summaryrefslogtreecommitdiffstats
path: root/fs/xfs/libxfs/xfs_inode_fork.h
Commit message (Collapse)AuthorAgeFilesLines
* xfs: provide a centralized method for verifying inline fork dataDarrick J. Wong2018-01-081-0/+14
| | | | | | | | | | | | | Replace the current haphazard dir2 shortform verifier callsites with a centralized verifier function that can be called either with the default verifier functions or with a custom set. This helps us strengthen integrity checking while providing us with flexibility for repair tools. xfs_repair wants this to be able to supply its own verifier functions when trying to fix possibly corrupt metadata. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
* xfs: remove the nr_extents argument to xfs_iext_removeChristoph Hellwig2017-11-061-1/+1
| | | | | | | | | We only have two places that remove 2 extents at the same time, so unroll the loop there. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: remove the nr_extents argument to xfs_iext_insertChristoph Hellwig2017-11-061-1/+1
| | | | | | | | | We only have two places that insert 2 extents at the same time, so unroll the loop there. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: use a b+tree for the in-core extent listChristoph Hellwig2017-11-061-77/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Replace the current linear list and the indirection array for the in-core extent list with a b+tree to avoid the need for larger memory allocations for the indirection array when lots of extents are present. The current extent list implementations leads to heavy pressure on the memory allocator when modifying files with a high extent count, and can lead to high latencies because of that. The replacement is a b+tree with a few quirks. The leaf nodes directly store the extent record in two u64 values. The encoding is a little bit different from the existing in-core extent records so that the start offset and length which are required for lookups can be retreived with simple mask operations. The inner nodes store a 64-bit key containing the start offset in the first half of the node, and the pointers to the next lower level in the second half. In either case we walk the node from the beginninig to the end and do a linear search, as that is more efficient for the low number of cache lines touched during a search (2 for the inner nodes, 4 for the leaf nodes) than a binary search. We store termination markers (zero length for the leaf nodes, an otherwise impossible high bit for the inner nodes) to terminate the key list / records instead of storing a count to use the available cache lines as efficiently as possible. One quirk of the algorithm is that while we normally split a node half and half like usual btree implementations we just spill over entries added at the very end of the list to a new node on its own. This means we get a 100% fill grade for the common cases of bulk insertion when reading an inode into memory, and when only sequentially appending to a file. The downside is a slightly higher chance of splits on the first random insertions. Both insert and removal manually recurse into the lower levels, but the bulk deletion of the whole tree is still implemented as a recursive function call, although one limited by the overall depth and with very little stack usage in every iteration. For the first few extents we dynamically grow the list from a single extent to the next powers of two until we have a first full leaf block and that building the actual tree. The code started out based on the generic lib/btree.c code from Joern Engel based on earlier work from Peter Zijlstra, but has since been rewritten beyond recognition. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: remove support for inlining data/extents into the inode forkChristoph Hellwig2017-11-061-11/+0
| | | | | | | | | | | | | | Supporting a small bit of data inside the inode fork blows up the fork size a lot, removing the 32 bytes of inline data halves the effective size of the inode fork (and it still has a lot of unused padding left), and the performance of a single kmalloc doesn't show up compared to the size to read an inode or create one. It also simplifies the fork management code a lot. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: introduce the xfs_iext_cursor abstractionChristoph Hellwig2017-11-061-8/+79
| | | | | | | | | | | | | | | | | | Add a new xfs_iext_cursor structure to hide the direct extent map index manipulations. In addition to the existing lookup/get/insert/ remove and update routines new primitives to get the first and last extent cursor, as well as moving up and down by one extent are provided. Also new are convenience to increment/decrement the cursor and retreive the new extent, as well as to peek into the previous/next extent without updating the cursor and last but not least a macro to iterate over all extents in a fork. [darrick: rename for_each_iext to for_each_xfs_iext] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: add a new xfs_iext_lookup_extent_before helperChristoph Hellwig2017-10-261-0/+4
| | | | | | | | | | | | This helper looks up the last extent the covers space before the passed in block number. This is useful for truncate and similar operations that operate backwards over the extent list. For xfs_bunmapi it also is a slight optimization as we can return early if there are not extents at or below the end of the to be truncated range. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: remove if_rdevChristoph Hellwig2017-10-261-1/+0
| | | | | | | | | We can simply use the i_rdev field in the Linux inode and just convert to and from the XFS dev_t when reading or logging/writing the inode. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: remove the never fully implemented UUID fork formatChristoph Hellwig2017-10-261-1/+0
| | | | | | | | | Remove the dead code dealing with the UUID fork format that was never implemented in Linux (and neither in IRIX as far as I know). Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: move pre/post-bmap tracing into xfs_iext_update_extentChristoph Hellwig2017-10-261-2/+2
| | | | | | | | | | | | | xfs_iext_update_extent already has basically all the information needed to centralize the bmap pre/post tracing. We just need to pass inode + bmap state instead of the inode fork pointer to get all trace annotations. In addition to covering all the existing trace points this gives us tracing coverage for the extent shifting operations for free. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: add a xfs_iext_update_extent helperChristoph Hellwig2017-09-011-0/+2
| | | | | | | | | | | | | | This helper is used to update an extent record based on the extent index, and can be used to provide a level of abstractions between callers that want to modify in-core extent records and the details of the extent list implementation. Also switch all users of the xfs_bmbt_set_all(xfs_iext_get_ext(...)) pattern to this new helper. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: rework the inline directory verifiersDarrick J. Wong2017-04-031-1/+1
| | | | | | | | | | | | | | | | | | | The inline directory verifiers should be called on the inode fork data, which means after iformat_local on the read side, and prior to ifork_flush on the write side. This makes the fork verifier more consistent with the way buffer verifiers work -- i.e. they will operate on the memory buffer that the code will be reading and writing directly. Furthermore, revise the verifier function to return -EFSCORRUPTED so that we don't flood the logs with corruption messages and assert notices. This has been a particular problem with xfs/348, which triggers the XFS_WANT_CORRUPTED_RETURN assertions, which halts the kernel when CONFIG_XFS_DEBUG=y. Disk corruption isn't supposed to do that, at least not in a verifier. Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
* xfs: verify inline directory data forksDarrick J. Wong2017-03-151-1/+1
| | | | | | | | | | | | | When we're reading or writing the data fork of an inline directory, check the contents to make sure we're not overflowing buffers or eating garbage data. xfs/348 corrupts an inline symlink into an inline directory, triggering a buffer overflow bug. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> --- v2: add more checks consistent with _dir2_sf_check and make the verifier usable from anywhere.
* xfs: new inode extent list lookup helpersChristoph Hellwig2016-11-241-0/+6
| | | | | | | | | | | | | | | | | | | | | xfs_iext_lookup_extent looks up a single extent at the passed in offset, and returns the extent covering the area, or the one behind it in case of a hole, as well as the index of the returned extent in arguments, as well as a simple bool as return value that is set to false if no extent could be found because the offset is behind EOF. It is a simpler replacement for xfs_bmap_search_extent that leaves looking up the rarely needed previous extent to the caller and has a nicer calling convention. xfs_iext_get_extent is a helper for iterating over the extent list, it takes an extent index as input, and returns the extent at that index in it's expanded form in an argument if it exists. The actual return value is a bool whether the index is valid or not. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: provide helper for counting extents from if_bytesEric Sandeen2016-11-081-0/+1
| | | | | | | | | | | | | | | | | The open-coded pattern: ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t) is all over the xfs code; provide a new helper xfs_iext_count(ifp) to count the number of inline extents in an inode fork. [dchinner: pick up several missed conversions] Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* xfs: introduce the CoW forkDarrick J. Wong2016-10-041-6/+22
| | | | | | | | | Introduce a new in-core fork for storing copy-on-write delalloc reservations and allocated extents that are in the process of being written out. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
* xfs: factor out a helper to initialize a local format inode forkChristoph Hellwig2016-04-061-0/+1
| | | | | | | | Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
* libxfs: move header filesDave Chinner2014-06-251-0/+171
Move all the header files that are shared with userspace into libxfs. This is done as one big chunk simpy to get it done quickly. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
OpenPOWER on IntegriCloud