summaryrefslogtreecommitdiffstats
path: root/include/linux/key.h
Commit message (Collapse)AuthorAgeFilesLines
* CRED: Make execve() take advantage of copy-on-write credentialsDavid Howells2008-11-141-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
* CRED: Inaugurate COW credentialsDavid Howells2008-11-141-18/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
* CRED: Separate per-task-group keyrings from signal_structDavid Howells2008-11-141-6/+2
| | | | | | | | | Separate per-task-group keyrings from signal_struct and dangle their anchor from the cred struct rather than the signal_struct. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
* KEYS: Alter use of key instantiation link-to-keyring argumentDavid Howells2008-11-141-8/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Alter the use of the key instantiation and negation functions' link-to-keyring arguments. Currently this specifies a keyring in the target process to link the key into, creating the keyring if it doesn't exist. This, however, can be a problem for copy-on-write credentials as it means that the instantiating process can alter the credentials of the requesting process. This patch alters the behaviour such that: (1) If keyctl_instantiate_key() or keyctl_negate_key() are given a specific keyring by ID (ringid >= 0), then that keyring will be used. (2) If keyctl_instantiate_key() or keyctl_negate_key() are given one of the special constants that refer to the requesting process's keyrings (KEY_SPEC_*_KEYRING, all <= 0), then: (a) If sys_request_key() was given a keyring to use (destringid) then the key will be attached to that keyring. (b) If sys_request_key() was given a NULL keyring, then the key being instantiated will be attached to the default keyring as set by keyctl_set_reqkey_keyring(). (3) No extra link will be made. Decision point (1) follows current behaviour, and allows those instantiators who've searched for a specifically named keyring in the requestor's keyring so as to partition the keys by type to still have their named keyrings. Decision point (2) allows the requestor to make sure that the key or keys that get produced by request_key() go where they want, whilst allowing the instantiator to request that the key is retained. This is mainly useful for situations where the instantiator makes a secondary request, the key for which should be retained by the initial requestor: +-----------+ +--------------+ +--------------+ | | | | | | | Requestor |------->| Instantiator |------->| Instantiator | | | | | | | +-----------+ +--------------+ +--------------+ request_key() request_key() This might be useful, for example, in Kerberos, where the requestor requests a ticket, and then the ticket instantiator requests the TGT, which someone else then has to go and fetch. The TGT, however, should be retained in the keyrings of the requestor, not the first instantiator. To make this explict an extra special keyring constant is also added. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
* add key_revoke() dummy for KEYS=nAdrian Bunk2008-10-121-0/+1
| | | | | | | | | | | | | | | This fixes the following build error with CONFIG_KEYS=n, caused by commit dfd15c46a6c2cafb006183c0c14f07e59eee4ac0 ("cifs: explicitly revoke SPNEGO key after session setup"): CC [M] fs/cifs/sess.o fs/cifs/sess.c: In function 'CIFS_SessSetup': fs/cifs/sess.c:628: error: implicit declaration of function 'key_revoke' make[3]: *** [fs/cifs/sess.o] Error 1 Signed-off-by: Adrian Bunk <bunk@kernel.org> Acked-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* keys: make key_serial() a function if CONFIG_KEYS=yDavid Howells2008-04-291-1/+4
| | | | | | | | | | Make key_serial() an inline function rather than a macro if CONFIG_KEYS=y. This prevents double evaluation of the key pointer and also provides better type checking. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* keys: make the keyring quotas controllable through /proc/sysDavid Howells2008-04-291-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Make the keyring quotas controllable through /proc/sys files: (*) /proc/sys/kernel/keys/root_maxkeys /proc/sys/kernel/keys/root_maxbytes Maximum number of keys that root may have and the maximum total number of bytes of data that root may have stored in those keys. (*) /proc/sys/kernel/keys/maxkeys /proc/sys/kernel/keys/maxbytes Maximum number of keys that each non-root user may have and the maximum total number of bytes of data that each of those users may have stored in their keys. Also increase the quotas as a number of people have been complaining that it's not big enough. I'm not sure that it's big enough now either, but on the other hand, it can now be set in /etc/sysctl.conf. Signed-off-by: David Howells <dhowells@redhat.com> Cc: <kwc@citi.umich.edu> Cc: <arunsr@cse.iitk.ac.in> Cc: <dwalsh@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* keys: don't generate user and user session keyrings unless they're accessedDavid Howells2008-04-291-8/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | Don't generate the per-UID user and user session keyrings unless they're explicitly accessed. This solves a problem during a login process whereby set*uid() is called before the SELinux PAM module, resulting in the per-UID keyrings having the wrong security labels. This also cures the problem of multiple per-UID keyrings sometimes appearing due to PAM modules (including pam_keyinit) setuiding and causing user_structs to come into and go out of existence whilst the session keyring pins the user keyring. This is achieved by first searching for extant per-UID keyrings before inventing new ones. The serial bound argument is also dropped from find_keyring_by_name() as it's not currently made use of (setting it to 0 disables the feature). Signed-off-by: David Howells <dhowells@redhat.com> Cc: <kwc@citi.umich.edu> Cc: <arunsr@cse.iitk.ac.in> Cc: <dwalsh@redhat.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* keys: allow clients to set key perms in key_create_or_update()Arun Raghavan2008-04-291-0/+3
| | | | | | | | | | | | | | | The key_create_or_update() function provided by the keyring code has a default set of permissions that are always applied to the key when created. This might not be desirable to all clients. Here's a patch that adds a "perm" parameter to the function to address this, which can be set to KEY_PERM_UNDEF to revert to the current behaviour. Signed-off-by: Arun Raghavan <arunsr@cse.iitk.ac.in> Signed-off-by: David Howells <dhowells@redhat.com> Cc: Satyam Sharma <ssatyam@cse.iitk.ac.in> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* keys: allow the callout data to be passed as a blob rather than a stringDavid Howells2008-04-291-3/+6
| | | | | | | | | | | | | | | | | | | | | Allow the callout data to be passed as a blob rather than a string for internal kernel services that call any request_key_*() interface other than request_key(). request_key() itself still takes a NUL-terminated string. The functions that change are: request_key_with_auxdata() request_key_async() request_key_async_with_auxdata() Signed-off-by: David Howells <dhowells@redhat.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Kevin Coffman <kwc@citi.umich.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* KEYS: fix macroSebastian Siewior2008-01-081-1/+1
| | | | | | | | | | | | Commit 664cceb0093b755739e56572b836a99104ee8a75 changed the parameters of the function make_key_ref(). The macros that are used in case CONFIG_KEY is not defined did not change. Cc: David Howells <dhowells@redhat.com> Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* KEYS: Make request_key() and co fundamentally asynchronousDavid Howells2007-10-171-86/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make request_key() and co fundamentally asynchronous to make it easier for NFS to make use of them. There are now accessor functions that do asynchronous constructions, a wait function to wait for construction to complete, and a completion function for the key type to indicate completion of construction. Note that the construction queue is now gone. Instead, keys under construction are linked in to the appropriate keyring in advance, and that anyone encountering one must wait for it to be complete before they can use it. This is done automatically for userspace. The following auxiliary changes are also made: (1) Key type implementation stuff is split from linux/key.h into linux/key-type.h. (2) AF_RXRPC provides a way to allocate null rxrpc-type keys so that AFS does not need to call key_instantiate_and_link() directly. (3) Adjust the debugging macros so that they're -Wformat checked even if they are disabled, and make it so they can be enabled simply by defining __KDEBUG to be consistent with other code of mine. (3) Documentation. [alan@lxorguk.ukuu.org.uk: keys: missing word in documentation] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [AF_RXRPC]: Key facility changes for AF_RXRPCDavid Howells2007-04-261-0/+2
| | | | | | | | | | | Export the keyring key type definition and document its availability. Add alternative types into the key's type_data union to make it more useful. Not all users necessarily want to use it as a list_head (AF_RXRPC doesn't, for example), so make it clear that it can be used in other ways. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PATCH] Keys: Allow in-kernel key requestor to pass auxiliary data to upcallerDavid Howells2006-06-291-1/+7
| | | | | | | | | | | | | | | | The proposed NFS key type uses its own method of passing key requests to userspace (upcalling) rather than invoking /sbin/request-key. This is because the responsible userspace daemon should already be running and will be contacted through rpc_pipefs. This patch permits the NFS filesystem to pass auxiliary data to the upcall operation (struct key_type::request_key) so that the upcaller can use a pre-existing communications channel more easily. Signed-off-by: David Howells <dhowells@redhat.com> Acked-By: Kevin Coffman <kwc@citi.umich.edu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] keys: sort out key quota systemDavid Howells2006-06-261-3/+10
| | | | | | | | | | | | | Add the ability for key creation to overrun the user's quota in some circumstances - notably when a session keyring is created and assigned to a process that didn't previously have one. This means it's still possible to log in, should PAM require the creation of a new session keyring, and fix an overburdened key quota. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Keys: Fix race between two instantiators of a keyDavid Howells2006-06-221-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a revocation notification method to the key type and calls it whilst the key's semaphore is still write-locked after setting the revocation flag. The patch then uses this to maintain a reference on the task_struct of the process that calls request_key() for as long as the authorisation key remains unrevoked. This fixes a potential race between two processes both of which have assumed the authority to instantiate a key (one may have forked the other for example). The problem is that there's no locking around the check for revocation of the auth key and the use of the task_struct it points to, nor does the auth key keep a reference on the task_struct. Access to the "context" pointer in the auth key must thenceforth be done with the auth key semaphore held. The revocation method is called with the target key semaphore held write-locked and the search of the context process's keyrings is done with the auth key semaphore read-locked. The check for the revocation state of the auth key just prior to searching it is done after the auth key is read-locked for the search. This ensures that the auth key can't be revoked between the check and the search. The revocation notification method is added so that the context task_struct can be released as soon as instantiation happens rather than waiting for the auth key to be destroyed, thus avoiding the unnecessary pinning of the requesting process. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] selinux: add hooks for key subsystemMichael LeMay2006-06-221-5/+13
| | | | | | | | | | | | | | | | | | | Introduce SELinux hooks to support the access key retention subsystem within the kernel. Incorporate new flask headers from a modified version of the SELinux reference policy, with support for the new security class representing retained keys. Extend the "key_alloc" security hook with a task parameter representing the intended ownership context for the key being allocated. Attach security information to root's default keyrings within the SELinux initialization routine. Has passed David's testsuite. Signed-off-by: Michael LeMay <mdlemay@epoch.ncsc.mil> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org> Acked-by: Chris Wright <chrisw@sous-sol.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] keys: Permit running process to instantiate keysDavid Howells2006-01-081-0/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make it possible for a running process (such as gssapid) to be able to instantiate a key, as was requested by Trond Myklebust for NFS4. The patch makes the following changes: (1) A new, optional key type method has been added. This permits a key type to intercept requests at the point /sbin/request-key is about to be spawned and do something else with them - passing them over the rpc_pipefs files or netlink sockets for instance. The uninstantiated key, the authorisation key and the intended operation name are passed to the method. (2) The callout_info is no longer passed as an argument to /sbin/request-key to prevent unauthorised viewing of this data using ps or by looking in /proc/pid/cmdline. This means that the old /sbin/request-key program will not work with the patched kernel as it will expect to see an extra argument that is no longer there. A revised keyutils package will be made available tomorrow. (3) The callout_info is now attached to the authorisation key. Reading this key will retrieve the information. (4) A new field has been added to the task_struct. This holds the authorisation key currently active for a thread. Searches now look here for the caller's set of keys rather than looking for an auth key in the lowest level of the session keyring. This permits a thread to be servicing multiple requests at once and to switch between them. Note that this is per-thread, not per-process, and so is usable in multithreaded programs. The setting of this field is inherited across fork and exec. (5) A new keyctl function (KEYCTL_ASSUME_AUTHORITY) has been added that permits a thread to assume the authority to deal with an uninstantiated key. Assumption is only permitted if the authorisation key associated with the uninstantiated key is somewhere in the thread's keyrings. This function can also clear the assumption. (6) A new magic key specifier has been added to refer to the currently assumed authorisation key (KEY_SPEC_REQKEY_AUTH_KEY). (7) Instantiation will only proceed if the appropriate authorisation key is assumed first. The assumed authorisation key is discarded if instantiation is successful. (8) key_validate() is moved from the file of request_key functions to the file of permissions functions. (9) The documentation is updated. From: <Valdis.Kletnieks@vt.edu> Build fix. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Alexander Zangerl <az@bond.edu.au> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Keys: Remove key duplicationDavid Howells2006-01-061-8/+0
| | | | | | | | | Remove the key duplication stuff since there's nothing that uses it, no way to get at it and it's awkward to deal with for LSM purposes. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Keys: Add LSM hooks for key management [try #3]David Howells2005-10-301-4/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The attached patch adds LSM hooks for key management facilities. The notable changes are: (1) The key struct now supports a security pointer for the use of security modules. This will permit key labelling and restrictions on which programs may access a key. (2) Security modules get a chance to note (or abort) the allocation of a key. (3) The key permission checking can now be enhanced by the security modules; the permissions check consults LSM if all other checks bear out. (4) The key permissions checking functions now return an error code rather than a boolean value. (5) An extra permission has been added to govern the modification of attributes (UID, GID, permissions). Note that there isn't an LSM hook specifically for each keyctl() operation, but rather the permissions hook allows control of individual operations based on the permission request bits. Key management access control through LSM is enabled by automatically if both CONFIG_KEYS and CONFIG_SECURITY are enabled. This should be applied on top of the patch ensubjected: [PATCH] Keys: Possessor permissions should be additive Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Chris Wright <chrisw@osdl.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Keys: Add possessor permissions to keys [try #3]David Howells2005-09-281-15/+63
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The attached patch adds extra permission grants to keys for the possessor of a key in addition to the owner, group and other permissions bits. This makes SUID binaries easier to support without going as far as labelling keys and key targets using the LSM facilities. This patch adds a second "pointer type" to key structures (struct key_ref *) that can have the bottom bit of the address set to indicate the possession of a key. This is propagated through searches from the keyring to the discovered key. It has been made a separate type so that the compiler can spot attempts to dereference a potentially incorrect pointer. The "possession" attribute can't be attached to a key structure directly as it's not an intrinsic property of a key. Pointers to keys have been replaced with struct key_ref *'s wherever possession information needs to be passed through. This does assume that the bottom bit of the pointer will always be zero on return from kmem_cache_alloc(). The key reference type has been made into a typedef so that at least it can be located in the sources, even though it's basically a pointer to an undefined type. I've also renamed the accessor functions to be more useful, and all reference variables should now end in "_ref". Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Keys: Make request-key create an authorisation keyDavid Howells2005-06-241-5/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The attached patch makes the following changes: (1) There's a new special key type called ".request_key_auth". This is an authorisation key for when one process requests a key and another process is started to construct it. This type of key cannot be created by the user; nor can it be requested by kernel services. Authorisation keys hold two references: (a) Each refers to a key being constructed. When the key being constructed is instantiated the authorisation key is revoked, rendering it of no further use. (b) The "authorising process". This is either: (i) the process that called request_key(), or: (ii) if the process that called request_key() itself had an authorisation key in its session keyring, then the authorising process referred to by that authorisation key will also be referred to by the new authorisation key. This means that the process that initiated a chain of key requests will authorise the lot of them, and will, by default, wind up with the keys obtained from them in its keyrings. (2) request_key() creates an authorisation key which is then passed to /sbin/request-key in as part of a new session keyring. (3) When request_key() is searching for a key to hand back to the caller, if it comes across an authorisation key in the session keyring of the calling process, it will also search the keyrings of the process specified therein and it will use the specified process's credentials (fsuid, fsgid, groups) to do that rather than the calling process's credentials. This allows a process started by /sbin/request-key to find keys belonging to the authorising process. (4) A key can be read, even if the process executing KEYCTL_READ doesn't have direct read or search permission if that key is contained within the keyrings of a process specified by an authorisation key found within the calling process's session keyring, and is searchable using the credentials of the authorising process. This allows a process started by /sbin/request-key to read keys belonging to the authorising process. (5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or KEYCTL_NEGATE will specify a keyring of the authorising process, rather than the process doing the instantiation. (6) One of the process keyrings can be nominated as the default to which request_key() should attach new keys if not otherwise specified. This is done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_* constants. The current setting can also be read using this call. (7) request_key() is partially interruptible. If it is waiting for another process to finish constructing a key, it can be interrupted. This permits a request-key cycle to be broken without recourse to rebooting. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-Off-By: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Keys: Pass session keyring to call_usermodehelper()David Howells2005-06-241-1/+9
| | | | | | | | | | | The attached patch makes it possible to pass a session keyring through to the process spawned by call_usermodehelper(). This allows patch 3/3 to pass an authorisation key through to /sbin/request-key, thus permitting better access controls when doing just-in-time key creation. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] keys: Discard key spinlock and use RCU for key payloadDavid Howells2005-06-241-10/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The attached patch changes the key implementation in a number of ways: (1) It removes the spinlock from the key structure. (2) The key flags are now accessed using atomic bitops instead of write-locking the key spinlock and using C bitwise operators. The three instantiation flags are dealt with with the construction semaphore held during the request_key/instantiate/negate sequence, thus rendering the spinlock superfluous. The key flags are also now bit numbers not bit masks. (3) The key payload is now accessed using RCU. This permits the recursive keyring search algorithm to be simplified greatly since no locks need be taken other than the usual RCU preemption disablement. Searching now does not require any locks or semaphores to be held; merely that the starting keyring be pinned. (4) The keyring payload now includes an RCU head so that it can be disposed of by call_rcu(). This requires that the payload be copied on unlink to prevent introducing races in copy-down vs search-up. (5) The user key payload is now a structure with the data following it. It includes an RCU head like the keyring payload and for the same reason. It also contains a data length because the data length in the key may be changed on another CPU whilst an RCU protected read is in progress on the payload. This would then see the supposed RCU payload and the on-key data length getting out of sync. I'm tempted to drop the key's datalen entirely, except that it's used in conjunction with quota management and so is a little tricky to get rid of. (6) Update the keys documentation. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Linux-2.6.12-rc2Linus Torvalds2005-04-161-0/+291
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
OpenPOWER on IntegriCloud