-demo.pdf + +What can TOMOYO do? + Deep inside TOMOYO Linux + http://sourceforge.jp/projects/tomoyo/docs/lca2009-kumaneko.pdf + The role of "pathname based access control" in security. + http://sourceforge.jp/projects/tomoyo/docs/lfj2008-bof.pdf + +History of TOMOYO? + Realities of Mainlining + http://sourceforge.jp/projects/tomoyo/docs/lfj2008.pdf + +--- What is future plan? --- + +We believe that inode based security and name based security are complementary +and both should be used together. But unfortunately, so far, we cannot enable +multiple LSM modules at the same time. We feel sorry that you have to give up +SELinux/SMACK/AppArmor etc. when you want to use TOMOYO. + +We hope that LSM becomes stackable in future. Meanwhile, you can use non-LSM +version of TOMOYO, available at http://tomoyo.sourceforge.jp/en/1.6.x/ . +LSM version of TOMOYO is a subset of non-LSM version of TOMOYO. We are planning +to port non-LSM version's functionalities to LSM versions. -- cgit v1.2.1 From 329007ce25d56fc7113df7b4828d607806d8bc21 Mon Sep 17 00:00:00 2001 From: Jens Axboe Date: Wed, 8 Apr 2009 11:38:50 +0200 Subject: block: update biodoc.txt on plugging We do per-device plugging, get rid of any references to tq_disk as that has been dead since 2.6.5 or so. Signed-off-by: Jens Axboe --- Documentation/block/biodoc.txt | 19 ++++++------------- 1 file changed, 6 insertions(+), 13 deletions(-) (limited to 'Documentation') diff --git a/Documentation/block/biodoc.txt b/Documentation/block/biodoc.txt index ecad6ee75705..6fab97ea7e6b 100644 --- a/Documentation/block/biodoc.txt +++ b/Documentation/block/biodoc.txt @@ -1040,23 +1040,21 @@ Front merges are handled by the binary trees in AS and deadline schedulers. iii. Plugging the queue to batch requests in anticipation of opportunities for merge/sort optimizations -This is just the same as in 2.4 so far, though per-device unplugging -support is anticipated for 2.5. Also with a priority-based i/o scheduler, -such decisions could be based on request priorities. - Plugging is an approach that the current i/o scheduling algorithm resorts to so that it collects up enough requests in the queue to be able to take advantage of the sorting/merging logic in the elevator. If the queue is empty when a request comes in, then it plugs the request queue -(sort of like plugging the bottom of a vessel to get fluid to build up) +(sort of like plugging the bath tub of a vessel to get fluid to build up) till it fills up with a few more requests, before starting to service the requests. This provides an opportunity to merge/sort the requests before passing them down to the device. There are various conditions when the queue is unplugged (to open up the flow again), either through a scheduled task or could be on demand. For example wait_on_buffer sets the unplugging going -(by running tq_disk) so the read gets satisfied soon. So in the read case, -the queue gets explicitly unplugged as part of waiting for completion, -in fact all queues get unplugged as a side-effect. +through sync_buffer() running blk_run_address_space(mapping). Or the caller +can do it explicity through blk_unplug(bdev). So in the read case, +the queue gets explicitly unplugged as part of waiting for completion on that +buffer. For page driven IO, the address space ->sync_page() takes care of +doing the blk_run_address_space(). Aside: This is kind of controversial territory, as it's not clear if plugging is @@ -1067,11 +1065,6 @@ Aside: multi-page bios being queued in one shot, we may not need to wait to merge a big request from the broken up pieces coming by. - Per-queue granularity unplugging (still a Todo) may help reduce some of the - concerns with just a single tq_disk flush approach. Something like - blk_kick_queue() to unplug a specific queue (right away ?) - or optionally, all queues, is in the plan. - 4.4 I/O contexts I/O contexts provide a dynamically allocated per process data area. They may be used in I/O schedulers, and in the block layer (could be used for IO statis, -- cgit v1.2.1 From 83b2086ce2a1458168dc8b9d624060b2d7a82d4c Mon Sep 17 00:00:00 2001 From: Justin Mattock Date: Tue, 14 Apr 2009 14:31:21 -0700 Subject: ALSA: add missing definitions(letters) to HD-Audio.txt impact: Add missing definitions(letters). Signed-off-by: Justin P. Mattock Signed-off-by: Takashi Iwai --- Documentation/sound/alsa/HD-Audio.txt | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'Documentation') diff --git a/Documentation/sound/alsa/HD-Audio.txt b/Documentation/sound/alsa/HD-Audio.txt index c5948f2f9a25..88b7433d2f11 100644 --- a/Documentation/sound/alsa/HD-Audio.txt +++ b/Documentation/sound/alsa/HD-Audio.txt @@ -169,7 +169,7 @@ PCI SSID look-up. What `model` option values are available depends on the codec chip. Check your codec chip from the codec proc file (see "Codec Proc-File" section below). It will show the vendor/product name of your codec -chip. Then, see Documentation/sound/alsa/HD-Audio-Modelstxt file, +chip. Then, see Documentation/sound/alsa/HD-Audio-Models.txt file, the section of HD-audio driver. You can find a list of codecs and `model` options belonging to each codec. For example, for Realtek ALC262 codec chip, pass `model=ultra` for devices that are compatible @@ -177,7 +177,7 @@ with Samsung Q1 Ultra. Thus, the first thing you can do for any brand-new, unsupported and non-working HD-audio hardware is to check HD-audio codec and several -different `model` option values. If you have a luck, some of them +different `model` option values. If you have any luck, some of them might suit with your device well. Some codecs such as ALC880 have a special model option `model=test`. -- cgit v1.2.1 From 13977091a988fb0d21821c2221ddc920eba36b79 Mon Sep 17 00:00:00 2001 From: Magnus Damm Date: Mon, 30 Mar 2009 14:37:25 -0700 Subject: Driver Core: early platform driver V3 of the early platform driver implementation. Platform drivers are great for embedded platforms because we can separate driver configuration from the actual driver. So base addresses, interrupts and other configuration can be kept with the processor or board code, and the platform driver can be reused by many different platforms. For early devices we have nothing today. For instance, to configure early timers and early serial ports we cannot use platform devices. This because the setup order during boot. Timers are needed before the platform driver core code is available. The same goes for early printk support. Early in this case means before initcalls. These early drivers today have their configuration either hard coded or they receive it using some special configuration method. This is working quite well, but if we want to support both regular kernel modules and early devices then we need to have two ways of configuring the same driver. A single way would be better. The early platform driver patch is basically a set of functions that allow drivers to register themselves and architecture code to locate them and probe. Registration happens through early_param(). The time for the probe is decided by the architecture code. See Documentation/driver-model/platform.txt for more details. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Magnus Damm Cc: Paul Mundt Cc: Kay Sievers Cc: David Brownell Cc: Tejun Heo Signed-off-by: Andrew Morton Signed-off-by: Greg Kroah-Hartman --- Documentation/driver-model/platform.txt | 59 +++++++++++++++++++++++++++++++++ 1 file changed, 59 insertions(+) (limited to 'Documentation') diff --git a/Documentation/driver-model/platform.txt b/Documentation/driver-model/platform.txt index 83009fdcbbc8..2e2c2ea90ceb 100644 --- a/Documentation/driver-model/platform.txt +++ b/Documentation/driver-model/platform.txt @@ -169,3 +169,62 @@ three different ways to find such a match: be probed later if another device registers. (Which is OK, since this interface is only for use with non-hotpluggable devices.) + +Early Platform Devices and Drivers +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +The early platform interfaces provide platform data to platform device +drivers early on during the system boot. The code is built on top of the +early_param() command line parsing and can be executed very early on. + +Example: "earlyprintk" class early serial console in 6 steps + +1. Registering early platform device data +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +The architecture code registers platform device data using the function +early_platform_add_devices(). In the case of early serial console this +should be hardware configuration for the serial port. Devices registered +at this point will later on be matched against early platform drivers. + +2. Parsing kernel command line +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +The architecture code calls parse_early_param() to parse the kernel +command line. This will execute all matching early_param() callbacks. +User specified early platform devices will be registered at this point. +For the early serial console case the user can specify port on the +kernel command line as "earlyprintk=serial.0" where "earlyprintk" is +the class string, "serial" is the name of the platfrom driver and +0 is the platform device id. If the id is -1 then the dot and the +id can be omitted. + +3. Installing early platform drivers belonging to a certain class +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +The architecture code may optionally force registration of all early +platform drivers belonging to a certain class using the function +early_platform_driver_register_all(). User specified devices from +step 2 have priority over these. This step is omitted by the serial +driver example since the early serial driver code should be disabled +unless the user has specified port on the kernel command line. + +4. Early platform driver registration +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Compiled-in platform drivers making use of early_platform_init() are +automatically registered during step 2 or 3. The serial driver example +should use early_platform_init("earlyprintk", &platform_driver). + +5. Probing of early platform drivers belonging to a certain class +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +The architecture code calls early_platform_driver_probe() to match +registered early platform devices associated with a certain class with +registered early platform drivers. Matched devices will get probed(). +This step can be executed at any point during the early boot. As soon +as possible may be good for the serial port case. + +6. Inside the early platform driver probe() +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +The driver code needs to take special care during early boot, especially +when it comes to memory allocation and interrupt registration. The code +in the probe() function can use is_early_platform_device() to check if +it is called at early platform device or at the regular platform device +time. The early serial driver performs register_console() at this point. + +For further information, see . -- cgit v1.2.1 From e0ca87391694dfacd01465d5c01c579c3b8b63e0 Mon Sep 17 00:00:00 2001 From: Evgeniy Polyakov Date: Fri, 27 Mar 2009 15:04:29 +0300 Subject: Staging: Pohmelfs: Added IO permissions and priorities. Signed-off-by: Evgeniy Polyakov Signed-off-by: Greg Kroah-Hartman --- Documentation/filesystems/pohmelfs/design_notes.txt | 5 +++-- Documentation/filesystems/pohmelfs/info.txt | 21 +++++++++++++++++---- 2 files changed, 20 insertions(+), 6 deletions(-) (limited to 'Documentation') diff --git a/Documentation/filesystems/pohmelfs/design_notes.txt b/Documentation/filesystems/pohmelfs/design_notes.txt index 6d6db60d567d..dcf833587162 100644 --- a/Documentation/filesystems/pohmelfs/design_notes.txt +++ b/Documentation/filesystems/pohmelfs/design_notes.txt @@ -56,9 +56,10 @@ workloads and can fully utilize the bandwidth to the servers when doing bulk data transfers. POHMELFS clients operate with a working set of servers and are capable of balancing read-only -operations (like lookups or directory listings) between them. +operations (like lookups or directory listings) between them according to IO priorities. Administrators can add or remove servers from the set at run-time via special commands (described -in Documentation/pohmelfs/info.txt file). Writes are replicated to all servers. +in Documentation/pohmelfs/info.txt file). Writes are replicated to all servers, which are connected +with write permission turned on. IO priority and permissions can be changed in run-time. POHMELFS is capable of full data channel encryption and/or strong crypto hashing. One can select any kernel supported cipher, encryption mode, hash type and operation mode diff --git a/Documentation/filesystems/pohmelfs/info.txt b/Documentation/filesystems/pohmelfs/info.txt index 4e3d50157083..db2e41393626 100644 --- a/Documentation/filesystems/pohmelfs/info.txt +++ b/Documentation/filesystems/pohmelfs/info.txt @@ -1,6 +1,8 @@ POHMELFS usage information. -Mount options: +Mount options. +All but index, number of crypto threads and maximum IO size can changed via remount. + idx=%u Each mountpoint is associated with a special index via this option. Administrator can add or remove servers from the given index, so all mounts, @@ -52,16 +54,27 @@ mcache_timeout=%u Usage examples. -Add (or remove if it already exists) server server1.net:1025 into the working set with index $idx +Add server server1.net:1025 into the working set with index $idx with appropriate hash algorithm and key file and cipher algorithm, mode and key file: -$cfg -a server1.net -p 1025 -i $idx -K $hash_key -k $cipher_key +$cfg A add -a server1.net -p 1025 -i $idx -K $hash_key -k $cipher_key Mount filesystem with given index $idx to /mnt mountpoint. Client will connect to all servers specified in the working set via previous command: mount -t pohmel -o idx=$idx q /mnt -One can add or remove servers from working set after mounting too. +Change permissions to read-only (-I 1 option, '-I 2' - write-only, 3 - rw): +$cfg A modify -a server1.net -p 1025 -i $idx -I 1 + +Change IO priority to 123 (node with the highest priority gets read requests). +$cfg A modify -a server1.net -p 1025 -i $idx -P 123 +One can check currect status of all connections in the mountstats file: +# cat /proc/$PID/mountstats +... +device none mounted on /mnt with fstype pohmel +idx addr(:port) socket_type protocol active priority permissions +0 server1.net:1026 1 6 1 250 1 +0 server2.net:1025 1 6 1 123 3 Server installation. -- cgit v1.2.1 From 4af94f39004a0d1a074e7573457e238a29557848 Mon Sep 17 00:00:00 2001 From: Randy Dunlap Date: Fri, 17 Apr 2009 18:30:28 -0700 Subject: doc: fix kernel-parameters.txt mistaken deletions Re-add missing kernel-parameters documentation that was accidentally deleted in commit 0cb55ad2. Thanks to Ingo and Weidong Han for the heads-up on this. Signed-off-by: Randy Dunlap cc: Ingo Molnar cc: Len Brown Signed-off-by: Linus Torvalds --- Documentation/kernel-parameters.txt | 38 +++++++++++++++++++++++++++++++++++++ 1 file changed, 38 insertions(+) (limited to 'Documentation') diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index a19f021f081a..600cdd72900c 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -231,6 +231,35 @@ and is between 256 and 4096 characters. It is defined in the file power state again in power transition. 1 : disable the power state check + acpi_sci= [HW,ACPI] ACPI System Control Interrupt trigger mode + Format: { level | edge | high | low } + + acpi_serialize [HW,ACPI] force serialization of AML methods + + acpi_skip_timer_override [HW,ACPI] + Recognize and ignore IRQ0/pin2 Interrupt Override. + For broken nForce2 BIOS resulting in XT-PIC timer. + + acpi_sleep= [HW,ACPI] Sleep options + Format: { s3_bios, s3_mode, s3_beep, s4_nohwsig, + old_ordering, s4_nonvs } + See Documentation/power/video.txt for information on + s3_bios and s3_mode. + s3_beep is for debugging; it makes the PC's speaker beep + as soon as the kernel's real-mode entry point is called. + s4_nohwsig prevents ACPI hardware signature from being + used during resume from hibernation. + old_ordering causes the ACPI 1.0 ordering of the _PTS + control method, with respect to putting devices into + low power states, to be enforced (the ACPI 2.0 ordering + of _PTS is used by default). + s4_nonvs prevents the kernel from saving/restoring the + ACPI NVS memory during hibernation. + + acpi_use_timer_override [HW,ACPI] + Use timer override. For some broken Nvidia NF5 boards + that require a timer override, but don't have HPET + acpi_enforce_resources= [ACPI] { strict | lax | no } Check for resource conflicts between native drivers @@ -250,6 +279,9 @@ and is between 256 and 4096 characters. It is defined in the file ad1848= [HW,OSS] Format: ,,,, + add_efi_memmap [EFI; X86] Include EFI memory map in + kernel's map of available physical RAM. + advansys= [HW,SCSI] See header of drivers/scsi/advansys.c. @@ -1838,6 +1870,12 @@ and is between 256 and 4096 characters. It is defined in the file autoconfiguration. Ranges are in pairs (memory base and size). + ports= [IP_VS_FTP] IPVS ftp helper module + Default is 21. + Up to 8 (IP_VS_APP_MAX_PORTS) ports + may be specified. + Format: ,.... + print-fatal-signals= [KNL] debug: print fatal signals print-fatal-signals=1: print segfault info to -- cgit v1.2.1 From 720097d895956c0bf15b8440f7845159a04b74da Mon Sep 17 00:00:00 2001 From: Sam Ravnborg Date: Sun, 19 Apr 2009 11:04:26 +0200 Subject: kbuild: introduce subdir-ccflags-y Following patch introduce support for setting options to gcc that has effect for current directory and all subdirectories. The typical use case are an architecture or a subsystem that decide to cover all files with -Werror. Today alpha, mips and sparc uses -Werror in almost all their Makefile- with subdir-ccflag-y it is now simpler to do so as only the top-level directories needs to be covered. Likewise if we decide to cover a full subsystem such as net/ with -Werror this is done by adding a single line to net/Makefile. Signed-off-by: Sam Ravnborg Cc: Ingo Molnar Cc: "H. Peter Anvin" Cc: Thomas Gleixner --- Documentation/kbuild/makefiles.txt | 10 ++++++++++ 1 file changed, 10 insertions(+) (limited to 'Documentation') diff --git a/Documentation/kbuild/makefiles.txt b/Documentation/kbuild/makefiles.txt index d4b05672f9f7..d76cfd8712e1 100644 --- a/Documentation/kbuild/makefiles.txt +++ b/Documentation/kbuild/makefiles.txt @@ -316,6 +316,16 @@ more details, with real examples. #arch/m68k/fpsp040/Makefile ldflags-y := -x + subdir-ccflags-y, subdir-asflags-y + The two flags listed above are similar to ccflags-y and as-falgs-y. + The difference is that the subdir- variants has effect for the kbuild + file where tey are present and all subdirectories. + Options specified using subdir-* are added to the commandline before + the options specified using the non-subdir variants. + + Example: + subdir-ccflags-y := -Werror + CFLAGS_$@, AFLAGS_$@ CFLAGS_$@ and AFLAGS_$@ only apply to commands in current -- cgit v1.2.1 From 9536c26b31ae34ba6371a1b8f406028e9756f913 Mon Sep 17 00:00:00 2001 From: Matt Kraai Date: Thu, 16 Apr 2009 23:46:20 -0700 Subject: lguest: tell git to ignore Documentation/lguest/lguest This is the example lguest launcher binary. Signed-off-by: Matt Kraai Signed-off-by: Rusty Russell --- Documentation/lguest/.gitignore | 1 + 1 file changed, 1 insertion(+) create mode 100644 Documentation/lguest/.gitignore (limited to 'Documentation') diff --git a/Documentation/lguest/.gitignore b/Documentation/lguest/.gitignore new file mode 100644 index 000000000000..115587fd5f65 --- /dev/null +++ b/Documentation/lguest/.gitignore @@ -0,0 +1 @@ +lguest -- cgit v1.2.1 From 38cfe968040250b89c3554a17219a9fda45b9665 Mon Sep 17 00:00:00 2001 From: Rusty Russell Date: Sun, 19 Apr 2009 23:14:02 -0600 Subject: lguest: document 32-bit and PAE requirements Robert noted that we don't actually document that lguest is 32-bit only, nor that PAE must be off (CONFIG_PAE is now prompted for if HIGHMEM is set to "off). Signed-off-by: Rusty Russell Cc: lguest@ozlabs.org Cc: "Robert P. J. Day" --- Documentation/lguest/lguest.txt | 11 ++++++----- 1 file changed, 6 insertions(+), 5 deletions(-) (limited to 'Documentation') diff --git a/Documentation/lguest/lguest.txt b/Documentation/lguest/lguest.txt index 29510dc51510..28c747362f95 100644 --- a/Documentation/lguest/lguest.txt +++ b/Documentation/lguest/lguest.txt @@ -3,11 +3,11 @@ /, /` - or, A Young Coder's Illustrated Hypervisor \\"--\\ http://lguest.ozlabs.org -Lguest is designed to be a minimal hypervisor for the Linux kernel, for -Linux developers and users to experiment with virtualization with the -minimum of complexity. Nonetheless, it should have sufficient -features to make it useful for specific tasks, and, of course, you are -encouraged to fork and enhance it (see drivers/lguest/README). +Lguest is designed to be a minimal 32-bit x86 hypervisor for the Linux kernel, +for Linux developers and users to experiment with virtualization with the +minimum of complexity. Nonetheless, it should have sufficient features to +make it useful for specific tasks, and, of course, you are encouraged to fork +and enhance it (see drivers/lguest/README). Features: @@ -37,6 +37,7 @@ Running Lguest: "Paravirtualized guest support" = Y "Lguest guest support" = Y "High Memory Support" = off/4GB + "PAE (Physical Address Extension) Support" = N "Alignment value to which kernel should be aligned" = 0x100000 (CONFIG_PARAVIRT=y, CONFIG_LGUEST_GUEST=y, CONFIG_HIGHMEM64G=n and CONFIG_PHYSICAL_ALIGN=0x100000) -- cgit v1.2.1