1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
//===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Small functions that help with Scop and LLVM-IR.
//
//===----------------------------------------------------------------------===//
#include "polly/Support/ScopHelper.h"
#include "polly/ScopInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
#define DEBUG_TYPE "polly-scop-helper"
// Helper function for Scop
// TODO: Add assertion to not allow parameter to be null
//===----------------------------------------------------------------------===//
// Temporary Hack for extended region tree.
// Cast the region to loop if there is a loop have the same header and exit.
Loop *polly::castToLoop(const Region &R, LoopInfo &LI) {
BasicBlock *entry = R.getEntry();
if (!LI.isLoopHeader(entry))
return 0;
Loop *L = LI.getLoopFor(entry);
BasicBlock *exit = L->getExitBlock();
// Is the loop with multiple exits?
if (!exit)
return 0;
if (exit != R.getExit()) {
// SubRegion/ParentRegion with the same entry.
assert((R.getNode(R.getEntry())->isSubRegion() ||
R.getParent()->getEntry() == entry) &&
"Expect the loop is the smaller or bigger region");
return 0;
}
return L;
}
Value *polly::getPointerOperand(Instruction &Inst) {
if (LoadInst *load = dyn_cast<LoadInst>(&Inst))
return load->getPointerOperand();
else if (StoreInst *store = dyn_cast<StoreInst>(&Inst))
return store->getPointerOperand();
else if (GetElementPtrInst *gep = dyn_cast<GetElementPtrInst>(&Inst))
return gep->getPointerOperand();
return 0;
}
bool polly::hasInvokeEdge(const PHINode *PN) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
if (InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)))
if (II->getParent() == PN->getIncomingBlock(i))
return true;
return false;
}
BasicBlock *polly::createSingleExitEdge(Region *R, Pass *P) {
BasicBlock *BB = R->getExit();
SmallVector<BasicBlock *, 4> Preds;
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
if (R->contains(*PI))
Preds.push_back(*PI);
return SplitBlockPredecessors(BB, Preds, ".region", P);
}
BasicBlock *polly::simplifyRegion(Scop *S, Pass *P) {
Region *R = &S->getRegion();
// The entering block for the region.
BasicBlock *EnteringBB = R->getEnteringBlock();
// Create single entry edge if the region has multiple entry edges.
if (!EnteringBB) {
BasicBlock *OldEntry = R->getEntry();
BasicBlock *NewEntry = SplitBlock(OldEntry, OldEntry->begin(), P);
for (ScopStmt *Stmt : *S)
if (Stmt->getBasicBlock() == OldEntry) {
Stmt->setBasicBlock(NewEntry);
break;
}
R->replaceEntryRecursive(NewEntry);
EnteringBB = OldEntry;
}
// Create an unconditional entry edge.
if (EnteringBB->getTerminator()->getNumSuccessors() != 1) {
EnteringBB = SplitEdge(EnteringBB, R->getEntry(), P);
EnteringBB->setName("polly.entering.block");
}
// Create single exit edge if the region has multiple exit edges.
if (!R->getExitingBlock()) {
BasicBlock *NewExit = createSingleExitEdge(R, P);
for (auto &&SubRegion : *R)
SubRegion->replaceExitRecursive(NewExit);
}
return EnteringBB;
}
void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) {
// Find first non-alloca instruction. Every basic block has a non-alloc
// instruction, as every well formed basic block has a terminator.
BasicBlock::iterator I = EntryBlock->begin();
while (isa<AllocaInst>(I))
++I;
// SplitBlock updates DT, DF and LI.
BasicBlock *NewEntry = SplitBlock(EntryBlock, I, P);
if (RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>())
RIP->getRegionInfo().splitBlock(NewEntry, EntryBlock);
}
|