1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
////////////////////////////////////////////////////////////////////////////////
///
/// @file tx.c
///
/// @project
///
/// @brief Network transmission routines
///
////////////////////////////////////////////////////////////////////////////////
///
////////////////////////////////////////////////////////////////////////////////
///
/// @copyright Copyright (c) 2019-2020, Evan Lojewski
/// @cond
///
/// All rights reserved.
///
/// Redistribution and use in source and binary forms, with or without
/// modification, are permitted provided that the following conditions are met:
/// 1. Redistributions of source code must retain the above copyright notice,
/// this list of conditions and the following disclaimer.
/// 2. Redistributions in binary form must reproduce the above copyright notice,
/// this list of conditions and the following disclaimer in the documentation
/// and/or other materials provided with the distribution.
/// 3. Neither the name of the copyright holder nor the
/// names of its contributors may be used to endorse or promote products
/// derived from this software without specific prior written permission.
///
////////////////////////////////////////////////////////////////////////////////
///
/// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
/// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
/// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
/// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
/// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
/// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
/// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
/// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
/// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
/// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
/// POSSIBILITY OF SUCH DAMAGE.
/// @endcond
////////////////////////////////////////////////////////////////////////////////
#include <APE_APE.h>
#include <APE_SHM.h>
#include <APE_TX_PORT0.h>
#include <Ethernet.h>
#include <Network.h>
#include <types.h>
#ifdef CXX_SIMULATOR
#include <bcm5719-endian.h>
#include <stdio.h>
#else
#include <printf.h>
/* ARM */
static inline uint32_t be32toh(uint32_t be32)
{
uint32_t he32 = ((be32 & 0xFF000000) >> 24) | ((be32 & 0x00FF0000) >> 8) | ((be32 & 0x0000FF00) << 8) | ((be32 & 0x000000FF) << 24);
return he32;
}
#endif
#define FIRST_FRAME_MAX ((TX_PORT_OUT_ALL_BLOCK_WORDS - TX_PORT_OUT_ALL_FIRST_PAYLOAD_WORD) * sizeof(uint32_t))
#define ADDITIONAL_FRAME_MAX ((TX_PORT_OUT_ALL_BLOCK_WORDS - TX_PORT_OUT_ALL_ADDITIONAL_PAYLOAD_WORD) * sizeof(uint32_t))
uint32_t Network_TX_numBlocksNeeded(uint32_t frame_size)
{
uint32_t blocks = 1;
if (frame_size > FIRST_FRAME_MAX)
{
frame_size -= FIRST_FRAME_MAX;
blocks += DIVIDE_RND_UP(frame_size, ADDITIONAL_FRAME_MAX);
}
return blocks;
}
int32_t __attribute__((noinline)) Network_TX_allocateBlock(NetworkPort_t *port)
{
int32_t block;
// Set the alloc bit.
RegAPETxToNetBufferAllocator_t alloc;
alloc.r32 = 0;
alloc.bits.RequestAllocation = 1;
*((RegAPETxToNetBufferAllocator_t *)port->tx_allocator) = alloc;
// Wait for state machine to finish
RegAPETxToNetBufferAllocator_t status;
do
{
status = *port->tx_allocator;
} while (APE_TX_TO_NET_BUFFER_ALLOCATOR_STATE_PROCESSING == status.bits.State);
if (APE_TX_TO_NET_BUFFER_ALLOCATOR_STATE_ALLOCATION_OK != status.bits.State)
{
block = -1;
printf("TX Alloc Error.\n");
}
else
{
block = status.bits.Index;
}
return block;
}
static uint32_t inline Network_TX_initFirstBlock(RegTX_PORTOut_t *block, uint32_t length, int32_t blocks, int32_t next_block, uint32_t *packet, bool big_endian)
{
network_control_t control;
int copy_length;
int i;
control.r32 = 0;
control.bits.next_block = next_block >= 0 ? next_block : 0;
control.bits.first = 1;
if (length > FIRST_FRAME_MAX)
{
copy_length = FIRST_FRAME_MAX;
control.bits.not_last = 1;
}
else
{
// Last.
copy_length = length;
control.bits.not_last = 0;
}
// block[1] = uninitialized;
block[2].r32 = 0;
block[TX_PORT_OUT_ALL_FRAME_LEN_WORD].r32 = length;
block[4].r32 = 0;
block[5].r32 = 0;
block[6].r32 = 0;
block[7].r32 = 0;
block[8].r32 = 0;
block[TX_PORT_OUT_ALL_NUM_BLOCKS_WORD].r32 = blocks;
// block[10] = uninitialized;
// block[11] = uninitialized;
// Copy Payload Data.
int num_words = (copy_length + sizeof(uint32_t) - 1) / sizeof(uint32_t);
for (i = 0; i < num_words; i++)
{
if (big_endian)
{
#if CXX_SIMULATOR
printf("1st[%d] = 0x%08X\n", i, be32toh(packet[i]));
#endif
block[TX_PORT_OUT_ALL_FIRST_PAYLOAD_WORD + i].r32 = be32toh(packet[i]);
}
else
{
#if CXX_SIMULATOR
printf("1LE[%d] = 0x%08X\n", i, (packet[i]));
#endif
block[TX_PORT_OUT_ALL_FIRST_PAYLOAD_WORD + i].r32 = (packet[i]);
}
}
// Pad if too small.
if (copy_length < ETHERNET_FRAME_MIN)
{
copy_length = ETHERNET_FRAME_MIN;
num_words = DIVIDE_RND_UP(copy_length, sizeof(uint32_t));
for (; i < num_words; i++)
{
// Pad remaining with 0's
block[TX_PORT_OUT_ALL_FIRST_PAYLOAD_WORD + i].r32 = 0;
}
}
control.bits.payload_length = copy_length;
block[TX_PORT_OUT_ALL_CONTROL_WORD].r32 = control.r32;
return copy_length;
}
static uint32_t inline Network_TX_initAdditionalBlock(RegTX_PORTOut_t *block, int32_t next_block, uint32_t length, uint32_t *packet, bool big_endian)
{
int i;
network_control_t control;
control.r32 = 0;
control.bits.first = 0;
control.bits.next_block = next_block;
if (length > ADDITIONAL_FRAME_MAX)
{
length = ADDITIONAL_FRAME_MAX;
control.bits.payload_length = ADDITIONAL_FRAME_MAX;
control.bits.not_last = 1;
}
else
{
// Last
control.bits.payload_length = length;
control.bits.not_last = 0;
}
// block[1] = uninitialized;
// Copy payload data.
int num_words = DIVIDE_RND_UP(length, sizeof(uint32_t));
for (i = 0; i < num_words; i++)
{
if (big_endian)
{
block[TX_PORT_OUT_ALL_ADDITIONAL_PAYLOAD_WORD + i].r32 = be32toh(packet[i]);
}
else
{
block[TX_PORT_OUT_ALL_ADDITIONAL_PAYLOAD_WORD + i].r32 = (packet[i]);
}
}
block[TX_PORT_OUT_ALL_CONTROL_WORD].r32 = control.r32;
return control.bits.payload_length;
}
static inline bool Network_TX_transmitPacket_internal(uint8_t *packet, uint32_t length, bool big_endian, NetworkPort_t *port)
{
if (!length)
{
return false;
}
uint32_t *packet_32 = (uint32_t *)packet;
uint32_t consumed = 0;
uint32_t blocks = Network_TX_numBlocksNeeded(length);
int total_blocks = blocks;
// First block
int32_t tail;
int32_t first = tail = Network_TX_allocateBlock(port);
if (first < 0)
{
// Error
return false;
}
int32_t next_block = -1;
if (blocks > 1)
{
next_block = Network_TX_allocateBlock(port);
if (next_block < 0)
{
// TODO: Cleanup allocated blocks.
return false;
}
}
RegTX_PORTOut_t *block = (RegTX_PORTOut_t *)&port->tx_port->Out[TX_PORT_OUT_ALL_BLOCK_WORDS * first];
consumed += Network_TX_initFirstBlock(block, length, blocks, next_block, &packet_32[consumed / 4], big_endian);
blocks -= 1;
while (blocks--)
{
block = (RegTX_PORTOut_t *)&port->tx_port->Out[TX_PORT_OUT_ALL_BLOCK_WORDS * next_block];
if (blocks)
{
next_block = Network_TX_allocateBlock(port);
consumed += Network_TX_initAdditionalBlock(block, next_block, length - consumed, &packet_32[consumed / 4], big_endian);
}
else
{
Network_TX_initAdditionalBlock(block, 0, length - consumed, &packet_32[consumed / 4], big_endian);
}
tail = next_block;
}
RegAPETxToNetDoorbell_t doorbell;
doorbell.r32 = 0;
doorbell.bits.Head = first;
doorbell.bits.Tail = tail;
doorbell.bits.Length = total_blocks;
*((RegAPETxToNetDoorbell_t *)port->tx_doorbell) = doorbell;
// Packet Transmitted.
++port->shm_channel->NcsiChannelNetworkTx.r32;
return true;
}
bool Network_TX_transmitBePacket(uint8_t *packet, uint32_t length, NetworkPort_t *port)
{
return Network_TX_transmitPacket_internal(packet, length, true, port);
}
bool Network_TX_transmitLePacket(uint8_t *packet, uint32_t length, NetworkPort_t *port)
{
return Network_TX_transmitPacket_internal(packet, length, false, port);
}
static uint32_t inline Network_TX_initFirstPassthroughBlock(RegTX_PORTOut_t *block, uint32_t length, int32_t blocks, int32_t next_block)
{
network_control_t control;
int copy_length;
int i;
control.r32 = 0;
control.bits.next_block = next_block >= 0 ? next_block : 0;
control.bits.first = 1;
if (length > FIRST_FRAME_MAX)
{
copy_length = FIRST_FRAME_MAX;
control.bits.not_last = 1;
}
else
{
// Last.
copy_length = length;
control.bits.not_last = 0;
}
// block[1] = uninitialized;
block[2].r32 = 0;
block[TX_PORT_OUT_ALL_FRAME_LEN_WORD].r32 = length;
block[4].r32 = 0;
block[5].r32 = 0;
block[6].r32 = 0;
block[7].r32 = 0;
block[8].r32 = 0;
block[TX_PORT_OUT_ALL_NUM_BLOCKS_WORD].r32 = blocks;
// block[10] = uninitialized;
// block[11] = uninitialized;
// Copy Payload Data.
int num_words = DIVIDE_RND_UP(copy_length, sizeof(uint32_t));
for (i = 0; i < num_words; i++)
{
block[TX_PORT_OUT_ALL_FIRST_PAYLOAD_WORD + i].r32 = APE_PERI.BmcToNcReadBuffer.r32;
}
// Pad if too small.
if (copy_length < ETHERNET_FRAME_MIN)
{
copy_length = ETHERNET_FRAME_MIN;
num_words = DIVIDE_RND_UP(copy_length, sizeof(uint32_t));
for (; i < num_words; i++)
{
// Pad remaining with 0's
block[TX_PORT_OUT_ALL_FIRST_PAYLOAD_WORD + i].r32 = 0;
}
}
control.bits.payload_length = copy_length;
block[TX_PORT_OUT_ALL_CONTROL_WORD].r32 = control.r32;
return copy_length;
}
static uint32_t inline Network_TX_initAdditionalPassthroughBlock(RegTX_PORTOut_t *block, int32_t next_block, uint32_t length)
{
int i;
network_control_t control;
control.r32 = 0;
control.bits.first = 0;
control.bits.next_block = next_block;
if (length > ADDITIONAL_FRAME_MAX)
{
length = ADDITIONAL_FRAME_MAX;
control.bits.payload_length = ADDITIONAL_FRAME_MAX;
control.bits.not_last = 1;
}
else
{
// Last
control.bits.payload_length = length;
control.bits.not_last = 0;
}
// block[1] = uninitialized;
// Copy payload data.
int num_words = DIVIDE_RND_UP(length, sizeof(uint32_t));
for (i = 0; i < num_words; i++)
{
block[TX_PORT_OUT_ALL_ADDITIONAL_PAYLOAD_WORD + i].r32 = APE_PERI.BmcToNcReadBuffer.r32;
}
block[TX_PORT_OUT_ALL_CONTROL_WORD].r32 = control.r32;
return control.bits.payload_length;
}
static void drainPassthroughBytes(uint32_t bytes)
{
printf("Dropping %u bytes\n", bytes);
// Drain any passthrough bytes to ensure that the NCSI input buffers are not locked up.
int num_words = DIVIDE_RND_UP(bytes, sizeof(uint32_t)) + 1; // +1 for FCS word.
for (int i = 0; i < num_words; i++)
{
uint32_t word = APE_PERI.BmcToNcReadBuffer.r32;
(void)word;
}
}
bool Network_TX_transmitPassthroughPacket(uint32_t length, NetworkPort_t *port)
{
if (!length)
{
return false;
}
// Drop the FCS word. It will be generated by hardware.
length -= 4;
int32_t tail;
int32_t first = tail = Network_TX_allocateBlock(port);
if (first < 0)
{
// Unable to allocate block.
drainPassthroughBytes(length);
return false;
}
int32_t next_block = -1;
uint32_t blocks = Network_TX_numBlocksNeeded(length);
int total_blocks = blocks;
if (blocks > 1)
{
next_block = Network_TX_allocateBlock(port);
if (next_block < 0)
{
drainPassthroughBytes(length);
return false;
}
}
RegTX_PORTOut_t *block = (RegTX_PORTOut_t *)&port->tx_port->Out[TX_PORT_OUT_ALL_BLOCK_WORDS * first];
length -= Network_TX_initFirstPassthroughBlock(block, length, blocks, next_block);
blocks -= 1;
while (blocks--)
{
block = (RegTX_PORTOut_t *)&port->tx_port->Out[TX_PORT_OUT_ALL_BLOCK_WORDS * next_block];
if (blocks)
{
next_block = Network_TX_allocateBlock(port);
if (next_block < 0)
{
drainPassthroughBytes(length);
return false;
}
length -= Network_TX_initAdditionalPassthroughBlock(block, next_block, length);
}
else
{
Network_TX_initAdditionalPassthroughBlock(block, 0, length);
}
tail = next_block;
}
RegAPETxToNetDoorbell_t doorbell;
doorbell.r32 = 0;
doorbell.bits.Head = first;
doorbell.bits.Tail = tail;
doorbell.bits.Length = total_blocks;
*((RegAPETxToNetDoorbell_t *)port->tx_doorbell) = doorbell;
// Read last RX word (FCS) to clear the buffer
uint32_t data = APE_PERI.BmcToNcReadBuffer.r32;
(void)data;
// Packet transmitted.
++port->shm_channel->NcsiChannelNetworkTx.r32;
return true;
}
|