1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
|
//===---------- TempScopInfo.cpp - Extract TempScops ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Collect information about the control flow regions detected by the Scop
// detection, such that this information can be translated info its polyhedral
// representation.
//
//===----------------------------------------------------------------------===//
#include "polly/TempScopInfo.h"
#include "polly/Options.h"
#include "polly/CodeGen/BlockGenerators.h"
#include "polly/LinkAllPasses.h"
#include "polly/ScopDetection.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace polly;
static cl::opt<bool> ModelReadOnlyScalars(
"polly-analyze-read-only-scalars",
cl::desc("Model read-only scalar values in the scop description"),
cl::Hidden, cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory));
#define DEBUG_TYPE "polly-analyze-ir"
//===----------------------------------------------------------------------===//
/// Helper Classes
void IRAccess::print(raw_ostream &OS) const {
if (isRead())
OS << "Read ";
else {
if (isMayWrite())
OS << "May";
OS << "Write ";
}
OS << BaseAddress->getName() << '[' << *Offset << "]\n";
}
void Comparison::print(raw_ostream &OS) const {
// Not yet implemented.
}
//===----------------------------------------------------------------------===//
// TempScop implementation
TempScop::~TempScop() {}
void TempScop::print(raw_ostream &OS, ScalarEvolution *SE, LoopInfo *LI) const {
OS << "Scop: " << R.getNameStr() << "\n";
printDetail(OS, SE, LI, &R, 0);
}
void TempScop::printDetail(raw_ostream &OS, ScalarEvolution *SE, LoopInfo *LI,
const Region *CurR, unsigned ind) const {
// FIXME: Print other details rather than memory accesses.
for (const auto &CurBlock : CurR->blocks()) {
AccFuncMapType::const_iterator AccSetIt = AccFuncMap.find(CurBlock);
// Ignore trivial blocks that do not contain any memory access.
if (AccSetIt == AccFuncMap.end())
continue;
OS.indent(ind) << "BB: " << CurBlock->getName() << '\n';
typedef AccFuncSetType::const_iterator access_iterator;
const AccFuncSetType &AccFuncs = AccSetIt->second;
for (access_iterator AI = AccFuncs.begin(), AE = AccFuncs.end(); AI != AE;
++AI)
AI->first.print(OS.indent(ind + 2));
}
}
void TempScopInfo::buildPHIAccesses(PHINode *PHI, Region &R,
AccFuncSetType &Functions,
Region *NonAffineSubRegion,
bool IsExitBlock) {
// PHI nodes that are in the exit block of the region, hence if IsExitBlock is
// true, are not modeled as ordinary PHI nodes as they are not part of the
// region. However, we model the operands in the predecessor blocks that are
// part of the region as regular scalar accesses.
// If we can synthesize a PHI we can skip it, however only if it is in
// the region. If it is not it can only be in the exit block of the region.
// In this case we model the operands but not the PHI itself.
if (!IsExitBlock && canSynthesize(PHI, LI, SE, &R))
return;
// PHI nodes are modeled as if they had been demoted prior to the SCoP
// detection. Hence, the PHI is a load of a new memory location in which the
// incoming value was written at the end of the incoming basic block.
bool OnlyNonAffineSubRegionOperands = true;
for (unsigned u = 0; u < PHI->getNumIncomingValues(); u++) {
Value *Op = PHI->getIncomingValue(u);
BasicBlock *OpBB = PHI->getIncomingBlock(u);
// Do not build scalar dependences inside a non-affine subregion.
if (NonAffineSubRegion && NonAffineSubRegion->contains(OpBB))
continue;
OnlyNonAffineSubRegionOperands = false;
if (!R.contains(OpBB))
continue;
Instruction *OpI = dyn_cast<Instruction>(Op);
if (OpI) {
BasicBlock *OpIBB = OpI->getParent();
// As we pretend there is a use (or more precise a write) of OpI in OpBB
// we have to insert a scalar dependence from the definition of OpI to
// OpBB if the definition is not in OpBB.
if (OpIBB != OpBB) {
IRAccess ScalarRead(IRAccess::READ, OpI, ZeroOffset, 1, true, OpI);
AccFuncMap[OpBB].push_back(std::make_pair(ScalarRead, PHI));
IRAccess ScalarWrite(IRAccess::MUST_WRITE, OpI, ZeroOffset, 1, true,
OpI);
AccFuncMap[OpIBB].push_back(std::make_pair(ScalarWrite, OpI));
}
}
// Always use the terminator of the incoming basic block as the access
// instruction.
OpI = OpBB->getTerminator();
IRAccess ScalarAccess(IRAccess::MUST_WRITE, PHI, ZeroOffset, 1, true, Op,
/* IsPHI */ !IsExitBlock);
AccFuncMap[OpBB].push_back(std::make_pair(ScalarAccess, OpI));
}
if (!OnlyNonAffineSubRegionOperands) {
IRAccess ScalarAccess(IRAccess::READ, PHI, ZeroOffset, 1, true, PHI,
/* IsPHI */ !IsExitBlock);
Functions.push_back(std::make_pair(ScalarAccess, PHI));
}
}
bool TempScopInfo::buildScalarDependences(Instruction *Inst, Region *R,
Region *NonAffineSubRegion) {
bool canSynthesizeInst = canSynthesize(Inst, LI, SE, R);
if (isIgnoredIntrinsic(Inst))
return false;
bool AnyCrossStmtUse = false;
BasicBlock *ParentBB = Inst->getParent();
for (User *U : Inst->users()) {
Instruction *UI = dyn_cast<Instruction>(U);
// Ignore the strange user
if (UI == 0)
continue;
BasicBlock *UseParent = UI->getParent();
// Ignore the users in the same BB (statement)
if (UseParent == ParentBB)
continue;
// Do not build scalar dependences inside a non-affine subregion.
if (NonAffineSubRegion && NonAffineSubRegion->contains(UseParent))
continue;
// Check whether or not the use is in the SCoP.
if (!R->contains(UseParent)) {
AnyCrossStmtUse = true;
continue;
}
// If the instruction can be synthesized and the user is in the region
// we do not need to add scalar dependences.
if (canSynthesizeInst)
continue;
// No need to translate these scalar dependences into polyhedral form,
// because synthesizable scalars can be generated by the code generator.
if (canSynthesize(UI, LI, SE, R))
continue;
// Skip PHI nodes in the region as they handle their operands on their own.
if (isa<PHINode>(UI))
continue;
// Now U is used in another statement.
AnyCrossStmtUse = true;
// Do not build a read access that is not in the current SCoP
// Use the def instruction as base address of the IRAccess, so that it will
// become the name of the scalar access in the polyhedral form.
IRAccess ScalarAccess(IRAccess::READ, Inst, ZeroOffset, 1, true, Inst);
AccFuncMap[UseParent].push_back(std::make_pair(ScalarAccess, UI));
}
if (ModelReadOnlyScalars) {
for (Value *Op : Inst->operands()) {
if (canSynthesize(Op, LI, SE, R))
continue;
if (Instruction *OpInst = dyn_cast<Instruction>(Op))
if (R->contains(OpInst))
continue;
if (isa<Constant>(Op))
continue;
IRAccess ScalarAccess(IRAccess::READ, Op, ZeroOffset, 1, true, Op);
AccFuncMap[Inst->getParent()].push_back(
std::make_pair(ScalarAccess, Inst));
}
}
return AnyCrossStmtUse;
}
extern MapInsnToMemAcc InsnToMemAcc;
IRAccess
TempScopInfo::buildIRAccess(Instruction *Inst, Loop *L, Region *R,
const ScopDetection::BoxedLoopsSetTy *BoxedLoops) {
unsigned Size;
Type *SizeType;
Value *Val;
enum IRAccess::TypeKind Type;
if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
SizeType = Load->getType();
Size = TD->getTypeStoreSize(SizeType);
Type = IRAccess::READ;
Val = Load;
} else {
StoreInst *Store = cast<StoreInst>(Inst);
SizeType = Store->getValueOperand()->getType();
Size = TD->getTypeStoreSize(SizeType);
Type = IRAccess::MUST_WRITE;
Val = Store->getValueOperand();
}
const SCEV *AccessFunction = SE->getSCEVAtScope(getPointerOperand(*Inst), L);
const SCEVUnknown *BasePointer =
dyn_cast<SCEVUnknown>(SE->getPointerBase(AccessFunction));
assert(BasePointer && "Could not find base pointer");
AccessFunction = SE->getMinusSCEV(AccessFunction, BasePointer);
auto AccItr = InsnToMemAcc.find(Inst);
if (PollyDelinearize && AccItr != InsnToMemAcc.end())
return IRAccess(Type, BasePointer->getValue(), AccessFunction, Size, true,
AccItr->second.DelinearizedSubscripts,
AccItr->second.Shape->DelinearizedSizes, Val);
// Check if the access depends on a loop contained in a non-affine subregion.
bool isVariantInNonAffineLoop = false;
if (BoxedLoops) {
SetVector<const Loop *> Loops;
findLoops(AccessFunction, Loops);
for (const Loop *L : Loops)
if (BoxedLoops->count(L))
isVariantInNonAffineLoop = true;
}
bool IsAffine = !isVariantInNonAffineLoop &&
isAffineExpr(R, AccessFunction, *SE, BasePointer->getValue());
SmallVector<const SCEV *, 4> Subscripts, Sizes;
Subscripts.push_back(AccessFunction);
Sizes.push_back(SE->getConstant(ZeroOffset->getType(), Size));
if (!IsAffine && Type == IRAccess::MUST_WRITE)
Type = IRAccess::MAY_WRITE;
return IRAccess(Type, BasePointer->getValue(), AccessFunction, Size, IsAffine,
Subscripts, Sizes, Val);
}
void TempScopInfo::buildAccessFunctions(Region &R, Region &SR) {
if (SD->isNonAffineSubRegion(&SR, &R)) {
for (BasicBlock *BB : SR.blocks())
buildAccessFunctions(R, *BB, &SR);
return;
}
for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
if (I->isSubRegion())
buildAccessFunctions(R, *I->getNodeAs<Region>());
else
buildAccessFunctions(R, *I->getNodeAs<BasicBlock>());
}
void TempScopInfo::buildAccessFunctions(Region &R, BasicBlock &BB,
Region *NonAffineSubRegion,
bool IsExitBlock) {
AccFuncSetType Functions;
Loop *L = LI->getLoopFor(&BB);
// The set of loops contained in non-affine subregions that are part of R.
const ScopDetection::BoxedLoopsSetTy *BoxedLoops = SD->getBoxedLoops(&R);
for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I) {
Instruction *Inst = I;
PHINode *PHI = dyn_cast<PHINode>(Inst);
if (PHI)
buildPHIAccesses(PHI, R, Functions, NonAffineSubRegion, IsExitBlock);
// For the exit block we stop modeling after the last PHI node.
if (!PHI && IsExitBlock)
break;
if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
Functions.push_back(
std::make_pair(buildIRAccess(Inst, L, &R, BoxedLoops), Inst));
if (isIgnoredIntrinsic(Inst))
continue;
if (buildScalarDependences(Inst, &R, NonAffineSubRegion)) {
// If the Instruction is used outside the statement, we need to build the
// write access.
if (!isa<StoreInst>(Inst)) {
IRAccess ScalarAccess(IRAccess::MUST_WRITE, Inst, ZeroOffset, 1, true,
Inst);
Functions.push_back(std::make_pair(ScalarAccess, Inst));
}
}
}
if (Functions.empty())
return;
AccFuncSetType &Accs = AccFuncMap[&BB];
Accs.insert(Accs.end(), Functions.begin(), Functions.end());
}
TempScop *TempScopInfo::buildTempScop(Region &R) {
TempScop *TScop = new TempScop(R, AccFuncMap);
buildAccessFunctions(R, R);
// In case the region does not have an exiting block we will later (during
// code generation) split the exit block. This will move potential PHI nodes
// from the current exit block into the new region exiting block. Hence, PHI
// nodes that are at this point not part of the region will be.
// To handle these PHI nodes later we will now model their operands as scalar
// accesses. Note that we do not model anything in the exit block if we have
// an exiting block in the region, as there will not be any splitting later.
if (!R.getExitingBlock())
buildAccessFunctions(R, *R.getExit(), nullptr, /* IsExitBlock */ true);
return TScop;
}
TempScop *TempScopInfo::getTempScop() const { return TempScopOfRegion; }
void TempScopInfo::print(raw_ostream &OS, const Module *) const {
if (TempScopOfRegion)
TempScopOfRegion->print(OS, SE, LI);
}
bool TempScopInfo::runOnRegion(Region *R, RGPassManager &RGM) {
SD = &getAnalysis<ScopDetection>();
if (!SD->isMaxRegionInScop(*R))
return false;
Function *F = R->getEntry()->getParent();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
AA = &getAnalysis<AliasAnalysis>();
TD = &F->getParent()->getDataLayout();
ZeroOffset = SE->getConstant(TD->getIntPtrType(F->getContext()), 0);
assert(!TempScopOfRegion && "Build the TempScop only once");
TempScopOfRegion = buildTempScop(*R);
return false;
}
void TempScopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredTransitive<LoopInfoWrapperPass>();
AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
AU.addRequiredTransitive<ScopDetection>();
AU.addRequiredID(IndependentBlocksID);
AU.addRequired<AliasAnalysis>();
AU.setPreservesAll();
}
TempScopInfo::~TempScopInfo() { clear(); }
void TempScopInfo::clear() {
AccFuncMap.clear();
if (TempScopOfRegion)
delete TempScopOfRegion;
TempScopOfRegion = nullptr;
}
//===----------------------------------------------------------------------===//
// TempScop information extraction pass implement
char TempScopInfo::ID = 0;
Pass *polly::createTempScopInfoPass() { return new TempScopInfo(); }
INITIALIZE_PASS_BEGIN(TempScopInfo, "polly-analyze-ir",
"Polly - Analyse the LLVM-IR in the detected regions",
false, false);
INITIALIZE_AG_DEPENDENCY(AliasAnalysis);
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
INITIALIZE_PASS_END(TempScopInfo, "polly-analyze-ir",
"Polly - Analyse the LLVM-IR in the detected regions",
false, false)
|