summaryrefslogtreecommitdiffstats
path: root/mlir/lib/Parser/Parser.cpp
blob: 9b56f71b8126a2a22b84c2b45114f4b1da934938 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
//===- Parser.cpp - MLIR Parser Implementation ----------------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the parser for the MLIR textual form.
//
//===----------------------------------------------------------------------===//

#include "mlir/Parser.h"
#include "Lexer.h"
#include "mlir/Analysis/Verifier.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/SourceMgr.h"
#include <algorithm>
using namespace mlir;
using llvm::MemoryBuffer;
using llvm::SMLoc;
using llvm::SourceMgr;

namespace {
class Parser;

//===----------------------------------------------------------------------===//
// SymbolState
//===----------------------------------------------------------------------===//

/// This class contains record of any parsed top-level symbols.
struct SymbolState {
  // A map from attribute alias identifier to Attribute.
  llvm::StringMap<Attribute> attributeAliasDefinitions;

  // A map from type alias identifier to Type.
  llvm::StringMap<Type> typeAliasDefinitions;

  /// A set of locations into the main parser memory buffer for each of the
  /// active nested parsers. Given that some nested parsers, i.e. custom dialect
  /// parsers, operate on a temporary memory buffer, this provides an anchor
  /// point for emitting diagnostics.
  SmallVector<llvm::SMLoc, 1> nestedParserLocs;

  /// The top-level lexer that contains the original memory buffer provided by
  /// the user. This is used by nested parsers to get a properly encoded source
  /// location.
  Lexer *topLevelLexer = nullptr;
};

//===----------------------------------------------------------------------===//
// ParserState
//===----------------------------------------------------------------------===//

/// This class refers to all of the state maintained globally by the parser,
/// such as the current lexer position etc.
struct ParserState {
  ParserState(const llvm::SourceMgr &sourceMgr, MLIRContext *ctx,
              SymbolState &symbols)
      : context(ctx), lex(sourceMgr, ctx), curToken(lex.lexToken()),
        symbols(symbols), parserDepth(symbols.nestedParserLocs.size()) {
    // Set the top level lexer for the symbol state if one doesn't exist.
    if (!symbols.topLevelLexer)
      symbols.topLevelLexer = &lex;
  }
  ~ParserState() {
    // Reset the top level lexer if it refers the lexer in our state.
    if (symbols.topLevelLexer == &lex)
      symbols.topLevelLexer = nullptr;
  }
  ParserState(const ParserState &) = delete;
  void operator=(const ParserState &) = delete;

  /// The context we're parsing into.
  MLIRContext *const context;

  /// The lexer for the source file we're parsing.
  Lexer lex;

  /// This is the next token that hasn't been consumed yet.
  Token curToken;

  /// The current state for symbol parsing.
  SymbolState &symbols;

  /// The depth of this parser in the nested parsing stack.
  size_t parserDepth;
};

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// This class implement support for parsing global entities like types and
/// shared entities like SSA names.  It is intended to be subclassed by
/// specialized subparsers that include state, e.g. when a local symbol table.
class Parser {
public:
  Builder builder;

  Parser(ParserState &state) : builder(state.context), state(state) {}

  // Helper methods to get stuff from the parser-global state.
  ParserState &getState() const { return state; }
  MLIRContext *getContext() const { return state.context; }
  const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); }

  /// Parse a comma-separated list of elements up until the specified end token.
  ParseResult
  parseCommaSeparatedListUntil(Token::Kind rightToken,
                               const std::function<ParseResult()> &parseElement,
                               bool allowEmptyList = true);

  /// Parse a comma separated list of elements that must have at least one entry
  /// in it.
  ParseResult
  parseCommaSeparatedList(const std::function<ParseResult()> &parseElement);

  ParseResult parsePrettyDialectSymbolName(StringRef &prettyName);

  // We have two forms of parsing methods - those that return a non-null
  // pointer on success, and those that return a ParseResult to indicate whether
  // they returned a failure.  The second class fills in by-reference arguments
  // as the results of their action.

  //===--------------------------------------------------------------------===//
  // Error Handling
  //===--------------------------------------------------------------------===//

  /// Emit an error and return failure.
  InFlightDiagnostic emitError(const Twine &message = {}) {
    return emitError(state.curToken.getLoc(), message);
  }
  InFlightDiagnostic emitError(SMLoc loc, const Twine &message = {});

  /// Encode the specified source location information into an attribute for
  /// attachment to the IR.
  Location getEncodedSourceLocation(llvm::SMLoc loc) {
    // If there are no active nested parsers, we can get the encoded source
    // location directly.
    if (state.parserDepth == 0)
      return state.lex.getEncodedSourceLocation(loc);
    // Otherwise, we need to re-encode it to point to the top level buffer.
    return state.symbols.topLevelLexer->getEncodedSourceLocation(
        remapLocationToTopLevelBuffer(loc));
  }

  /// Remaps the given SMLoc to the top level lexer of the parser. This is used
  /// to adjust locations of potentially nested parsers to ensure that they can
  /// be emitted properly as diagnostics.
  llvm::SMLoc remapLocationToTopLevelBuffer(llvm::SMLoc loc) {
    // If there are no active nested parsers, we can return location directly.
    SymbolState &symbols = state.symbols;
    if (state.parserDepth == 0)
      return loc;
    assert(symbols.topLevelLexer && "expected valid top-level lexer");

    // Otherwise, we need to remap the location to the main parser. This is
    // simply offseting the location onto the location of the last nested
    // parser.
    size_t offset = loc.getPointer() - state.lex.getBufferBegin();
    auto *rawLoc =
        symbols.nestedParserLocs[state.parserDepth - 1].getPointer() + offset;
    return llvm::SMLoc::getFromPointer(rawLoc);
  }

  //===--------------------------------------------------------------------===//
  // Token Parsing
  //===--------------------------------------------------------------------===//

  /// Return the current token the parser is inspecting.
  const Token &getToken() const { return state.curToken; }
  StringRef getTokenSpelling() const { return state.curToken.getSpelling(); }

  /// If the current token has the specified kind, consume it and return true.
  /// If not, return false.
  bool consumeIf(Token::Kind kind) {
    if (state.curToken.isNot(kind))
      return false;
    consumeToken(kind);
    return true;
  }

  /// Advance the current lexer onto the next token.
  void consumeToken() {
    assert(state.curToken.isNot(Token::eof, Token::error) &&
           "shouldn't advance past EOF or errors");
    state.curToken = state.lex.lexToken();
  }

  /// Advance the current lexer onto the next token, asserting what the expected
  /// current token is.  This is preferred to the above method because it leads
  /// to more self-documenting code with better checking.
  void consumeToken(Token::Kind kind) {
    assert(state.curToken.is(kind) && "consumed an unexpected token");
    consumeToken();
  }

  /// Consume the specified token if present and return success.  On failure,
  /// output a diagnostic and return failure.
  ParseResult parseToken(Token::Kind expectedToken, const Twine &message);

  //===--------------------------------------------------------------------===//
  // Type Parsing
  //===--------------------------------------------------------------------===//

  ParseResult parseFunctionResultTypes(SmallVectorImpl<Type> &elements);
  ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements);
  ParseResult parseTypeListParens(SmallVectorImpl<Type> &elements);

  /// Parse an arbitrary type.
  Type parseType();

  /// Parse a complex type.
  Type parseComplexType();

  /// Parse an extended type.
  Type parseExtendedType();

  /// Parse a function type.
  Type parseFunctionType();

  /// Parse a memref type.
  Type parseMemRefType();

  /// Parse a non function type.
  Type parseNonFunctionType();

  /// Parse a tensor type.
  Type parseTensorType();

  /// Parse a tuple type.
  Type parseTupleType();

  /// Parse a vector type.
  VectorType parseVectorType();
  ParseResult parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions,
                                       bool allowDynamic = true);
  ParseResult parseXInDimensionList();

  /// Parse strided layout specification.
  ParseResult parseStridedLayout(int64_t &offset,
                                 SmallVectorImpl<int64_t> &strides);

  // Parse a brace-delimiter list of comma-separated integers with `?` as an
  // unknown marker.
  ParseResult parseStrideList(SmallVectorImpl<int64_t> &dimensions);

  //===--------------------------------------------------------------------===//
  // Attribute Parsing
  //===--------------------------------------------------------------------===//

  /// Parse an arbitrary attribute with an optional type.
  Attribute parseAttribute(Type type = {});

  /// Parse an attribute dictionary.
  ParseResult parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes);

  /// Parse an extended attribute.
  Attribute parseExtendedAttr(Type type);

  /// Parse a float attribute.
  Attribute parseFloatAttr(Type type, bool isNegative);

  /// Parse a decimal or a hexadecimal literal, which can be either an integer
  /// or a float attribute.
  Attribute parseDecOrHexAttr(Type type, bool isNegative);

  /// Parse an opaque elements attribute.
  Attribute parseOpaqueElementsAttr();

  /// Parse a dense elements attribute.
  Attribute parseDenseElementsAttr();
  ShapedType parseElementsLiteralType();

  /// Parse a sparse elements attribute.
  Attribute parseSparseElementsAttr();

  //===--------------------------------------------------------------------===//
  // Location Parsing
  //===--------------------------------------------------------------------===//

  /// Parse an inline location.
  ParseResult parseLocation(LocationAttr &loc);

  /// Parse a raw location instance.
  ParseResult parseLocationInstance(LocationAttr &loc);

  /// Parse a callsite location instance.
  ParseResult parseCallSiteLocation(LocationAttr &loc);

  /// Parse a fused location instance.
  ParseResult parseFusedLocation(LocationAttr &loc);

  /// Parse a name or FileLineCol location instance.
  ParseResult parseNameOrFileLineColLocation(LocationAttr &loc);

  /// Parse an optional trailing location.
  ///
  ///   trailing-location     ::= (`loc` `(` location `)`)?
  ///
  ParseResult parseOptionalTrailingLocation(Location &loc) {
    // If there is a 'loc' we parse a trailing location.
    if (!getToken().is(Token::kw_loc))
      return success();

    // Parse the location.
    LocationAttr directLoc;
    if (parseLocation(directLoc))
      return failure();
    loc = directLoc;
    return success();
  }

  //===--------------------------------------------------------------------===//
  // Affine Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a reference to either an affine map, or an integer set.
  ParseResult parseAffineMapOrIntegerSetReference(AffineMap &map,
                                                  IntegerSet &set);
  ParseResult parseAffineMapReference(AffineMap &map);
  ParseResult parseIntegerSetReference(IntegerSet &set);

  /// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
  ParseResult
  parseAffineMapOfSSAIds(AffineMap &map,
                         function_ref<ParseResult(bool)> parseElement);

private:
  /// The Parser is subclassed and reinstantiated.  Do not add additional
  /// non-trivial state here, add it to the ParserState class.
  ParserState &state;
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//

/// Parse a comma separated list of elements that must have at least one entry
/// in it.
ParseResult Parser::parseCommaSeparatedList(
    const std::function<ParseResult()> &parseElement) {
  // Non-empty case starts with an element.
  if (parseElement())
    return failure();

  // Otherwise we have a list of comma separated elements.
  while (consumeIf(Token::comma)) {
    if (parseElement())
      return failure();
  }
  return success();
}

/// Parse a comma-separated list of elements, terminated with an arbitrary
/// token.  This allows empty lists if allowEmptyList is true.
///
///   abstract-list ::= rightToken                  // if allowEmptyList == true
///   abstract-list ::= element (',' element)* rightToken
///
ParseResult Parser::parseCommaSeparatedListUntil(
    Token::Kind rightToken, const std::function<ParseResult()> &parseElement,
    bool allowEmptyList) {
  // Handle the empty case.
  if (getToken().is(rightToken)) {
    if (!allowEmptyList)
      return emitError("expected list element");
    consumeToken(rightToken);
    return success();
  }

  if (parseCommaSeparatedList(parseElement) ||
      parseToken(rightToken, "expected ',' or '" +
                                 Token::getTokenSpelling(rightToken) + "'"))
    return failure();

  return success();
}

//===----------------------------------------------------------------------===//
// DialectAsmParser
//===----------------------------------------------------------------------===//

namespace {
/// This class provides the main implementation of the DialectAsmParser that
/// allows for dialects to parse attributes and types. This allows for dialect
/// hooking into the main MLIR parsing logic.
class CustomDialectAsmParser : public DialectAsmParser {
public:
  CustomDialectAsmParser(StringRef fullSpec, Parser &parser)
      : fullSpec(fullSpec), nameLoc(parser.getToken().getLoc()),
        parser(parser) {}
  ~CustomDialectAsmParser() override {}

  /// Emit a diagnostic at the specified location and return failure.
  InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override {
    return parser.emitError(loc, message);
  }

  /// Return a builder which provides useful access to MLIRContext, global
  /// objects like types and attributes.
  Builder &getBuilder() const override { return parser.builder; }

  /// Get the location of the next token and store it into the argument.  This
  /// always succeeds.
  llvm::SMLoc getCurrentLocation() override {
    return parser.getToken().getLoc();
  }

  /// Return the location of the original name token.
  llvm::SMLoc getNameLoc() const override { return nameLoc; }

  /// Re-encode the given source location as an MLIR location and return it.
  Location getEncodedSourceLoc(llvm::SMLoc loc) override {
    return parser.getEncodedSourceLocation(loc);
  }

  /// Returns the full specification of the symbol being parsed. This allows
  /// for using a separate parser if necessary.
  StringRef getFullSymbolSpec() const override { return fullSpec; }

  /// Parse a floating point value from the stream.
  ParseResult parseFloat(double &result) override {
    bool negative = parser.consumeIf(Token::minus);
    Token curTok = parser.getToken();

    // Check for a floating point value.
    if (curTok.is(Token::floatliteral)) {
      auto val = curTok.getFloatingPointValue();
      if (!val.hasValue())
        return emitError(curTok.getLoc(), "floating point value too large");
      parser.consumeToken(Token::floatliteral);
      result = negative ? -*val : *val;
      return success();
    }

    // TODO(riverriddle) support hex floating point values.
    return emitError(getCurrentLocation(), "expected floating point literal");
  }

  /// Parse an optional integer value from the stream.
  OptionalParseResult parseOptionalInteger(uint64_t &result) override {
    Token curToken = parser.getToken();
    if (curToken.isNot(Token::integer, Token::minus))
      return llvm::None;

    bool negative = parser.consumeIf(Token::minus);
    Token curTok = parser.getToken();
    if (parser.parseToken(Token::integer, "expected integer value"))
      return failure();

    auto val = curTok.getUInt64IntegerValue();
    if (!val)
      return emitError(curTok.getLoc(), "integer value too large");
    result = negative ? -*val : *val;
    return success();
  }

  //===--------------------------------------------------------------------===//
  // Token Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a `->` token.
  ParseResult parseArrow() override {
    return parser.parseToken(Token::arrow, "expected '->'");
  }

  /// Parses a `->` if present.
  ParseResult parseOptionalArrow() override {
    return success(parser.consumeIf(Token::arrow));
  }

  /// Parse a '{' token.
  ParseResult parseLBrace() override {
    return parser.parseToken(Token::l_brace, "expected '{'");
  }

  /// Parse a '{' token if present
  ParseResult parseOptionalLBrace() override {
    return success(parser.consumeIf(Token::l_brace));
  }

  /// Parse a `}` token.
  ParseResult parseRBrace() override {
    return parser.parseToken(Token::r_brace, "expected '}'");
  }

  /// Parse a `}` token if present
  ParseResult parseOptionalRBrace() override {
    return success(parser.consumeIf(Token::r_brace));
  }

  /// Parse a `:` token.
  ParseResult parseColon() override {
    return parser.parseToken(Token::colon, "expected ':'");
  }

  /// Parse a `:` token if present.
  ParseResult parseOptionalColon() override {
    return success(parser.consumeIf(Token::colon));
  }

  /// Parse a `,` token.
  ParseResult parseComma() override {
    return parser.parseToken(Token::comma, "expected ','");
  }

  /// Parse a `,` token if present.
  ParseResult parseOptionalComma() override {
    return success(parser.consumeIf(Token::comma));
  }

  /// Parses a `...` if present.
  ParseResult parseOptionalEllipsis() override {
    return success(parser.consumeIf(Token::ellipsis));
  }

  /// Parse a `=` token.
  ParseResult parseEqual() override {
    return parser.parseToken(Token::equal, "expected '='");
  }

  /// Parse a '<' token.
  ParseResult parseLess() override {
    return parser.parseToken(Token::less, "expected '<'");
  }

  /// Parse a `<` token if present.
  ParseResult parseOptionalLess() override {
    return success(parser.consumeIf(Token::less));
  }

  /// Parse a '>' token.
  ParseResult parseGreater() override {
    return parser.parseToken(Token::greater, "expected '>'");
  }

  /// Parse a `>` token if present.
  ParseResult parseOptionalGreater() override {
    return success(parser.consumeIf(Token::greater));
  }

  /// Parse a `(` token.
  ParseResult parseLParen() override {
    return parser.parseToken(Token::l_paren, "expected '('");
  }

  /// Parses a '(' if present.
  ParseResult parseOptionalLParen() override {
    return success(parser.consumeIf(Token::l_paren));
  }

  /// Parse a `)` token.
  ParseResult parseRParen() override {
    return parser.parseToken(Token::r_paren, "expected ')'");
  }

  /// Parses a ')' if present.
  ParseResult parseOptionalRParen() override {
    return success(parser.consumeIf(Token::r_paren));
  }

  /// Parse a `[` token.
  ParseResult parseLSquare() override {
    return parser.parseToken(Token::l_square, "expected '['");
  }

  /// Parses a '[' if present.
  ParseResult parseOptionalLSquare() override {
    return success(parser.consumeIf(Token::l_square));
  }

  /// Parse a `]` token.
  ParseResult parseRSquare() override {
    return parser.parseToken(Token::r_square, "expected ']'");
  }

  /// Parses a ']' if present.
  ParseResult parseOptionalRSquare() override {
    return success(parser.consumeIf(Token::r_square));
  }

  /// Parses a '?' if present.
  ParseResult parseOptionalQuestion() override {
    return success(parser.consumeIf(Token::question));
  }

  /// Parses a '*' if present.
  ParseResult parseOptionalStar() override {
    return success(parser.consumeIf(Token::star));
  }

  /// Returns if the current token corresponds to a keyword.
  bool isCurrentTokenAKeyword() const {
    return parser.getToken().is(Token::bare_identifier) ||
           parser.getToken().isKeyword();
  }

  /// Parse the given keyword if present.
  ParseResult parseOptionalKeyword(StringRef keyword) override {
    // Check that the current token has the same spelling.
    if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword)
      return failure();
    parser.consumeToken();
    return success();
  }

  /// Parse a keyword, if present, into 'keyword'.
  ParseResult parseOptionalKeyword(StringRef *keyword) override {
    // Check that the current token is a keyword.
    if (!isCurrentTokenAKeyword())
      return failure();

    *keyword = parser.getTokenSpelling();
    parser.consumeToken();
    return success();
  }

  //===--------------------------------------------------------------------===//
  // Attribute Parsing
  //===--------------------------------------------------------------------===//

  /// Parse an arbitrary attribute and return it in result.
  ParseResult parseAttribute(Attribute &result, Type type) override {
    result = parser.parseAttribute(type);
    return success(static_cast<bool>(result));
  }

  /// Parse an affine map instance into 'map'.
  ParseResult parseAffineMap(AffineMap &map) override {
    return parser.parseAffineMapReference(map);
  }

  /// Parse an integer set instance into 'set'.
  ParseResult printIntegerSet(IntegerSet &set) override {
    return parser.parseIntegerSetReference(set);
  }

  //===--------------------------------------------------------------------===//
  // Type Parsing
  //===--------------------------------------------------------------------===//

  ParseResult parseType(Type &result) override {
    result = parser.parseType();
    return success(static_cast<bool>(result));
  }

  ParseResult parseDimensionList(SmallVectorImpl<int64_t> &dimensions,
                                 bool allowDynamic) override {
    return parser.parseDimensionListRanked(dimensions, allowDynamic);
  }

private:
  /// The full symbol specification.
  StringRef fullSpec;

  /// The source location of the dialect symbol.
  SMLoc nameLoc;

  /// The main parser.
  Parser &parser;
};
} // namespace

/// Parse the body of a pretty dialect symbol, which starts and ends with <>'s,
/// and may be recursive.  Return with the 'prettyName' StringRef encompassing
/// the entire pretty name.
///
///   pretty-dialect-sym-body ::= '<' pretty-dialect-sym-contents+ '>'
///   pretty-dialect-sym-contents ::= pretty-dialect-sym-body
///                                  | '(' pretty-dialect-sym-contents+ ')'
///                                  | '[' pretty-dialect-sym-contents+ ']'
///                                  | '{' pretty-dialect-sym-contents+ '}'
///                                  | '[^[<({>\])}\0]+'
///
ParseResult Parser::parsePrettyDialectSymbolName(StringRef &prettyName) {
  // Pretty symbol names are a relatively unstructured format that contains a
  // series of properly nested punctuation, with anything else in the middle.
  // Scan ahead to find it and consume it if successful, otherwise emit an
  // error.
  auto *curPtr = getTokenSpelling().data();

  SmallVector<char, 8> nestedPunctuation;

  // Scan over the nested punctuation, bailing out on error and consuming until
  // we find the end.  We know that we're currently looking at the '<', so we
  // can go until we find the matching '>' character.
  assert(*curPtr == '<');
  do {
    char c = *curPtr++;
    switch (c) {
    case '\0':
      // This also handles the EOF case.
      return emitError("unexpected nul or EOF in pretty dialect name");
    case '<':
    case '[':
    case '(':
    case '{':
      nestedPunctuation.push_back(c);
      continue;

    case '-':
      // The sequence `->` is treated as special token.
      if (*curPtr == '>')
        ++curPtr;
      continue;

    case '>':
      if (nestedPunctuation.pop_back_val() != '<')
        return emitError("unbalanced '>' character in pretty dialect name");
      break;
    case ']':
      if (nestedPunctuation.pop_back_val() != '[')
        return emitError("unbalanced ']' character in pretty dialect name");
      break;
    case ')':
      if (nestedPunctuation.pop_back_val() != '(')
        return emitError("unbalanced ')' character in pretty dialect name");
      break;
    case '}':
      if (nestedPunctuation.pop_back_val() != '{')
        return emitError("unbalanced '}' character in pretty dialect name");
      break;

    default:
      continue;
    }
  } while (!nestedPunctuation.empty());

  // Ok, we succeeded, remember where we stopped, reset the lexer to know it is
  // consuming all this stuff, and return.
  state.lex.resetPointer(curPtr);

  unsigned length = curPtr - prettyName.begin();
  prettyName = StringRef(prettyName.begin(), length);
  consumeToken();
  return success();
}

/// Parse an extended dialect symbol.
template <typename Symbol, typename SymbolAliasMap, typename CreateFn>
static Symbol parseExtendedSymbol(Parser &p, Token::Kind identifierTok,
                                  SymbolAliasMap &aliases,
                                  CreateFn &&createSymbol) {
  // Parse the dialect namespace.
  StringRef identifier = p.getTokenSpelling().drop_front();
  auto loc = p.getToken().getLoc();
  p.consumeToken(identifierTok);

  // If there is no '<' token following this, and if the typename contains no
  // dot, then we are parsing a symbol alias.
  if (p.getToken().isNot(Token::less) && !identifier.contains('.')) {
    // Check for an alias for this type.
    auto aliasIt = aliases.find(identifier);
    if (aliasIt == aliases.end())
      return (p.emitError("undefined symbol alias id '" + identifier + "'"),
              nullptr);
    return aliasIt->second;
  }

  // Otherwise, we are parsing a dialect-specific symbol.  If the name contains
  // a dot, then this is the "pretty" form.  If not, it is the verbose form that
  // looks like <"...">.
  std::string symbolData;
  auto dialectName = identifier;

  // Handle the verbose form, where "identifier" is a simple dialect name.
  if (!identifier.contains('.')) {
    // Consume the '<'.
    if (p.parseToken(Token::less, "expected '<' in dialect type"))
      return nullptr;

    // Parse the symbol specific data.
    if (p.getToken().isNot(Token::string))
      return (p.emitError("expected string literal data in dialect symbol"),
              nullptr);
    symbolData = p.getToken().getStringValue();
    loc = llvm::SMLoc::getFromPointer(p.getToken().getLoc().getPointer() + 1);
    p.consumeToken(Token::string);

    // Consume the '>'.
    if (p.parseToken(Token::greater, "expected '>' in dialect symbol"))
      return nullptr;
  } else {
    // Ok, the dialect name is the part of the identifier before the dot, the
    // part after the dot is the dialect's symbol, or the start thereof.
    auto dotHalves = identifier.split('.');
    dialectName = dotHalves.first;
    auto prettyName = dotHalves.second;
    loc = llvm::SMLoc::getFromPointer(prettyName.data());

    // If the dialect's symbol is followed immediately by a <, then lex the body
    // of it into prettyName.
    if (p.getToken().is(Token::less) &&
        prettyName.bytes_end() == p.getTokenSpelling().bytes_begin()) {
      if (p.parsePrettyDialectSymbolName(prettyName))
        return nullptr;
    }

    symbolData = prettyName.str();
  }

  // Record the name location of the type remapped to the top level buffer.
  llvm::SMLoc locInTopLevelBuffer = p.remapLocationToTopLevelBuffer(loc);
  p.getState().symbols.nestedParserLocs.push_back(locInTopLevelBuffer);

  // Call into the provided symbol construction function.
  Symbol sym = createSymbol(dialectName, symbolData, loc);

  // Pop the last parser location.
  p.getState().symbols.nestedParserLocs.pop_back();
  return sym;
}

/// Parses a symbol, of type 'T', and returns it if parsing was successful. If
/// parsing failed, nullptr is returned. The number of bytes read from the input
/// string is returned in 'numRead'.
template <typename T, typename ParserFn>
static T parseSymbol(StringRef inputStr, MLIRContext *context,
                     SymbolState &symbolState, ParserFn &&parserFn,
                     size_t *numRead = nullptr) {
  SourceMgr sourceMgr;
  auto memBuffer = MemoryBuffer::getMemBuffer(
      inputStr, /*BufferName=*/"<mlir_parser_buffer>",
      /*RequiresNullTerminator=*/false);
  sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
  ParserState state(sourceMgr, context, symbolState);
  Parser parser(state);

  Token startTok = parser.getToken();
  T symbol = parserFn(parser);
  if (!symbol)
    return T();

  // If 'numRead' is valid, then provide the number of bytes that were read.
  Token endTok = parser.getToken();
  if (numRead) {
    *numRead = static_cast<size_t>(endTok.getLoc().getPointer() -
                                   startTok.getLoc().getPointer());

    // Otherwise, ensure that all of the tokens were parsed.
  } else if (startTok.getLoc() != endTok.getLoc() && endTok.isNot(Token::eof)) {
    parser.emitError(endTok.getLoc(), "encountered unexpected token");
    return T();
  }
  return symbol;
}

//===----------------------------------------------------------------------===//
// Error Handling
//===----------------------------------------------------------------------===//

InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) {
  auto diag = mlir::emitError(getEncodedSourceLocation(loc), message);

  // If we hit a parse error in response to a lexer error, then the lexer
  // already reported the error.
  if (getToken().is(Token::error))
    diag.abandon();
  return diag;
}

//===----------------------------------------------------------------------===//
// Token Parsing
//===----------------------------------------------------------------------===//

/// Consume the specified token if present and return success.  On failure,
/// output a diagnostic and return failure.
ParseResult Parser::parseToken(Token::Kind expectedToken,
                               const Twine &message) {
  if (consumeIf(expectedToken))
    return success();
  return emitError(message);
}

//===----------------------------------------------------------------------===//
// Type Parsing
//===----------------------------------------------------------------------===//

/// Parse an arbitrary type.
///
///   type ::= function-type
///          | non-function-type
///
Type Parser::parseType() {
  if (getToken().is(Token::l_paren))
    return parseFunctionType();
  return parseNonFunctionType();
}

/// Parse a function result type.
///
///   function-result-type ::= type-list-parens
///                          | non-function-type
///
ParseResult Parser::parseFunctionResultTypes(SmallVectorImpl<Type> &elements) {
  if (getToken().is(Token::l_paren))
    return parseTypeListParens(elements);

  Type t = parseNonFunctionType();
  if (!t)
    return failure();
  elements.push_back(t);
  return success();
}

/// Parse a list of types without an enclosing parenthesis.  The list must have
/// at least one member.
///
///   type-list-no-parens ::=  type (`,` type)*
///
ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type> &elements) {
  auto parseElt = [&]() -> ParseResult {
    auto elt = parseType();
    elements.push_back(elt);
    return elt ? success() : failure();
  };

  return parseCommaSeparatedList(parseElt);
}

/// Parse a parenthesized list of types.
///
///   type-list-parens ::= `(` `)`
///                      | `(` type-list-no-parens `)`
///
ParseResult Parser::parseTypeListParens(SmallVectorImpl<Type> &elements) {
  if (parseToken(Token::l_paren, "expected '('"))
    return failure();

  // Handle empty lists.
  if (getToken().is(Token::r_paren))
    return consumeToken(), success();

  if (parseTypeListNoParens(elements) ||
      parseToken(Token::r_paren, "expected ')'"))
    return failure();
  return success();
}

/// Parse a complex type.
///
///   complex-type ::= `complex` `<` type `>`
///
Type Parser::parseComplexType() {
  consumeToken(Token::kw_complex);

  // Parse the '<'.
  if (parseToken(Token::less, "expected '<' in complex type"))
    return nullptr;

  auto typeLocation = getEncodedSourceLocation(getToken().getLoc());
  auto elementType = parseType();
  if (!elementType ||
      parseToken(Token::greater, "expected '>' in complex type"))
    return nullptr;

  return ComplexType::getChecked(elementType, typeLocation);
}

/// Parse an extended type.
///
///   extended-type ::= (dialect-type | type-alias)
///   dialect-type  ::= `!` dialect-namespace `<` `"` type-data `"` `>`
///   dialect-type  ::= `!` alias-name pretty-dialect-attribute-body?
///   type-alias    ::= `!` alias-name
///
Type Parser::parseExtendedType() {
  return parseExtendedSymbol<Type>(
      *this, Token::exclamation_identifier, state.symbols.typeAliasDefinitions,
      [&](StringRef dialectName, StringRef symbolData,
          llvm::SMLoc loc) -> Type {
        // If we found a registered dialect, then ask it to parse the type.
        if (auto *dialect = state.context->getRegisteredDialect(dialectName)) {
          return parseSymbol<Type>(
              symbolData, state.context, state.symbols, [&](Parser &parser) {
                CustomDialectAsmParser customParser(symbolData, parser);
                return dialect->parseType(customParser);
              });
        }

        // Otherwise, form a new opaque type.
        return OpaqueType::getChecked(
            Identifier::get(dialectName, state.context), symbolData,
            state.context, getEncodedSourceLocation(loc));
      });
}

/// Parse a function type.
///
///   function-type ::= type-list-parens `->` function-result-type
///
Type Parser::parseFunctionType() {
  assert(getToken().is(Token::l_paren));

  SmallVector<Type, 4> arguments, results;
  if (parseTypeListParens(arguments) ||
      parseToken(Token::arrow, "expected '->' in function type") ||
      parseFunctionResultTypes(results))
    return nullptr;

  return builder.getFunctionType(arguments, results);
}

/// Parse the offset and strides from a strided layout specification.
///
///   strided-layout ::= `offset:` dimension `,` `strides: ` stride-list
///
ParseResult Parser::parseStridedLayout(int64_t &offset,
                                       SmallVectorImpl<int64_t> &strides) {
  // Parse offset.
  consumeToken(Token::kw_offset);
  if (!consumeIf(Token::colon))
    return emitError("expected colon after `offset` keyword");
  auto maybeOffset = getToken().getUnsignedIntegerValue();
  bool question = getToken().is(Token::question);
  if (!maybeOffset && !question)
    return emitError("invalid offset");
  offset = maybeOffset ? static_cast<int64_t>(maybeOffset.getValue())
                       : MemRefType::getDynamicStrideOrOffset();
  consumeToken();

  if (!consumeIf(Token::comma))
    return emitError("expected comma after offset value");

  // Parse stride list.
  if (!consumeIf(Token::kw_strides))
    return emitError("expected `strides` keyword after offset specification");
  if (!consumeIf(Token::colon))
    return emitError("expected colon after `strides` keyword");
  if (failed(parseStrideList(strides)))
    return emitError("invalid braces-enclosed stride list");
  if (llvm::any_of(strides, [](int64_t st) { return st == 0; }))
    return emitError("invalid memref stride");

  return success();
}

/// Parse a memref type.
///
///   memref-type ::= ranked-memref-type | unranked-memref-type
///
///   ranked-memref-type ::= `memref` `<` dimension-list-ranked type
///                          (`,` semi-affine-map-composition)? (`,`
///                          memory-space)? `>`
///
///   unranked-memref-type ::= `memref` `<*x` type (`,` memory-space)? `>`
///
///   semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map
///   memory-space ::= integer-literal /* | TODO: address-space-id */
///
Type Parser::parseMemRefType() {
  consumeToken(Token::kw_memref);

  if (parseToken(Token::less, "expected '<' in memref type"))
    return nullptr;

  bool isUnranked;
  SmallVector<int64_t, 4> dimensions;

  if (consumeIf(Token::star)) {
    // This is an unranked memref type.
    isUnranked = true;
    if (parseXInDimensionList())
      return nullptr;

  } else {
    isUnranked = false;
    if (parseDimensionListRanked(dimensions))
      return nullptr;
  }

  // Parse the element type.
  auto typeLoc = getToken().getLoc();
  auto elementType = parseType();
  if (!elementType)
    return nullptr;

  // Parse semi-affine-map-composition.
  SmallVector<AffineMap, 2> affineMapComposition;
  unsigned memorySpace = 0;
  bool parsedMemorySpace = false;

  auto parseElt = [&]() -> ParseResult {
    if (getToken().is(Token::integer)) {
      // Parse memory space.
      if (parsedMemorySpace)
        return emitError("multiple memory spaces specified in memref type");
      auto v = getToken().getUnsignedIntegerValue();
      if (!v.hasValue())
        return emitError("invalid memory space in memref type");
      memorySpace = v.getValue();
      consumeToken(Token::integer);
      parsedMemorySpace = true;
    } else {
      if (isUnranked)
        return emitError("cannot have affine map for unranked memref type");
      if (parsedMemorySpace)
        return emitError("expected memory space to be last in memref type");
      if (getToken().is(Token::kw_offset)) {
        int64_t offset;
        SmallVector<int64_t, 4> strides;
        if (failed(parseStridedLayout(offset, strides)))
          return failure();
        // Construct strided affine map.
        auto map = makeStridedLinearLayoutMap(strides, offset,
                                              elementType.getContext());
        affineMapComposition.push_back(map);
      } else {
        // Parse affine map.
        auto affineMap = parseAttribute();
        if (!affineMap)
          return failure();
        // Verify that the parsed attribute is an affine map.
        if (auto affineMapAttr = affineMap.dyn_cast<AffineMapAttr>())
          affineMapComposition.push_back(affineMapAttr.getValue());
        else
          return emitError("expected affine map in memref type");
      }
    }
    return success();
  };

  // Parse a list of mappings and address space if present.
  if (consumeIf(Token::comma)) {
    // Parse comma separated list of affine maps, followed by memory space.
    if (parseCommaSeparatedListUntil(Token::greater, parseElt,
                                     /*allowEmptyList=*/false)) {
      return nullptr;
    }
  } else {
    if (parseToken(Token::greater, "expected ',' or '>' in memref type"))
      return nullptr;
  }

  if (isUnranked)
    return UnrankedMemRefType::getChecked(elementType, memorySpace,
                                          getEncodedSourceLocation(typeLoc));

  return MemRefType::getChecked(dimensions, elementType, affineMapComposition,
                                memorySpace, getEncodedSourceLocation(typeLoc));
}

/// Parse any type except the function type.
///
///   non-function-type ::= integer-type
///                       | index-type
///                       | float-type
///                       | extended-type
///                       | vector-type
///                       | tensor-type
///                       | memref-type
///                       | complex-type
///                       | tuple-type
///                       | none-type
///
///   index-type ::= `index`
///   float-type ::= `f16` | `bf16` | `f32` | `f64`
///   none-type ::= `none`
///
Type Parser::parseNonFunctionType() {
  switch (getToken().getKind()) {
  default:
    return (emitError("expected non-function type"), nullptr);
  case Token::kw_memref:
    return parseMemRefType();
  case Token::kw_tensor:
    return parseTensorType();
  case Token::kw_complex:
    return parseComplexType();
  case Token::kw_tuple:
    return parseTupleType();
  case Token::kw_vector:
    return parseVectorType();
  // integer-type
  case Token::inttype: {
    auto width = getToken().getIntTypeBitwidth();
    if (!width.hasValue())
      return (emitError("invalid integer width"), nullptr);
    auto loc = getEncodedSourceLocation(getToken().getLoc());
    consumeToken(Token::inttype);
    return IntegerType::getChecked(width.getValue(), builder.getContext(), loc);
  }

  // float-type
  case Token::kw_bf16:
    consumeToken(Token::kw_bf16);
    return builder.getBF16Type();
  case Token::kw_f16:
    consumeToken(Token::kw_f16);
    return builder.getF16Type();
  case Token::kw_f32:
    consumeToken(Token::kw_f32);
    return builder.getF32Type();
  case Token::kw_f64:
    consumeToken(Token::kw_f64);
    return builder.getF64Type();

  // index-type
  case Token::kw_index:
    consumeToken(Token::kw_index);
    return builder.getIndexType();

  // none-type
  case Token::kw_none:
    consumeToken(Token::kw_none);
    return builder.getNoneType();

  // extended type
  case Token::exclamation_identifier:
    return parseExtendedType();
  }
}

/// Parse a tensor type.
///
///   tensor-type ::= `tensor` `<` dimension-list type `>`
///   dimension-list ::= dimension-list-ranked | `*x`
///
Type Parser::parseTensorType() {
  consumeToken(Token::kw_tensor);

  if (parseToken(Token::less, "expected '<' in tensor type"))
    return nullptr;

  bool isUnranked;
  SmallVector<int64_t, 4> dimensions;

  if (consumeIf(Token::star)) {
    // This is an unranked tensor type.
    isUnranked = true;

    if (parseXInDimensionList())
      return nullptr;

  } else {
    isUnranked = false;
    if (parseDimensionListRanked(dimensions))
      return nullptr;
  }

  // Parse the element type.
  auto typeLocation = getEncodedSourceLocation(getToken().getLoc());
  auto elementType = parseType();
  if (!elementType || parseToken(Token::greater, "expected '>' in tensor type"))
    return nullptr;

  if (isUnranked)
    return UnrankedTensorType::getChecked(elementType, typeLocation);
  return RankedTensorType::getChecked(dimensions, elementType, typeLocation);
}

/// Parse a tuple type.
///
///   tuple-type ::= `tuple` `<` (type (`,` type)*)? `>`
///
Type Parser::parseTupleType() {
  consumeToken(Token::kw_tuple);

  // Parse the '<'.
  if (parseToken(Token::less, "expected '<' in tuple type"))
    return nullptr;

  // Check for an empty tuple by directly parsing '>'.
  if (consumeIf(Token::greater))
    return TupleType::get(getContext());

  // Parse the element types and the '>'.
  SmallVector<Type, 4> types;
  if (parseTypeListNoParens(types) ||
      parseToken(Token::greater, "expected '>' in tuple type"))
    return nullptr;

  return TupleType::get(types, getContext());
}

/// Parse a vector type.
///
///   vector-type ::= `vector` `<` non-empty-static-dimension-list type `>`
///   non-empty-static-dimension-list ::= decimal-literal `x`
///                                       static-dimension-list
///   static-dimension-list ::= (decimal-literal `x`)*
///
VectorType Parser::parseVectorType() {
  consumeToken(Token::kw_vector);

  if (parseToken(Token::less, "expected '<' in vector type"))
    return nullptr;

  SmallVector<int64_t, 4> dimensions;
  if (parseDimensionListRanked(dimensions, /*allowDynamic=*/false))
    return nullptr;
  if (dimensions.empty())
    return (emitError("expected dimension size in vector type"), nullptr);

  // Parse the element type.
  auto typeLoc = getToken().getLoc();
  auto elementType = parseType();
  if (!elementType || parseToken(Token::greater, "expected '>' in vector type"))
    return nullptr;

  return VectorType::getChecked(dimensions, elementType,
                                getEncodedSourceLocation(typeLoc));
}

/// Parse a dimension list of a tensor or memref type.  This populates the
/// dimension list, using -1 for the `?` dimensions if `allowDynamic` is set and
/// errors out on `?` otherwise.
///
///   dimension-list-ranked ::= (dimension `x`)*
///   dimension ::= `?` | decimal-literal
///
/// When `allowDynamic` is not set, this is used to parse:
///
///   static-dimension-list ::= (decimal-literal `x`)*
ParseResult
Parser::parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions,
                                 bool allowDynamic) {
  while (getToken().isAny(Token::integer, Token::question)) {
    if (consumeIf(Token::question)) {
      if (!allowDynamic)
        return emitError("expected static shape");
      dimensions.push_back(-1);
    } else {
      // Hexadecimal integer literals (starting with `0x`) are not allowed in
      // aggregate type declarations.  Therefore, `0xf32` should be processed as
      // a sequence of separate elements `0`, `x`, `f32`.
      if (getTokenSpelling().size() > 1 && getTokenSpelling()[1] == 'x') {
        // We can get here only if the token is an integer literal.  Hexadecimal
        // integer literals can only start with `0x` (`1x` wouldn't lex as a
        // literal, just `1` would, at which point we don't get into this
        // branch).
        assert(getTokenSpelling()[0] == '0' && "invalid integer literal");
        dimensions.push_back(0);
        state.lex.resetPointer(getTokenSpelling().data() + 1);
        consumeToken();
      } else {
        // Make sure this integer value is in bound and valid.
        auto dimension = getToken().getUnsignedIntegerValue();
        if (!dimension.hasValue())
          return emitError("invalid dimension");
        dimensions.push_back((int64_t)dimension.getValue());
        consumeToken(Token::integer);
      }
    }

    // Make sure we have an 'x' or something like 'xbf32'.
    if (parseXInDimensionList())
      return failure();
  }

  return success();
}

/// Parse an 'x' token in a dimension list, handling the case where the x is
/// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next
/// token.
ParseResult Parser::parseXInDimensionList() {
  if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x')
    return emitError("expected 'x' in dimension list");

  // If we had a prefix of 'x', lex the next token immediately after the 'x'.
  if (getTokenSpelling().size() != 1)
    state.lex.resetPointer(getTokenSpelling().data() + 1);

  // Consume the 'x'.
  consumeToken(Token::bare_identifier);

  return success();
}

// Parse a comma-separated list of dimensions, possibly empty:
//   stride-list ::= `[` (dimension (`,` dimension)*)? `]`
ParseResult Parser::parseStrideList(SmallVectorImpl<int64_t> &dimensions) {
  if (!consumeIf(Token::l_square))
    return failure();
  // Empty list early exit.
  if (consumeIf(Token::r_square))
    return success();
  while (true) {
    if (consumeIf(Token::question)) {
      dimensions.push_back(MemRefType::getDynamicStrideOrOffset());
    } else {
      // This must be an integer value.
      int64_t val;
      if (getToken().getSpelling().getAsInteger(10, val))
        return emitError("invalid integer value: ") << getToken().getSpelling();
      // Make sure it is not the one value for `?`.
      if (ShapedType::isDynamic(val))
        return emitError("invalid integer value: ")
               << getToken().getSpelling()
               << ", use `?` to specify a dynamic dimension";
      dimensions.push_back(val);
      consumeToken(Token::integer);
    }
    if (!consumeIf(Token::comma))
      break;
  }
  if (!consumeIf(Token::r_square))
    return failure();
  return success();
}

//===----------------------------------------------------------------------===//
// Attribute parsing.
//===----------------------------------------------------------------------===//

/// Return the symbol reference referred to by the given token, that is known to
/// be an @-identifier.
static std::string extractSymbolReference(Token tok) {
  assert(tok.is(Token::at_identifier) && "expected valid @-identifier");
  StringRef nameStr = tok.getSpelling().drop_front();

  // Check to see if the reference is a string literal, or a bare identifier.
  if (nameStr.front() == '"')
    return tok.getStringValue();
  return nameStr;
}

/// Parse an arbitrary attribute.
///
///  attribute-value ::= `unit`
///                    | bool-literal
///                    | integer-literal (`:` (index-type | integer-type))?
///                    | float-literal (`:` float-type)?
///                    | string-literal (`:` type)?
///                    | type
///                    | `[` (attribute-value (`,` attribute-value)*)? `]`
///                    | `{` (attribute-entry (`,` attribute-entry)*)? `}`
///                    | symbol-ref-id (`::` symbol-ref-id)*
///                    | `dense` `<` attribute-value `>` `:`
///                      (tensor-type | vector-type)
///                    | `sparse` `<` attribute-value `,` attribute-value `>`
///                      `:` (tensor-type | vector-type)
///                    | `opaque` `<` dialect-namespace  `,` hex-string-literal
///                      `>` `:` (tensor-type | vector-type)
///                    | extended-attribute
///
Attribute Parser::parseAttribute(Type type) {
  switch (getToken().getKind()) {
  // Parse an AffineMap or IntegerSet attribute.
  case Token::kw_affine_map: {
    consumeToken(Token::kw_affine_map);

    AffineMap map;
    if (parseToken(Token::less, "expected '<' in affine map") ||
        parseAffineMapReference(map) ||
        parseToken(Token::greater, "expected '>' in affine map"))
      return Attribute();
    return AffineMapAttr::get(map);
  }
  case Token::kw_affine_set: {
    consumeToken(Token::kw_affine_set);

    IntegerSet set;
    if (parseToken(Token::less, "expected '<' in integer set") ||
        parseIntegerSetReference(set) ||
        parseToken(Token::greater, "expected '>' in integer set"))
      return Attribute();
    return IntegerSetAttr::get(set);
  }

  // Parse an array attribute.
  case Token::l_square: {
    consumeToken(Token::l_square);

    SmallVector<Attribute, 4> elements;
    auto parseElt = [&]() -> ParseResult {
      elements.push_back(parseAttribute());
      return elements.back() ? success() : failure();
    };

    if (parseCommaSeparatedListUntil(Token::r_square, parseElt))
      return nullptr;
    return builder.getArrayAttr(elements);
  }

  // Parse a boolean attribute.
  case Token::kw_false:
    consumeToken(Token::kw_false);
    return builder.getBoolAttr(false);
  case Token::kw_true:
    consumeToken(Token::kw_true);
    return builder.getBoolAttr(true);

  // Parse a dense elements attribute.
  case Token::kw_dense:
    return parseDenseElementsAttr();

  // Parse a dictionary attribute.
  case Token::l_brace: {
    SmallVector<NamedAttribute, 4> elements;
    if (parseAttributeDict(elements))
      return nullptr;
    return builder.getDictionaryAttr(elements);
  }

  // Parse an extended attribute, i.e. alias or dialect attribute.
  case Token::hash_identifier:
    return parseExtendedAttr(type);

  // Parse floating point and integer attributes.
  case Token::floatliteral:
    return parseFloatAttr(type, /*isNegative=*/false);
  case Token::integer:
    return parseDecOrHexAttr(type, /*isNegative=*/false);
  case Token::minus: {
    consumeToken(Token::minus);
    if (getToken().is(Token::integer))
      return parseDecOrHexAttr(type, /*isNegative=*/true);
    if (getToken().is(Token::floatliteral))
      return parseFloatAttr(type, /*isNegative=*/true);

    return (emitError("expected constant integer or floating point value"),
            nullptr);
  }

  // Parse a location attribute.
  case Token::kw_loc: {
    LocationAttr attr;
    return failed(parseLocation(attr)) ? Attribute() : attr;
  }

  // Parse an opaque elements attribute.
  case Token::kw_opaque:
    return parseOpaqueElementsAttr();

  // Parse a sparse elements attribute.
  case Token::kw_sparse:
    return parseSparseElementsAttr();

  // Parse a string attribute.
  case Token::string: {
    auto val = getToken().getStringValue();
    consumeToken(Token::string);
    // Parse the optional trailing colon type if one wasn't explicitly provided.
    if (!type && consumeIf(Token::colon) && !(type = parseType()))
      return Attribute();

    return type ? StringAttr::get(val, type)
                : StringAttr::get(val, getContext());
  }

  // Parse a symbol reference attribute.
  case Token::at_identifier: {
    std::string nameStr = extractSymbolReference(getToken());
    consumeToken(Token::at_identifier);

    // Parse any nested references.
    std::vector<FlatSymbolRefAttr> nestedRefs;
    while (getToken().is(Token::colon)) {
      // Check for the '::' prefix.
      const char *curPointer = getToken().getLoc().getPointer();
      consumeToken(Token::colon);
      if (!consumeIf(Token::colon)) {
        state.lex.resetPointer(curPointer);
        consumeToken();
        break;
      }
      // Parse the reference itself.
      auto curLoc = getToken().getLoc();
      if (getToken().isNot(Token::at_identifier)) {
        emitError(curLoc, "expected nested symbol reference identifier");
        return Attribute();
      }

      std::string nameStr = extractSymbolReference(getToken());
      consumeToken(Token::at_identifier);
      nestedRefs.push_back(SymbolRefAttr::get(nameStr, getContext()));
    }

    return builder.getSymbolRefAttr(nameStr, nestedRefs);
  }

  // Parse a 'unit' attribute.
  case Token::kw_unit:
    consumeToken(Token::kw_unit);
    return builder.getUnitAttr();

  default:
    // Parse a type attribute.
    if (Type type = parseType())
      return TypeAttr::get(type);
    return nullptr;
  }
}

/// Attribute dictionary.
///
///   attribute-dict ::= `{` `}`
///                    | `{` attribute-entry (`,` attribute-entry)* `}`
///   attribute-entry ::= bare-id `=` attribute-value
///
ParseResult
Parser::parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes) {
  if (parseToken(Token::l_brace, "expected '{' in attribute dictionary"))
    return failure();

  auto parseElt = [&]() -> ParseResult {
    // We allow keywords as attribute names.
    if (getToken().isNot(Token::bare_identifier, Token::inttype) &&
        !getToken().isKeyword())
      return emitError("expected attribute name");
    Identifier nameId = builder.getIdentifier(getTokenSpelling());
    consumeToken();

    // Try to parse the '=' for the attribute value.
    if (!consumeIf(Token::equal)) {
      // If there is no '=', we treat this as a unit attribute.
      attributes.push_back({nameId, builder.getUnitAttr()});
      return success();
    }

    auto attr = parseAttribute();
    if (!attr)
      return failure();

    attributes.push_back({nameId, attr});
    return success();
  };

  if (parseCommaSeparatedListUntil(Token::r_brace, parseElt))
    return failure();

  return success();
}

/// Parse an extended attribute.
///
///   extended-attribute ::= (dialect-attribute | attribute-alias)
///   dialect-attribute  ::= `#` dialect-namespace `<` `"` attr-data `"` `>`
///   dialect-attribute  ::= `#` alias-name pretty-dialect-sym-body?
///   attribute-alias    ::= `#` alias-name
///
Attribute Parser::parseExtendedAttr(Type type) {
  Attribute attr = parseExtendedSymbol<Attribute>(
      *this, Token::hash_identifier, state.symbols.attributeAliasDefinitions,
      [&](StringRef dialectName, StringRef symbolData,
          llvm::SMLoc loc) -> Attribute {
        // Parse an optional trailing colon type.
        Type attrType = type;
        if (consumeIf(Token::colon) && !(attrType = parseType()))
          return Attribute();

        // If we found a registered dialect, then ask it to parse the attribute.
        if (auto *dialect = state.context->getRegisteredDialect(dialectName)) {
          return parseSymbol<Attribute>(
              symbolData, state.context, state.symbols, [&](Parser &parser) {
                CustomDialectAsmParser customParser(symbolData, parser);
                return dialect->parseAttribute(customParser, attrType);
              });
        }

        // Otherwise, form a new opaque attribute.
        return OpaqueAttr::getChecked(
            Identifier::get(dialectName, state.context), symbolData,
            attrType ? attrType : NoneType::get(state.context),
            getEncodedSourceLocation(loc));
      });

  // Ensure that the attribute has the same type as requested.
  if (attr && type && attr.getType() != type) {
    emitError("attribute type different than expected: expected ")
        << type << ", but got " << attr.getType();
    return nullptr;
  }
  return attr;
}

/// Parse a float attribute.
Attribute Parser::parseFloatAttr(Type type, bool isNegative) {
  auto val = getToken().getFloatingPointValue();
  if (!val.hasValue())
    return (emitError("floating point value too large for attribute"), nullptr);
  consumeToken(Token::floatliteral);
  if (!type) {
    // Default to F64 when no type is specified.
    if (!consumeIf(Token::colon))
      type = builder.getF64Type();
    else if (!(type = parseType()))
      return nullptr;
  }
  if (!type.isa<FloatType>())
    return (emitError("floating point value not valid for specified type"),
            nullptr);
  return FloatAttr::get(type, isNegative ? -val.getValue() : val.getValue());
}

/// Construct a float attribute bitwise equivalent to the integer literal.
static FloatAttr buildHexadecimalFloatLiteral(Parser *p, FloatType type,
                                              uint64_t value) {
  int width = type.getIntOrFloatBitWidth();
  APInt apInt(width, value);
  if (apInt != value) {
    p->emitError("hexadecimal float constant out of range for type");
    return nullptr;
  }
  APFloat apFloat(type.getFloatSemantics(), apInt);
  return p->builder.getFloatAttr(type, apFloat);
}

/// Parse a decimal or a hexadecimal literal, which can be either an integer
/// or a float attribute.
Attribute Parser::parseDecOrHexAttr(Type type, bool isNegative) {
  auto val = getToken().getUInt64IntegerValue();
  if (!val.hasValue())
    return (emitError("integer constant out of range for attribute"), nullptr);

  // Remember if the literal is hexadecimal.
  StringRef spelling = getToken().getSpelling();
  auto loc = state.curToken.getLoc();
  bool isHex = spelling.size() > 1 && spelling[1] == 'x';

  consumeToken(Token::integer);
  if (!type) {
    // Default to i64 if not type is specified.
    if (!consumeIf(Token::colon))
      type = builder.getIntegerType(64);
    else if (!(type = parseType()))
      return nullptr;
  }

  if (auto floatType = type.dyn_cast<FloatType>()) {
    // TODO(zinenko): Update once hex format for bfloat16 is supported.
    if (type.isBF16())
      return emitError(loc,
                       "hexadecimal float literal not supported for bfloat16"),
             nullptr;
    if (isNegative)
      return emitError(
                 loc,
                 "hexadecimal float literal should not have a leading minus"),
             nullptr;
    if (!isHex) {
      emitError(loc, "unexpected decimal integer literal for a float attribute")
              .attachNote()
          << "add a trailing dot to make the literal a float";
      return nullptr;
    }

    // Construct a float attribute bitwise equivalent to the integer literal.
    return buildHexadecimalFloatLiteral(this, floatType, *val);
  }

  if (!type.isIntOrIndex())
    return emitError(loc, "integer literal not valid for specified type"),
           nullptr;

  // Parse the integer literal.
  int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth();
  APInt apInt(width, *val, isNegative);
  if (apInt != *val)
    return emitError(loc, "integer constant out of range for attribute"),
           nullptr;

  // Otherwise construct an integer attribute.
  if (isNegative ? (int64_t)-val.getValue() >= 0 : (int64_t)val.getValue() < 0)
    return emitError(loc, "integer constant out of range for attribute"),
           nullptr;

  return builder.getIntegerAttr(type, isNegative ? -apInt : apInt);
}

/// Parse an opaque elements attribute.
Attribute Parser::parseOpaqueElementsAttr() {
  consumeToken(Token::kw_opaque);
  if (parseToken(Token::less, "expected '<' after 'opaque'"))
    return nullptr;

  if (getToken().isNot(Token::string))
    return (emitError("expected dialect namespace"), nullptr);

  auto name = getToken().getStringValue();
  auto *dialect = builder.getContext()->getRegisteredDialect(name);
  // TODO(shpeisman): Allow for having an unknown dialect on an opaque
  // attribute. Otherwise, it can't be roundtripped without having the dialect
  // registered.
  if (!dialect)
    return (emitError("no registered dialect with namespace '" + name + "'"),
            nullptr);

  consumeToken(Token::string);
  if (parseToken(Token::comma, "expected ','"))
    return nullptr;

  if (getToken().getKind() != Token::string)
    return (emitError("opaque string should start with '0x'"), nullptr);

  auto val = getToken().getStringValue();
  if (val.size() < 2 || val[0] != '0' || val[1] != 'x')
    return (emitError("opaque string should start with '0x'"), nullptr);

  val = val.substr(2);
  if (!llvm::all_of(val, llvm::isHexDigit))
    return (emitError("opaque string only contains hex digits"), nullptr);

  consumeToken(Token::string);
  if (parseToken(Token::greater, "expected '>'") ||
      parseToken(Token::colon, "expected ':'"))
    return nullptr;

  auto type = parseElementsLiteralType();
  if (!type)
    return nullptr;

  return OpaqueElementsAttr::get(dialect, type, llvm::fromHex(val));
}

namespace {
class TensorLiteralParser {
public:
  TensorLiteralParser(Parser &p) : p(p) {}

  ParseResult parse() {
    if (p.getToken().is(Token::l_square))
      return parseList(shape);
    return parseElement();
  }

  /// Build a dense attribute instance with the parsed elements and the given
  /// shaped type.
  DenseElementsAttr getAttr(llvm::SMLoc loc, ShapedType type);

  ArrayRef<int64_t> getShape() const { return shape; }

private:
  enum class ElementKind { Boolean, Integer, Float };

  /// Return a string to represent the given element kind.
  const char *getElementKindStr(ElementKind kind) {
    switch (kind) {
    case ElementKind::Boolean:
      return "'boolean'";
    case ElementKind::Integer:
      return "'integer'";
    case ElementKind::Float:
      return "'float'";
    }
    llvm_unreachable("unknown element kind");
  }

  /// Build a Dense Integer attribute for the given type.
  DenseElementsAttr getIntAttr(llvm::SMLoc loc, ShapedType type,
                               IntegerType eltTy);

  /// Build a Dense Float attribute for the given type.
  DenseElementsAttr getFloatAttr(llvm::SMLoc loc, ShapedType type,
                                 FloatType eltTy);

  /// Parse a single element, returning failure if it isn't a valid element
  /// literal. For example:
  /// parseElement(1) -> Success, 1
  /// parseElement([1]) -> Failure
  ParseResult parseElement();

  /// Parse a list of either lists or elements, returning the dimensions of the
  /// parsed sub-tensors in dims. For example:
  ///   parseList([1, 2, 3]) -> Success, [3]
  ///   parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
  ///   parseList([[1, 2], 3]) -> Failure
  ///   parseList([[1, [2, 3]], [4, [5]]]) -> Failure
  ParseResult parseList(SmallVectorImpl<int64_t> &dims);

  Parser &p;

  /// The shape inferred from the parsed elements.
  SmallVector<int64_t, 4> shape;

  /// Storage used when parsing elements, this is a pair of <is_negated, token>.
  std::vector<std::pair<bool, Token>> storage;

  /// A flag that indicates the type of elements that have been parsed.
  Optional<ElementKind> knownEltKind;
};
} // namespace

/// Build a dense attribute instance with the parsed elements and the given
/// shaped type.
DenseElementsAttr TensorLiteralParser::getAttr(llvm::SMLoc loc,
                                               ShapedType type) {
  // Check that the parsed storage size has the same number of elements to the
  // type, or is a known splat.
  if (!shape.empty() && getShape() != type.getShape()) {
    p.emitError(loc) << "inferred shape of elements literal ([" << getShape()
                     << "]) does not match type ([" << type.getShape() << "])";
    return nullptr;
  }

  // If the type is an integer, build a set of APInt values from the storage
  // with the correct bitwidth.
  if (auto intTy = type.getElementType().dyn_cast<IntegerType>())
    return getIntAttr(loc, type, intTy);

  // Otherwise, this must be a floating point type.
  auto floatTy = type.getElementType().dyn_cast<FloatType>();
  if (!floatTy) {
    p.emitError(loc) << "expected floating-point or integer element type, got "
                     << type.getElementType();
    return nullptr;
  }
  return getFloatAttr(loc, type, floatTy);
}

/// Build a Dense Integer attribute for the given type.
DenseElementsAttr TensorLiteralParser::getIntAttr(llvm::SMLoc loc,
                                                  ShapedType type,
                                                  IntegerType eltTy) {
  std::vector<APInt> intElements;
  intElements.reserve(storage.size());
  for (const auto &signAndToken : storage) {
    bool isNegative = signAndToken.first;
    const Token &token = signAndToken.second;

    // Check to see if floating point values were parsed.
    if (token.is(Token::floatliteral)) {
      p.emitError() << "expected integer elements, but parsed floating-point";
      return nullptr;
    }

    assert(token.isAny(Token::integer, Token::kw_true, Token::kw_false) &&
           "unexpected token type");
    if (token.isAny(Token::kw_true, Token::kw_false)) {
      if (!eltTy.isInteger(1))
        p.emitError() << "expected i1 type for 'true' or 'false' values";
      APInt apInt(eltTy.getWidth(), token.is(Token::kw_true),
                  /*isSigned=*/false);
      intElements.push_back(apInt);
      continue;
    }

    // Create APInt values for each element with the correct bitwidth.
    auto val = token.getUInt64IntegerValue();
    if (!val.hasValue() || (isNegative ? (int64_t)-val.getValue() >= 0
                                       : (int64_t)val.getValue() < 0)) {
      p.emitError(token.getLoc(),
                  "integer constant out of range for attribute");
      return nullptr;
    }
    APInt apInt(eltTy.getWidth(), val.getValue(), isNegative);
    if (apInt != val.getValue())
      return (p.emitError("integer constant out of range for type"), nullptr);
    intElements.push_back(isNegative ? -apInt : apInt);
  }

  return DenseElementsAttr::get(type, intElements);
}

/// Build a Dense Float attribute for the given type.
DenseElementsAttr TensorLiteralParser::getFloatAttr(llvm::SMLoc loc,
                                                    ShapedType type,
                                                    FloatType eltTy) {
  std::vector<Attribute> floatValues;
  floatValues.reserve(storage.size());
  for (const auto &signAndToken : storage) {
    bool isNegative = signAndToken.first;
    const Token &token = signAndToken.second;

    // Handle hexadecimal float literals.
    if (token.is(Token::integer) && token.getSpelling().startswith("0x")) {
      if (isNegative) {
        p.emitError(token.getLoc())
            << "hexadecimal float literal should not have a leading minus";
        return nullptr;
      }
      auto val = token.getUInt64IntegerValue();
      if (!val.hasValue()) {
        p.emitError("hexadecimal float constant out of range for attribute");
        return nullptr;
      }
      FloatAttr attr = buildHexadecimalFloatLiteral(&p, eltTy, *val);
      if (!attr)
        return nullptr;
      floatValues.push_back(attr);
      continue;
    }

    // Check to see if any decimal integers or booleans were parsed.
    if (!token.is(Token::floatliteral)) {
      p.emitError() << "expected floating-point elements, but parsed integer";
      return nullptr;
    }

    // Build the float values from tokens.
    auto val = token.getFloatingPointValue();
    if (!val.hasValue()) {
      p.emitError("floating point value too large for attribute");
      return nullptr;
    }
    floatValues.push_back(FloatAttr::get(eltTy, isNegative ? -*val : *val));
  }

  return DenseElementsAttr::get(type, floatValues);
}

ParseResult TensorLiteralParser::parseElement() {
  switch (p.getToken().getKind()) {
  // Parse a boolean element.
  case Token::kw_true:
  case Token::kw_false:
  case Token::floatliteral:
  case Token::integer:
    storage.emplace_back(/*isNegative=*/false, p.getToken());
    p.consumeToken();
    break;

  // Parse a signed integer or a negative floating-point element.
  case Token::minus:
    p.consumeToken(Token::minus);
    if (!p.getToken().isAny(Token::floatliteral, Token::integer))
      return p.emitError("expected integer or floating point literal");
    storage.emplace_back(/*isNegative=*/true, p.getToken());
    p.consumeToken();
    break;

  default:
    return p.emitError("expected element literal of primitive type");
  }

  return success();
}

/// Parse a list of either lists or elements, returning the dimensions of the
/// parsed sub-tensors in dims. For example:
///   parseList([1, 2, 3]) -> Success, [3]
///   parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
///   parseList([[1, 2], 3]) -> Failure
///   parseList([[1, [2, 3]], [4, [5]]]) -> Failure
ParseResult TensorLiteralParser::parseList(SmallVectorImpl<int64_t> &dims) {
  p.consumeToken(Token::l_square);

  auto checkDims = [&](const SmallVectorImpl<int64_t> &prevDims,
                       const SmallVectorImpl<int64_t> &newDims) -> ParseResult {
    if (prevDims == newDims)
      return success();
    return p.emitError("tensor literal is invalid; ranks are not consistent "
                       "between elements");
  };

  bool first = true;
  SmallVector<int64_t, 4> newDims;
  unsigned size = 0;
  auto parseCommaSeparatedList = [&]() -> ParseResult {
    SmallVector<int64_t, 4> thisDims;
    if (p.getToken().getKind() == Token::l_square) {
      if (parseList(thisDims))
        return failure();
    } else if (parseElement()) {
      return failure();
    }
    ++size;
    if (!first)
      return checkDims(newDims, thisDims);
    newDims = thisDims;
    first = false;
    return success();
  };
  if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList))
    return failure();

  // Return the sublists' dimensions with 'size' prepended.
  dims.clear();
  dims.push_back(size);
  dims.append(newDims.begin(), newDims.end());
  return success();
}

/// Parse a dense elements attribute.
Attribute Parser::parseDenseElementsAttr() {
  consumeToken(Token::kw_dense);
  if (parseToken(Token::less, "expected '<' after 'dense'"))
    return nullptr;

  // Parse the literal data.
  TensorLiteralParser literalParser(*this);
  if (literalParser.parse())
    return nullptr;

  if (parseToken(Token::greater, "expected '>'") ||
      parseToken(Token::colon, "expected ':'"))
    return nullptr;

  auto typeLoc = getToken().getLoc();
  auto type = parseElementsLiteralType();
  if (!type)
    return nullptr;
  return literalParser.getAttr(typeLoc, type);
}

/// Shaped type for elements attribute.
///
///   elements-literal-type ::= vector-type | ranked-tensor-type
///
/// This method also checks the type has static shape.
ShapedType Parser::parseElementsLiteralType() {
  auto type = parseType();
  if (!type)
    return nullptr;

  if (!type.isa<RankedTensorType>() && !type.isa<VectorType>()) {
    emitError("elements literal must be a ranked tensor or vector type");
    return nullptr;
  }

  auto sType = type.cast<ShapedType>();
  if (!sType.hasStaticShape())
    return (emitError("elements literal type must have static shape"), nullptr);

  return sType;
}

/// Parse a sparse elements attribute.
Attribute Parser::parseSparseElementsAttr() {
  consumeToken(Token::kw_sparse);
  if (parseToken(Token::less, "Expected '<' after 'sparse'"))
    return nullptr;

  /// Parse indices
  auto indicesLoc = getToken().getLoc();
  TensorLiteralParser indiceParser(*this);
  if (indiceParser.parse())
    return nullptr;

  if (parseToken(Token::comma, "expected ','"))
    return nullptr;

  /// Parse values.
  auto valuesLoc = getToken().getLoc();
  TensorLiteralParser valuesParser(*this);
  if (valuesParser.parse())
    return nullptr;

  if (parseToken(Token::greater, "expected '>'") ||
      parseToken(Token::colon, "expected ':'"))
    return nullptr;

  auto type = parseElementsLiteralType();
  if (!type)
    return nullptr;

  // If the indices are a splat, i.e. the literal parser parsed an element and
  // not a list, we set the shape explicitly. The indices are represented by a
  // 2-dimensional shape where the second dimension is the rank of the type.
  // Given that the parsed indices is a splat, we know that we only have one
  // indice and thus one for the first dimension.
  auto indiceEltType = builder.getIntegerType(64);
  ShapedType indicesType;
  if (indiceParser.getShape().empty()) {
    indicesType = RankedTensorType::get({1, type.getRank()}, indiceEltType);
  } else {
    // Otherwise, set the shape to the one parsed by the literal parser.
    indicesType = RankedTensorType::get(indiceParser.getShape(), indiceEltType);
  }
  auto indices = indiceParser.getAttr(indicesLoc, indicesType);

  // If the values are a splat, set the shape explicitly based on the number of
  // indices. The number of indices is encoded in the first dimension of the
  // indice shape type.
  auto valuesEltType = type.getElementType();
  ShapedType valuesType =
      valuesParser.getShape().empty()
          ? RankedTensorType::get({indicesType.getDimSize(0)}, valuesEltType)
          : RankedTensorType::get(valuesParser.getShape(), valuesEltType);
  auto values = valuesParser.getAttr(valuesLoc, valuesType);

  /// Sanity check.
  if (valuesType.getRank() != 1)
    return (emitError("expected 1-d tensor for values"), nullptr);

  auto sameShape = (indicesType.getRank() == 1) ||
                   (type.getRank() == indicesType.getDimSize(1));
  auto sameElementNum = indicesType.getDimSize(0) == valuesType.getDimSize(0);
  if (!sameShape || !sameElementNum) {
    emitError() << "expected shape ([" << type.getShape()
                << "]); inferred shape of indices literal (["
                << indicesType.getShape()
                << "]); inferred shape of values literal (["
                << valuesType.getShape() << "])";
    return nullptr;
  }

  // Build the sparse elements attribute by the indices and values.
  return SparseElementsAttr::get(type, indices, values);
}

//===----------------------------------------------------------------------===//
// Location parsing.
//===----------------------------------------------------------------------===//

/// Parse a location.
///
///   location           ::= `loc` inline-location
///   inline-location    ::= '(' location-inst ')'
///
ParseResult Parser::parseLocation(LocationAttr &loc) {
  // Check for 'loc' identifier.
  if (parseToken(Token::kw_loc, "expected 'loc' keyword"))
    return emitError();

  // Parse the inline-location.
  if (parseToken(Token::l_paren, "expected '(' in inline location") ||
      parseLocationInstance(loc) ||
      parseToken(Token::r_paren, "expected ')' in inline location"))
    return failure();
  return success();
}

/// Specific location instances.
///
/// location-inst ::= filelinecol-location |
///                   name-location |
///                   callsite-location |
///                   fused-location |
///                   unknown-location
/// filelinecol-location ::= string-literal ':' integer-literal
///                                         ':' integer-literal
/// name-location ::= string-literal
/// callsite-location ::= 'callsite' '(' location-inst 'at' location-inst ')'
/// fused-location ::= fused ('<' attribute-value '>')?
///                    '[' location-inst (location-inst ',')* ']'
/// unknown-location ::= 'unknown'
///
ParseResult Parser::parseCallSiteLocation(LocationAttr &loc) {
  consumeToken(Token::bare_identifier);

  // Parse the '('.
  if (parseToken(Token::l_paren, "expected '(' in callsite location"))
    return failure();

  // Parse the callee location.
  LocationAttr calleeLoc;
  if (parseLocationInstance(calleeLoc))
    return failure();

  // Parse the 'at'.
  if (getToken().isNot(Token::bare_identifier) ||
      getToken().getSpelling() != "at")
    return emitError("expected 'at' in callsite location");
  consumeToken(Token::bare_identifier);

  // Parse the caller location.
  LocationAttr callerLoc;
  if (parseLocationInstance(callerLoc))
    return failure();

  // Parse the ')'.
  if (parseToken(Token::r_paren, "expected ')' in callsite location"))
    return failure();

  // Return the callsite location.
  loc = CallSiteLoc::get(calleeLoc, callerLoc);
  return success();
}

ParseResult Parser::parseFusedLocation(LocationAttr &loc) {
  consumeToken(Token::bare_identifier);

  // Try to parse the optional metadata.
  Attribute metadata;
  if (consumeIf(Token::less)) {
    metadata = parseAttribute();
    if (!metadata)
      return emitError("expected valid attribute metadata");
    // Parse the '>' token.
    if (parseToken(Token::greater,
                   "expected '>' after fused location metadata"))
      return failure();
  }

  SmallVector<Location, 4> locations;
  auto parseElt = [&] {
    LocationAttr newLoc;
    if (parseLocationInstance(newLoc))
      return failure();
    locations.push_back(newLoc);
    return success();
  };

  if (parseToken(Token::l_square, "expected '[' in fused location") ||
      parseCommaSeparatedList(parseElt) ||
      parseToken(Token::r_square, "expected ']' in fused location"))
    return failure();

  // Return the fused location.
  loc = FusedLoc::get(locations, metadata, getContext());
  return success();
}

ParseResult Parser::parseNameOrFileLineColLocation(LocationAttr &loc) {
  auto *ctx = getContext();
  auto str = getToken().getStringValue();
  consumeToken(Token::string);

  // If the next token is ':' this is a filelinecol location.
  if (consumeIf(Token::colon)) {
    // Parse the line number.
    if (getToken().isNot(Token::integer))
      return emitError("expected integer line number in FileLineColLoc");
    auto line = getToken().getUnsignedIntegerValue();
    if (!line.hasValue())
      return emitError("expected integer line number in FileLineColLoc");
    consumeToken(Token::integer);

    // Parse the ':'.
    if (parseToken(Token::colon, "expected ':' in FileLineColLoc"))
      return failure();

    // Parse the column number.
    if (getToken().isNot(Token::integer))
      return emitError("expected integer column number in FileLineColLoc");
    auto column = getToken().getUnsignedIntegerValue();
    if (!column.hasValue())
      return emitError("expected integer column number in FileLineColLoc");
    consumeToken(Token::integer);

    loc = FileLineColLoc::get(str, line.getValue(), column.getValue(), ctx);
    return success();
  }

  // Otherwise, this is a NameLoc.

  // Check for a child location.
  if (consumeIf(Token::l_paren)) {
    auto childSourceLoc = getToken().getLoc();

    // Parse the child location.
    LocationAttr childLoc;
    if (parseLocationInstance(childLoc))
      return failure();

    // The child must not be another NameLoc.
    if (childLoc.isa<NameLoc>())
      return emitError(childSourceLoc,
                       "child of NameLoc cannot be another NameLoc");
    loc = NameLoc::get(Identifier::get(str, ctx), childLoc);

    // Parse the closing ')'.
    if (parseToken(Token::r_paren,
                   "expected ')' after child location of NameLoc"))
      return failure();
  } else {
    loc = NameLoc::get(Identifier::get(str, ctx), ctx);
  }

  return success();
}

ParseResult Parser::parseLocationInstance(LocationAttr &loc) {
  // Handle either name or filelinecol locations.
  if (getToken().is(Token::string))
    return parseNameOrFileLineColLocation(loc);

  // Bare tokens required for other cases.
  if (!getToken().is(Token::bare_identifier))
    return emitError("expected location instance");

  // Check for the 'callsite' signifying a callsite location.
  if (getToken().getSpelling() == "callsite")
    return parseCallSiteLocation(loc);

  // If the token is 'fused', then this is a fused location.
  if (getToken().getSpelling() == "fused")
    return parseFusedLocation(loc);

  // Check for a 'unknown' for an unknown location.
  if (getToken().getSpelling() == "unknown") {
    consumeToken(Token::bare_identifier);
    loc = UnknownLoc::get(getContext());
    return success();
  }

  return emitError("expected location instance");
}

//===----------------------------------------------------------------------===//
// Affine parsing.
//===----------------------------------------------------------------------===//

/// Lower precedence ops (all at the same precedence level). LNoOp is false in
/// the boolean sense.
enum AffineLowPrecOp {
  /// Null value.
  LNoOp,
  Add,
  Sub
};

/// Higher precedence ops - all at the same precedence level. HNoOp is false
/// in the boolean sense.
enum AffineHighPrecOp {
  /// Null value.
  HNoOp,
  Mul,
  FloorDiv,
  CeilDiv,
  Mod
};

namespace {
/// This is a specialized parser for affine structures (affine maps, affine
/// expressions, and integer sets), maintaining the state transient to their
/// bodies.
class AffineParser : public Parser {
public:
  AffineParser(ParserState &state, bool allowParsingSSAIds = false,
               function_ref<ParseResult(bool)> parseElement = nullptr)
      : Parser(state), allowParsingSSAIds(allowParsingSSAIds),
        parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {}

  AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols);
  ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set);
  IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols);
  ParseResult parseAffineMapOfSSAIds(AffineMap &map);
  void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds,
                              unsigned &numDims);

private:
  // Binary affine op parsing.
  AffineLowPrecOp consumeIfLowPrecOp();
  AffineHighPrecOp consumeIfHighPrecOp();

  // Identifier lists for polyhedral structures.
  ParseResult parseDimIdList(unsigned &numDims);
  ParseResult parseSymbolIdList(unsigned &numSymbols);
  ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims,
                                              unsigned &numSymbols);
  ParseResult parseIdentifierDefinition(AffineExpr idExpr);

  AffineExpr parseAffineExpr();
  AffineExpr parseParentheticalExpr();
  AffineExpr parseNegateExpression(AffineExpr lhs);
  AffineExpr parseIntegerExpr();
  AffineExpr parseBareIdExpr();
  AffineExpr parseSSAIdExpr(bool isSymbol);
  AffineExpr parseSymbolSSAIdExpr();

  AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs,
                                   AffineExpr rhs, SMLoc opLoc);
  AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs,
                                   AffineExpr rhs);
  AffineExpr parseAffineOperandExpr(AffineExpr lhs);
  AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp);
  AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp,
                                       SMLoc llhsOpLoc);
  AffineExpr parseAffineConstraint(bool *isEq);

private:
  bool allowParsingSSAIds;
  function_ref<ParseResult(bool)> parseElement;
  unsigned numDimOperands;
  unsigned numSymbolOperands;
  SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols;
};
} // end anonymous namespace

/// Create an affine binary high precedence op expression (mul's, div's, mod).
/// opLoc is the location of the op token to be used to report errors
/// for non-conforming expressions.
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op,
                                               AffineExpr lhs, AffineExpr rhs,
                                               SMLoc opLoc) {
  // TODO: make the error location info accurate.
  switch (op) {
  case Mul:
    if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) {
      emitError(opLoc, "non-affine expression: at least one of the multiply "
                       "operands has to be either a constant or symbolic");
      return nullptr;
    }
    return lhs * rhs;
  case FloorDiv:
    if (!rhs.isSymbolicOrConstant()) {
      emitError(opLoc, "non-affine expression: right operand of floordiv "
                       "has to be either a constant or symbolic");
      return nullptr;
    }
    return lhs.floorDiv(rhs);
  case CeilDiv:
    if (!rhs.isSymbolicOrConstant()) {
      emitError(opLoc, "non-affine expression: right operand of ceildiv "
                       "has to be either a constant or symbolic");
      return nullptr;
    }
    return lhs.ceilDiv(rhs);
  case Mod:
    if (!rhs.isSymbolicOrConstant()) {
      emitError(opLoc, "non-affine expression: right operand of mod "
                       "has to be either a constant or symbolic");
      return nullptr;
    }
    return lhs % rhs;
  case HNoOp:
    llvm_unreachable("can't create affine expression for null high prec op");
    return nullptr;
  }
  llvm_unreachable("Unknown AffineHighPrecOp");
}

/// Create an affine binary low precedence op expression (add, sub).
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op,
                                               AffineExpr lhs, AffineExpr rhs) {
  switch (op) {
  case AffineLowPrecOp::Add:
    return lhs + rhs;
  case AffineLowPrecOp::Sub:
    return lhs - rhs;
  case AffineLowPrecOp::LNoOp:
    llvm_unreachable("can't create affine expression for null low prec op");
    return nullptr;
  }
  llvm_unreachable("Unknown AffineLowPrecOp");
}

/// Consume this token if it is a lower precedence affine op (there are only
/// two precedence levels).
AffineLowPrecOp AffineParser::consumeIfLowPrecOp() {
  switch (getToken().getKind()) {
  case Token::plus:
    consumeToken(Token::plus);
    return AffineLowPrecOp::Add;
  case Token::minus:
    consumeToken(Token::minus);
    return AffineLowPrecOp::Sub;
  default:
    return AffineLowPrecOp::LNoOp;
  }
}

/// Consume this token if it is a higher precedence affine op (there are only
/// two precedence levels)
AffineHighPrecOp AffineParser::consumeIfHighPrecOp() {
  switch (getToken().getKind()) {
  case Token::star:
    consumeToken(Token::star);
    return Mul;
  case Token::kw_floordiv:
    consumeToken(Token::kw_floordiv);
    return FloorDiv;
  case Token::kw_ceildiv:
    consumeToken(Token::kw_ceildiv);
    return CeilDiv;
  case Token::kw_mod:
    consumeToken(Token::kw_mod);
    return Mod;
  default:
    return HNoOp;
  }
}

/// Parse a high precedence op expression list: mul, div, and mod are high
/// precedence binary ops, i.e., parse a
///   expr_1 op_1 expr_2 op_2 ... expr_n
/// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod).
/// All affine binary ops are left associative.
/// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is
/// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
/// null. llhsOpLoc is the location of the llhsOp token that will be used to
/// report an error for non-conforming expressions.
AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs,
                                                   AffineHighPrecOp llhsOp,
                                                   SMLoc llhsOpLoc) {
  AffineExpr lhs = parseAffineOperandExpr(llhs);
  if (!lhs)
    return nullptr;

  // Found an LHS. Parse the remaining expression.
  auto opLoc = getToken().getLoc();
  if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
    if (llhs) {
      AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc);
      if (!expr)
        return nullptr;
      return parseAffineHighPrecOpExpr(expr, op, opLoc);
    }
    // No LLHS, get RHS
    return parseAffineHighPrecOpExpr(lhs, op, opLoc);
  }

  // This is the last operand in this expression.
  if (llhs)
    return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc);

  // No llhs, 'lhs' itself is the expression.
  return lhs;
}

/// Parse an affine expression inside parentheses.
///
///   affine-expr ::= `(` affine-expr `)`
AffineExpr AffineParser::parseParentheticalExpr() {
  if (parseToken(Token::l_paren, "expected '('"))
    return nullptr;
  if (getToken().is(Token::r_paren))
    return (emitError("no expression inside parentheses"), nullptr);

  auto expr = parseAffineExpr();
  if (!expr)
    return nullptr;
  if (parseToken(Token::r_paren, "expected ')'"))
    return nullptr;

  return expr;
}

/// Parse the negation expression.
///
///   affine-expr ::= `-` affine-expr
AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) {
  if (parseToken(Token::minus, "expected '-'"))
    return nullptr;

  AffineExpr operand = parseAffineOperandExpr(lhs);
  // Since negation has the highest precedence of all ops (including high
  // precedence ops) but lower than parentheses, we are only going to use
  // parseAffineOperandExpr instead of parseAffineExpr here.
  if (!operand)
    // Extra error message although parseAffineOperandExpr would have
    // complained. Leads to a better diagnostic.
    return (emitError("missing operand of negation"), nullptr);
  return (-1) * operand;
}

/// Parse a bare id that may appear in an affine expression.
///
///   affine-expr ::= bare-id
AffineExpr AffineParser::parseBareIdExpr() {
  if (getToken().isNot(Token::bare_identifier))
    return (emitError("expected bare identifier"), nullptr);

  StringRef sRef = getTokenSpelling();
  for (auto entry : dimsAndSymbols) {
    if (entry.first == sRef) {
      consumeToken(Token::bare_identifier);
      return entry.second;
    }
  }

  return (emitError("use of undeclared identifier"), nullptr);
}

/// Parse an SSA id which may appear in an affine expression.
AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) {
  if (!allowParsingSSAIds)
    return (emitError("unexpected ssa identifier"), nullptr);
  if (getToken().isNot(Token::percent_identifier))
    return (emitError("expected ssa identifier"), nullptr);
  auto name = getTokenSpelling();
  // Check if we already parsed this SSA id.
  for (auto entry : dimsAndSymbols) {
    if (entry.first == name) {
      consumeToken(Token::percent_identifier);
      return entry.second;
    }
  }
  // Parse the SSA id and add an AffineDim/SymbolExpr to represent it.
  if (parseElement(isSymbol))
    return (emitError("failed to parse ssa identifier"), nullptr);
  auto idExpr = isSymbol
                    ? getAffineSymbolExpr(numSymbolOperands++, getContext())
                    : getAffineDimExpr(numDimOperands++, getContext());
  dimsAndSymbols.push_back({name, idExpr});
  return idExpr;
}

AffineExpr AffineParser::parseSymbolSSAIdExpr() {
  if (parseToken(Token::kw_symbol, "expected symbol keyword") ||
      parseToken(Token::l_paren, "expected '(' at start of SSA symbol"))
    return nullptr;
  AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true);
  if (!symbolExpr)
    return nullptr;
  if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol"))
    return nullptr;
  return symbolExpr;
}

/// Parse a positive integral constant appearing in an affine expression.
///
///   affine-expr ::= integer-literal
AffineExpr AffineParser::parseIntegerExpr() {
  auto val = getToken().getUInt64IntegerValue();
  if (!val.hasValue() || (int64_t)val.getValue() < 0)
    return (emitError("constant too large for index"), nullptr);

  consumeToken(Token::integer);
  return builder.getAffineConstantExpr((int64_t)val.getValue());
}

/// Parses an expression that can be a valid operand of an affine expression.
/// lhs: if non-null, lhs is an affine expression that is the lhs of a binary
/// operator, the rhs of which is being parsed. This is used to determine
/// whether an error should be emitted for a missing right operand.
//  Eg: for an expression without parentheses (like i + j + k + l), each
//  of the four identifiers is an operand. For i + j*k + l, j*k is not an
//  operand expression, it's an op expression and will be parsed via
//  parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and
//  -l are valid operands that will be parsed by this function.
AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) {
  switch (getToken().getKind()) {
  case Token::bare_identifier:
    return parseBareIdExpr();
  case Token::kw_symbol:
    return parseSymbolSSAIdExpr();
  case Token::percent_identifier:
    return parseSSAIdExpr(/*isSymbol=*/false);
  case Token::integer:
    return parseIntegerExpr();
  case Token::l_paren:
    return parseParentheticalExpr();
  case Token::minus:
    return parseNegateExpression(lhs);
  case Token::kw_ceildiv:
  case Token::kw_floordiv:
  case Token::kw_mod:
  case Token::plus:
  case Token::star:
    if (lhs)
      emitError("missing right operand of binary operator");
    else
      emitError("missing left operand of binary operator");
    return nullptr;
  default:
    if (lhs)
      emitError("missing right operand of binary operator");
    else
      emitError("expected affine expression");
    return nullptr;
  }
}

/// Parse affine expressions that are bare-id's, integer constants,
/// parenthetical affine expressions, and affine op expressions that are a
/// composition of those.
///
/// All binary op's associate from left to right.
///
/// {add, sub} have lower precedence than {mul, div, and mod}.
///
/// Add, sub'are themselves at the same precedence level. Mul, floordiv,
/// ceildiv, and mod are at the same higher precedence level. Negation has
/// higher precedence than any binary op.
///
/// llhs: the affine expression appearing on the left of the one being parsed.
/// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null,
/// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned
/// if llhs is non-null; otherwise lhs is returned. This is to deal with left
/// associativity.
///
/// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
/// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where
/// (e2*e3) will be parsed using parseAffineHighPrecOpExpr().
AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs,
                                                  AffineLowPrecOp llhsOp) {
  AffineExpr lhs;
  if (!(lhs = parseAffineOperandExpr(llhs)))
    return nullptr;

  // Found an LHS. Deal with the ops.
  if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
    if (llhs) {
      AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs);
      return parseAffineLowPrecOpExpr(sum, lOp);
    }
    // No LLHS, get RHS and form the expression.
    return parseAffineLowPrecOpExpr(lhs, lOp);
  }
  auto opLoc = getToken().getLoc();
  if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
    // We have a higher precedence op here. Get the rhs operand for the llhs
    // through parseAffineHighPrecOpExpr.
    AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
    if (!highRes)
      return nullptr;

    // If llhs is null, the product forms the first operand of the yet to be
    // found expression. If non-null, the op to associate with llhs is llhsOp.
    AffineExpr expr =
        llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes;

    // Recurse for subsequent low prec op's after the affine high prec op
    // expression.
    if (AffineLowPrecOp nextOp = consumeIfLowPrecOp())
      return parseAffineLowPrecOpExpr(expr, nextOp);
    return expr;
  }
  // Last operand in the expression list.
  if (llhs)
    return getAffineBinaryOpExpr(llhsOp, llhs, lhs);
  // No llhs, 'lhs' itself is the expression.
  return lhs;
}

/// Parse an affine expression.
///  affine-expr ::= `(` affine-expr `)`
///                | `-` affine-expr
///                | affine-expr `+` affine-expr
///                | affine-expr `-` affine-expr
///                | affine-expr `*` affine-expr
///                | affine-expr `floordiv` affine-expr
///                | affine-expr `ceildiv` affine-expr
///                | affine-expr `mod` affine-expr
///                | bare-id
///                | integer-literal
///
/// Additional conditions are checked depending on the production. For eg.,
/// one of the operands for `*` has to be either constant/symbolic; the second
/// operand for floordiv, ceildiv, and mod has to be a positive integer.
AffineExpr AffineParser::parseAffineExpr() {
  return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
}

/// Parse a dim or symbol from the lists appearing before the actual
/// expressions of the affine map. Update our state to store the
/// dimensional/symbolic identifier.
ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) {
  if (getToken().isNot(Token::bare_identifier))
    return emitError("expected bare identifier");

  auto name = getTokenSpelling();
  for (auto entry : dimsAndSymbols) {
    if (entry.first == name)
      return emitError("redefinition of identifier '" + name + "'");
  }
  consumeToken(Token::bare_identifier);

  dimsAndSymbols.push_back({name, idExpr});
  return success();
}

/// Parse the list of dimensional identifiers to an affine map.
ParseResult AffineParser::parseDimIdList(unsigned &numDims) {
  if (parseToken(Token::l_paren,
                 "expected '(' at start of dimensional identifiers list")) {
    return failure();
  }

  auto parseElt = [&]() -> ParseResult {
    auto dimension = getAffineDimExpr(numDims++, getContext());
    return parseIdentifierDefinition(dimension);
  };
  return parseCommaSeparatedListUntil(Token::r_paren, parseElt);
}

/// Parse the list of symbolic identifiers to an affine map.
ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) {
  consumeToken(Token::l_square);
  auto parseElt = [&]() -> ParseResult {
    auto symbol = getAffineSymbolExpr(numSymbols++, getContext());
    return parseIdentifierDefinition(symbol);
  };
  return parseCommaSeparatedListUntil(Token::r_square, parseElt);
}

/// Parse the list of symbolic identifiers to an affine map.
ParseResult
AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims,
                                              unsigned &numSymbols) {
  if (parseDimIdList(numDims)) {
    return failure();
  }
  if (!getToken().is(Token::l_square)) {
    numSymbols = 0;
    return success();
  }
  return parseSymbolIdList(numSymbols);
}

/// Parses an ambiguous affine map or integer set definition inline.
ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map,
                                                           IntegerSet &set) {
  unsigned numDims = 0, numSymbols = 0;

  // List of dimensional and optional symbol identifiers.
  if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) {
    return failure();
  }

  // This is needed for parsing attributes as we wouldn't know whether we would
  // be parsing an integer set attribute or an affine map attribute.
  bool isArrow = getToken().is(Token::arrow);
  bool isColon = getToken().is(Token::colon);
  if (!isArrow && !isColon) {
    return emitError("expected '->' or ':'");
  } else if (isArrow) {
    parseToken(Token::arrow, "expected '->' or '['");
    map = parseAffineMapRange(numDims, numSymbols);
    return map ? success() : failure();
  } else if (parseToken(Token::colon, "expected ':' or '['")) {
    return failure();
  }

  if ((set = parseIntegerSetConstraints(numDims, numSymbols)))
    return success();

  return failure();
}

/// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
ParseResult AffineParser::parseAffineMapOfSSAIds(AffineMap &map) {
  if (parseToken(Token::l_square, "expected '['"))
    return failure();

  SmallVector<AffineExpr, 4> exprs;
  auto parseElt = [&]() -> ParseResult {
    auto elt = parseAffineExpr();
    exprs.push_back(elt);
    return elt ? success() : failure();
  };

  // Parse a multi-dimensional affine expression (a comma-separated list of
  // 1-d affine expressions); the list cannot be empty. Grammar:
  // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
  if (parseCommaSeparatedListUntil(Token::r_square, parseElt,
                                   /*allowEmptyList=*/true))
    return failure();
  // Parsed a valid affine map.
  if (exprs.empty())
    map = AffineMap::get(getContext());
  else
    map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands,
                         exprs);
  return success();
}

/// Parse the range and sizes affine map definition inline.
///
///  affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
///
///  multi-dim-affine-expr ::= `(` `)`
///  multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)`
AffineMap AffineParser::parseAffineMapRange(unsigned numDims,
                                            unsigned numSymbols) {
  parseToken(Token::l_paren, "expected '(' at start of affine map range");

  SmallVector<AffineExpr, 4> exprs;
  auto parseElt = [&]() -> ParseResult {
    auto elt = parseAffineExpr();
    ParseResult res = elt ? success() : failure();
    exprs.push_back(elt);
    return res;
  };

  // Parse a multi-dimensional affine expression (a comma-separated list of
  // 1-d affine expressions); the list cannot be empty. Grammar:
  // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
  if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true))
    return AffineMap();

  if (exprs.empty())
    return AffineMap::get(getContext());

  // Parsed a valid affine map.
  return AffineMap::get(numDims, numSymbols, exprs);
}

/// Parse an affine constraint.
///  affine-constraint ::= affine-expr `>=` `0`
///                      | affine-expr `==` `0`
///
/// isEq is set to true if the parsed constraint is an equality, false if it
/// is an inequality (greater than or equal).
///
AffineExpr AffineParser::parseAffineConstraint(bool *isEq) {
  AffineExpr expr = parseAffineExpr();
  if (!expr)
    return nullptr;

  if (consumeIf(Token::greater) && consumeIf(Token::equal) &&
      getToken().is(Token::integer)) {
    auto dim = getToken().getUnsignedIntegerValue();
    if (dim.hasValue() && dim.getValue() == 0) {
      consumeToken(Token::integer);
      *isEq = false;
      return expr;
    }
    return (emitError("expected '0' after '>='"), nullptr);
  }

  if (consumeIf(Token::equal) && consumeIf(Token::equal) &&
      getToken().is(Token::integer)) {
    auto dim = getToken().getUnsignedIntegerValue();
    if (dim.hasValue() && dim.getValue() == 0) {
      consumeToken(Token::integer);
      *isEq = true;
      return expr;
    }
    return (emitError("expected '0' after '=='"), nullptr);
  }

  return (emitError("expected '== 0' or '>= 0' at end of affine constraint"),
          nullptr);
}

/// Parse the constraints that are part of an integer set definition.
///  integer-set-inline
///                ::= dim-and-symbol-id-lists `:`
///                '(' affine-constraint-conjunction? ')'
///  affine-constraint-conjunction ::= affine-constraint (`,`
///                                       affine-constraint)*
///
IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims,
                                                    unsigned numSymbols) {
  if (parseToken(Token::l_paren,
                 "expected '(' at start of integer set constraint list"))
    return IntegerSet();

  SmallVector<AffineExpr, 4> constraints;
  SmallVector<bool, 4> isEqs;
  auto parseElt = [&]() -> ParseResult {
    bool isEq;
    auto elt = parseAffineConstraint(&isEq);
    ParseResult res = elt ? success() : failure();
    if (elt) {
      constraints.push_back(elt);
      isEqs.push_back(isEq);
    }
    return res;
  };

  // Parse a list of affine constraints (comma-separated).
  if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true))
    return IntegerSet();

  // If no constraints were parsed, then treat this as a degenerate 'true' case.
  if (constraints.empty()) {
    /* 0 == 0 */
    auto zero = getAffineConstantExpr(0, getContext());
    return IntegerSet::get(numDims, numSymbols, zero, true);
  }

  // Parsed a valid integer set.
  return IntegerSet::get(numDims, numSymbols, constraints, isEqs);
}

/// Parse an ambiguous reference to either and affine map or an integer set.
ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map,
                                                        IntegerSet &set) {
  return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set);
}
ParseResult Parser::parseAffineMapReference(AffineMap &map) {
  llvm::SMLoc curLoc = getToken().getLoc();
  IntegerSet set;
  if (parseAffineMapOrIntegerSetReference(map, set))
    return failure();
  if (set)
    return emitError(curLoc, "expected AffineMap, but got IntegerSet");
  return success();
}
ParseResult Parser::parseIntegerSetReference(IntegerSet &set) {
  llvm::SMLoc curLoc = getToken().getLoc();
  AffineMap map;
  if (parseAffineMapOrIntegerSetReference(map, set))
    return failure();
  if (map)
    return emitError(curLoc, "expected IntegerSet, but got AffineMap");
  return success();
}

/// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to
/// parse SSA value uses encountered while parsing affine expressions.
ParseResult
Parser::parseAffineMapOfSSAIds(AffineMap &map,
                               function_ref<ParseResult(bool)> parseElement) {
  return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement)
      .parseAffineMapOfSSAIds(map);
}

//===----------------------------------------------------------------------===//
// OperationParser
//===----------------------------------------------------------------------===//

namespace {
/// This class provides support for parsing operations and regions of
/// operations.
class OperationParser : public Parser {
public:
  OperationParser(ParserState &state, ModuleOp moduleOp)
      : Parser(state), opBuilder(moduleOp.getBodyRegion()), moduleOp(moduleOp) {
  }

  ~OperationParser();

  /// After parsing is finished, this function must be called to see if there
  /// are any remaining issues.
  ParseResult finalize();

  //===--------------------------------------------------------------------===//
  // SSA Value Handling
  //===--------------------------------------------------------------------===//

  /// This represents a use of an SSA value in the program.  The first two
  /// entries in the tuple are the name and result number of a reference.  The
  /// third is the location of the reference, which is used in case this ends
  /// up being a use of an undefined value.
  struct SSAUseInfo {
    StringRef name;  // Value name, e.g. %42 or %abc
    unsigned number; // Number, specified with #12
    SMLoc loc;       // Location of first definition or use.
  };

  /// Push a new SSA name scope to the parser.
  void pushSSANameScope(bool isIsolated);

  /// Pop the last SSA name scope from the parser.
  ParseResult popSSANameScope();

  /// Register a definition of a value with the symbol table.
  ParseResult addDefinition(SSAUseInfo useInfo, Value value);

  /// Parse an optional list of SSA uses into 'results'.
  ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results);

  /// Parse a single SSA use into 'result'.
  ParseResult parseSSAUse(SSAUseInfo &result);

  /// Given a reference to an SSA value and its type, return a reference. This
  /// returns null on failure.
  Value resolveSSAUse(SSAUseInfo useInfo, Type type);

  ParseResult parseSSADefOrUseAndType(
      const std::function<ParseResult(SSAUseInfo, Type)> &action);

  ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results);

  /// Return the location of the value identified by its name and number if it
  /// has been already reference.
  Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) {
    auto &values = isolatedNameScopes.back().values;
    if (!values.count(name) || number >= values[name].size())
      return {};
    if (values[name][number].first)
      return values[name][number].second;
    return {};
  }

  //===--------------------------------------------------------------------===//
  // Operation Parsing
  //===--------------------------------------------------------------------===//

  /// Parse an operation instance.
  ParseResult parseOperation();

  /// Parse a single operation successor and its operand list.
  ParseResult parseSuccessorAndUseList(Block *&dest,
                                       SmallVectorImpl<Value> &operands);

  /// Parse a comma-separated list of operation successors in brackets.
  ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations,
                              SmallVectorImpl<SmallVector<Value, 4>> &operands);

  /// Parse an operation instance that is in the generic form.
  Operation *parseGenericOperation();

  /// Parse an operation instance that is in the generic form and insert it at
  /// the provided insertion point.
  Operation *parseGenericOperation(Block *insertBlock,
                                   Block::iterator insertPt);

  /// Parse an operation instance that is in the op-defined custom form.
  Operation *parseCustomOperation();

  //===--------------------------------------------------------------------===//
  // Region Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a region into 'region' with the provided entry block arguments.
  /// 'isIsolatedNameScope' indicates if the naming scope of this region is
  /// isolated from those above.
  ParseResult parseRegion(Region &region,
                          ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments,
                          bool isIsolatedNameScope = false);

  /// Parse a region body into 'region'.
  ParseResult parseRegionBody(Region &region);

  //===--------------------------------------------------------------------===//
  // Block Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a new block into 'block'.
  ParseResult parseBlock(Block *&block);

  /// Parse a list of operations into 'block'.
  ParseResult parseBlockBody(Block *block);

  /// Parse a (possibly empty) list of block arguments.
  ParseResult parseOptionalBlockArgList(SmallVectorImpl<BlockArgument> &results,
                                        Block *owner);

  /// Get the block with the specified name, creating it if it doesn't
  /// already exist.  The location specified is the point of use, which allows
  /// us to diagnose references to blocks that are not defined precisely.
  Block *getBlockNamed(StringRef name, SMLoc loc);

  /// Define the block with the specified name. Returns the Block* or nullptr in
  /// the case of redefinition.
  Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing);

private:
  /// Returns the info for a block at the current scope for the given name.
  std::pair<Block *, SMLoc> &getBlockInfoByName(StringRef name) {
    return blocksByName.back()[name];
  }

  /// Insert a new forward reference to the given block.
  void insertForwardRef(Block *block, SMLoc loc) {
    forwardRef.back().try_emplace(block, loc);
  }

  /// Erase any forward reference to the given block.
  bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); }

  /// Record that a definition was added at the current scope.
  void recordDefinition(StringRef def);

  /// Get the value entry for the given SSA name.
  SmallVectorImpl<std::pair<Value, SMLoc>> &getSSAValueEntry(StringRef name);

  /// Create a forward reference placeholder value with the given location and
  /// result type.
  Value createForwardRefPlaceholder(SMLoc loc, Type type);

  /// Return true if this is a forward reference.
  bool isForwardRefPlaceholder(Value value) {
    return forwardRefPlaceholders.count(value);
  }

  /// This struct represents an isolated SSA name scope. This scope may contain
  /// other nested non-isolated scopes. These scopes are used for operations
  /// that are known to be isolated to allow for reusing names within their
  /// regions, even if those names are used above.
  struct IsolatedSSANameScope {
    /// Record that a definition was added at the current scope.
    void recordDefinition(StringRef def) {
      definitionsPerScope.back().insert(def);
    }

    /// Push a nested name scope.
    void pushSSANameScope() { definitionsPerScope.push_back({}); }

    /// Pop a nested name scope.
    void popSSANameScope() {
      for (auto &def : definitionsPerScope.pop_back_val())
        values.erase(def.getKey());
    }

    /// This keeps track of all of the SSA values we are tracking for each name
    /// scope, indexed by their name. This has one entry per result number.
    llvm::StringMap<SmallVector<std::pair<Value, SMLoc>, 1>> values;

    /// This keeps track of all of the values defined by a specific name scope.
    SmallVector<llvm::StringSet<>, 2> definitionsPerScope;
  };

  /// A list of isolated name scopes.
  SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes;

  /// This keeps track of the block names as well as the location of the first
  /// reference for each nested name scope. This is used to diagnose invalid
  /// block references and memorize them.
  SmallVector<DenseMap<StringRef, std::pair<Block *, SMLoc>>, 2> blocksByName;
  SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef;

  /// These are all of the placeholders we've made along with the location of
  /// their first reference, to allow checking for use of undefined values.
  DenseMap<Value, SMLoc> forwardRefPlaceholders;

  /// The builder used when creating parsed operation instances.
  OpBuilder opBuilder;

  /// The top level module operation.
  ModuleOp moduleOp;
};
} // end anonymous namespace

OperationParser::~OperationParser() {
  for (auto &fwd : forwardRefPlaceholders) {
    // Drop all uses of undefined forward declared reference and destroy
    // defining operation.
    fwd.first.dropAllUses();
    fwd.first.getDefiningOp()->destroy();
  }
}

/// After parsing is finished, this function must be called to see if there are
/// any remaining issues.
ParseResult OperationParser::finalize() {
  // Check for any forward references that are left.  If we find any, error
  // out.
  if (!forwardRefPlaceholders.empty()) {
    SmallVector<std::pair<const char *, Value>, 4> errors;
    // Iteration over the map isn't deterministic, so sort by source location.
    for (auto entry : forwardRefPlaceholders)
      errors.push_back({entry.second.getPointer(), entry.first});
    llvm::array_pod_sort(errors.begin(), errors.end());

    for (auto entry : errors) {
      auto loc = SMLoc::getFromPointer(entry.first);
      emitError(loc, "use of undeclared SSA value name");
    }
    return failure();
  }

  return success();
}

//===----------------------------------------------------------------------===//
// SSA Value Handling
//===----------------------------------------------------------------------===//

void OperationParser::pushSSANameScope(bool isIsolated) {
  blocksByName.push_back(DenseMap<StringRef, std::pair<Block *, SMLoc>>());
  forwardRef.push_back(DenseMap<Block *, SMLoc>());

  // Push back a new name definition scope.
  if (isIsolated)
    isolatedNameScopes.push_back({});
  isolatedNameScopes.back().pushSSANameScope();
}

ParseResult OperationParser::popSSANameScope() {
  auto forwardRefInCurrentScope = forwardRef.pop_back_val();

  // Verify that all referenced blocks were defined.
  if (!forwardRefInCurrentScope.empty()) {
    SmallVector<std::pair<const char *, Block *>, 4> errors;
    // Iteration over the map isn't deterministic, so sort by source location.
    for (auto entry : forwardRefInCurrentScope) {
      errors.push_back({entry.second.getPointer(), entry.first});
      // Add this block to the top-level region to allow for automatic cleanup.
      moduleOp.getOperation()->getRegion(0).push_back(entry.first);
    }
    llvm::array_pod_sort(errors.begin(), errors.end());

    for (auto entry : errors) {
      auto loc = SMLoc::getFromPointer(entry.first);
      emitError(loc, "reference to an undefined block");
    }
    return failure();
  }

  // Pop the next nested namescope. If there is only one internal namescope,
  // just pop the isolated scope.
  auto &currentNameScope = isolatedNameScopes.back();
  if (currentNameScope.definitionsPerScope.size() == 1)
    isolatedNameScopes.pop_back();
  else
    currentNameScope.popSSANameScope();

  blocksByName.pop_back();
  return success();
}

/// Register a definition of a value with the symbol table.
ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) {
  auto &entries = getSSAValueEntry(useInfo.name);

  // Make sure there is a slot for this value.
  if (entries.size() <= useInfo.number)
    entries.resize(useInfo.number + 1);

  // If we already have an entry for this, check to see if it was a definition
  // or a forward reference.
  if (auto existing = entries[useInfo.number].first) {
    if (!isForwardRefPlaceholder(existing)) {
      return emitError(useInfo.loc)
          .append("redefinition of SSA value '", useInfo.name, "'")
          .attachNote(getEncodedSourceLocation(entries[useInfo.number].second))
          .append("previously defined here");
    }

    // If it was a forward reference, update everything that used it to use
    // the actual definition instead, delete the forward ref, and remove it
    // from our set of forward references we track.
    existing.replaceAllUsesWith(value);
    existing.getDefiningOp()->destroy();
    forwardRefPlaceholders.erase(existing);
  }

  /// Record this definition for the current scope.
  entries[useInfo.number] = {value, useInfo.loc};
  recordDefinition(useInfo.name);
  return success();
}

/// Parse a (possibly empty) list of SSA operands.
///
///   ssa-use-list ::= ssa-use (`,` ssa-use)*
///   ssa-use-list-opt ::= ssa-use-list?
///
ParseResult
OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) {
  if (getToken().isNot(Token::percent_identifier))
    return success();
  return parseCommaSeparatedList([&]() -> ParseResult {
    SSAUseInfo result;
    if (parseSSAUse(result))
      return failure();
    results.push_back(result);
    return success();
  });
}

/// Parse a SSA operand for an operation.
///
///   ssa-use ::= ssa-id
///
ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) {
  result.name = getTokenSpelling();
  result.number = 0;
  result.loc = getToken().getLoc();
  if (parseToken(Token::percent_identifier, "expected SSA operand"))
    return failure();

  // If we have an attribute ID, it is a result number.
  if (getToken().is(Token::hash_identifier)) {
    if (auto value = getToken().getHashIdentifierNumber())
      result.number = value.getValue();
    else
      return emitError("invalid SSA value result number");
    consumeToken(Token::hash_identifier);
  }

  return success();
}

/// Given an unbound reference to an SSA value and its type, return the value
/// it specifies.  This returns null on failure.
Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) {
  auto &entries = getSSAValueEntry(useInfo.name);

  // If we have already seen a value of this name, return it.
  if (useInfo.number < entries.size() && entries[useInfo.number].first) {
    auto result = entries[useInfo.number].first;
    // Check that the type matches the other uses.
    if (result.getType() == type)
      return result;

    emitError(useInfo.loc, "use of value '")
        .append(useInfo.name,
                "' expects different type than prior uses: ", type, " vs ",
                result.getType())
        .attachNote(getEncodedSourceLocation(entries[useInfo.number].second))
        .append("prior use here");
    return nullptr;
  }

  // Make sure we have enough slots for this.
  if (entries.size() <= useInfo.number)
    entries.resize(useInfo.number + 1);

  // If the value has already been defined and this is an overly large result
  // number, diagnose that.
  if (entries[0].first && !isForwardRefPlaceholder(entries[0].first))
    return (emitError(useInfo.loc, "reference to invalid result number"),
            nullptr);

  // Otherwise, this is a forward reference.  Create a placeholder and remember
  // that we did so.
  auto result = createForwardRefPlaceholder(useInfo.loc, type);
  entries[useInfo.number].first = result;
  entries[useInfo.number].second = useInfo.loc;
  return result;
}

/// Parse an SSA use with an associated type.
///
///   ssa-use-and-type ::= ssa-use `:` type
ParseResult OperationParser::parseSSADefOrUseAndType(
    const std::function<ParseResult(SSAUseInfo, Type)> &action) {
  SSAUseInfo useInfo;
  if (parseSSAUse(useInfo) ||
      parseToken(Token::colon, "expected ':' and type for SSA operand"))
    return failure();

  auto type = parseType();
  if (!type)
    return failure();

  return action(useInfo, type);
}

/// Parse a (possibly empty) list of SSA operands, followed by a colon, then
/// followed by a type list.
///
///   ssa-use-and-type-list
///     ::= ssa-use-list ':' type-list-no-parens
///
ParseResult OperationParser::parseOptionalSSAUseAndTypeList(
    SmallVectorImpl<Value> &results) {
  SmallVector<SSAUseInfo, 4> valueIDs;
  if (parseOptionalSSAUseList(valueIDs))
    return failure();

  // If there were no operands, then there is no colon or type lists.
  if (valueIDs.empty())
    return success();

  SmallVector<Type, 4> types;
  if (parseToken(Token::colon, "expected ':' in operand list") ||
      parseTypeListNoParens(types))
    return failure();

  if (valueIDs.size() != types.size())
    return emitError("expected ")
           << valueIDs.size() << " types to match operand list";

  results.reserve(valueIDs.size());
  for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) {
    if (auto value = resolveSSAUse(valueIDs[i], types[i]))
      results.push_back(value);
    else
      return failure();
  }

  return success();
}

/// Record that a definition was added at the current scope.
void OperationParser::recordDefinition(StringRef def) {
  isolatedNameScopes.back().recordDefinition(def);
}

/// Get the value entry for the given SSA name.
SmallVectorImpl<std::pair<Value, SMLoc>> &
OperationParser::getSSAValueEntry(StringRef name) {
  return isolatedNameScopes.back().values[name];
}

/// Create and remember a new placeholder for a forward reference.
Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) {
  // Forward references are always created as operations, because we just need
  // something with a def/use chain.
  //
  // We create these placeholders as having an empty name, which we know
  // cannot be created through normal user input, allowing us to distinguish
  // them.
  auto name = OperationName("placeholder", getContext());
  auto *op = Operation::create(
      getEncodedSourceLocation(loc), name, type, /*operands=*/{},
      /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0,
      /*resizableOperandList=*/false);
  forwardRefPlaceholders[op->getResult(0)] = loc;
  return op->getResult(0);
}

//===----------------------------------------------------------------------===//
// Operation Parsing
//===----------------------------------------------------------------------===//

/// Parse an operation.
///
///  operation         ::= op-result-list?
///                        (generic-operation | custom-operation)
///                        trailing-location?
///  generic-operation ::= string-literal '(' ssa-use-list? ')' attribute-dict?
///                        `:` function-type
///  custom-operation  ::= bare-id custom-operation-format
///  op-result-list    ::= op-result (`,` op-result)* `=`
///  op-result         ::= ssa-id (`:` integer-literal)
///
ParseResult OperationParser::parseOperation() {
  auto loc = getToken().getLoc();
  SmallVector<std::tuple<StringRef, unsigned, SMLoc>, 1> resultIDs;
  size_t numExpectedResults = 0;
  if (getToken().is(Token::percent_identifier)) {
    // Parse the group of result ids.
    auto parseNextResult = [&]() -> ParseResult {
      // Parse the next result id.
      if (!getToken().is(Token::percent_identifier))
        return emitError("expected valid ssa identifier");

      Token nameTok = getToken();
      consumeToken(Token::percent_identifier);

      // If the next token is a ':', we parse the expected result count.
      size_t expectedSubResults = 1;
      if (consumeIf(Token::colon)) {
        // Check that the next token is an integer.
        if (!getToken().is(Token::integer))
          return emitError("expected integer number of results");

        // Check that number of results is > 0.
        auto val = getToken().getUInt64IntegerValue();
        if (!val.hasValue() || val.getValue() < 1)
          return emitError("expected named operation to have atleast 1 result");
        consumeToken(Token::integer);
        expectedSubResults = *val;
      }

      resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults,
                             nameTok.getLoc());
      numExpectedResults += expectedSubResults;
      return success();
    };
    if (parseCommaSeparatedList(parseNextResult))
      return failure();

    if (parseToken(Token::equal, "expected '=' after SSA name"))
      return failure();
  }

  Operation *op;
  if (getToken().is(Token::bare_identifier) || getToken().isKeyword())
    op = parseCustomOperation();
  else if (getToken().is(Token::string))
    op = parseGenericOperation();
  else
    return emitError("expected operation name in quotes");

  // If parsing of the basic operation failed, then this whole thing fails.
  if (!op)
    return failure();

  // If the operation had a name, register it.
  if (!resultIDs.empty()) {
    if (op->getNumResults() == 0)
      return emitError(loc, "cannot name an operation with no results");
    if (numExpectedResults != op->getNumResults())
      return emitError(loc, "operation defines ")
             << op->getNumResults() << " results but was provided "
             << numExpectedResults << " to bind";

    // Add definitions for each of the result groups.
    unsigned opResI = 0;
    for (std::tuple<StringRef, unsigned, SMLoc> &resIt : resultIDs) {
      for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) {
        if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)},
                          op->getResult(opResI++)))
          return failure();
      }
    }
  }

  return success();
}

/// Parse a single operation successor and its operand list.
///
///   successor ::= block-id branch-use-list?
///   branch-use-list ::= `(` ssa-use-list ':' type-list-no-parens `)`
///
ParseResult
OperationParser::parseSuccessorAndUseList(Block *&dest,
                                          SmallVectorImpl<Value> &operands) {
  // Verify branch is identifier and get the matching block.
  if (!getToken().is(Token::caret_identifier))
    return emitError("expected block name");
  dest = getBlockNamed(getTokenSpelling(), getToken().getLoc());
  consumeToken();

  // Handle optional arguments.
  if (consumeIf(Token::l_paren) &&
      (parseOptionalSSAUseAndTypeList(operands) ||
       parseToken(Token::r_paren, "expected ')' to close argument list"))) {
    return failure();
  }

  return success();
}

/// Parse a comma-separated list of operation successors in brackets.
///
///   successor-list ::= `[` successor (`,` successor )* `]`
///
ParseResult OperationParser::parseSuccessors(
    SmallVectorImpl<Block *> &destinations,
    SmallVectorImpl<SmallVector<Value, 4>> &operands) {
  if (parseToken(Token::l_square, "expected '['"))
    return failure();

  auto parseElt = [this, &destinations, &operands]() {
    Block *dest;
    SmallVector<Value, 4> destOperands;
    auto res = parseSuccessorAndUseList(dest, destOperands);
    destinations.push_back(dest);
    operands.push_back(destOperands);
    return res;
  };
  return parseCommaSeparatedListUntil(Token::r_square, parseElt,
                                      /*allowEmptyList=*/false);
}

namespace {
// RAII-style guard for cleaning up the regions in the operation state before
// deleting them.  Within the parser, regions may get deleted if parsing failed,
// and other errors may be present, in particular undominated uses.  This makes
// sure such uses are deleted.
struct CleanupOpStateRegions {
  ~CleanupOpStateRegions() {
    SmallVector<Region *, 4> regionsToClean;
    regionsToClean.reserve(state.regions.size());
    for (auto &region : state.regions)
      if (region)
        for (auto &block : *region)
          block.dropAllDefinedValueUses();
  }
  OperationState &state;
};
} // namespace

Operation *OperationParser::parseGenericOperation() {
  // Get location information for the operation.
  auto srcLocation = getEncodedSourceLocation(getToken().getLoc());

  auto name = getToken().getStringValue();
  if (name.empty())
    return (emitError("empty operation name is invalid"), nullptr);
  if (name.find('\0') != StringRef::npos)
    return (emitError("null character not allowed in operation name"), nullptr);

  consumeToken(Token::string);

  OperationState result(srcLocation, name);

  // Generic operations have a resizable operation list.
  result.setOperandListToResizable();

  // Parse the operand list.
  SmallVector<SSAUseInfo, 8> operandInfos;

  if (parseToken(Token::l_paren, "expected '(' to start operand list") ||
      parseOptionalSSAUseList(operandInfos) ||
      parseToken(Token::r_paren, "expected ')' to end operand list")) {
    return nullptr;
  }

  // Parse the successor list but don't add successors to the result yet to
  // avoid messing up with the argument order.
  SmallVector<Block *, 2> successors;
  SmallVector<SmallVector<Value, 4>, 2> successorOperands;
  if (getToken().is(Token::l_square)) {
    // Check if the operation is a known terminator.
    const AbstractOperation *abstractOp = result.name.getAbstractOperation();
    if (abstractOp && !abstractOp->hasProperty(OperationProperty::Terminator))
      return emitError("successors in non-terminator"), nullptr;
    if (parseSuccessors(successors, successorOperands))
      return nullptr;
  }

  // Parse the region list.
  CleanupOpStateRegions guard{result};
  if (consumeIf(Token::l_paren)) {
    do {
      // Create temporary regions with the top level region as parent.
      result.regions.emplace_back(new Region(moduleOp));
      if (parseRegion(*result.regions.back(), /*entryArguments=*/{}))
        return nullptr;
    } while (consumeIf(Token::comma));
    if (parseToken(Token::r_paren, "expected ')' to end region list"))
      return nullptr;
  }

  if (getToken().is(Token::l_brace)) {
    if (parseAttributeDict(result.attributes))
      return nullptr;
  }

  if (parseToken(Token::colon, "expected ':' followed by operation type"))
    return nullptr;

  auto typeLoc = getToken().getLoc();
  auto type = parseType();
  if (!type)
    return nullptr;
  auto fnType = type.dyn_cast<FunctionType>();
  if (!fnType)
    return (emitError(typeLoc, "expected function type"), nullptr);

  result.addTypes(fnType.getResults());

  // Check that we have the right number of types for the operands.
  auto operandTypes = fnType.getInputs();
  if (operandTypes.size() != operandInfos.size()) {
    auto plural = "s"[operandInfos.size() == 1];
    return (emitError(typeLoc, "expected ")
                << operandInfos.size() << " operand type" << plural
                << " but had " << operandTypes.size(),
            nullptr);
  }

  // Resolve all of the operands.
  for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) {
    result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i]));
    if (!result.operands.back())
      return nullptr;
  }

  // Add the successors, and their operands after the proper operands.
  for (auto succ : llvm::zip(successors, successorOperands)) {
    Block *successor = std::get<0>(succ);
    const SmallVector<Value, 4> &operands = std::get<1>(succ);
    result.addSuccessor(successor, operands);
  }

  // Parse a location if one is present.
  if (parseOptionalTrailingLocation(result.location))
    return nullptr;

  return opBuilder.createOperation(result);
}

Operation *OperationParser::parseGenericOperation(Block *insertBlock,
                                                  Block::iterator insertPt) {
  OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder);
  opBuilder.setInsertionPoint(insertBlock, insertPt);
  return parseGenericOperation();
}

namespace {
class CustomOpAsmParser : public OpAsmParser {
public:
  CustomOpAsmParser(SMLoc nameLoc, const AbstractOperation *opDefinition,
                    OperationParser &parser)
      : nameLoc(nameLoc), opDefinition(opDefinition), parser(parser) {}

  /// Parse an instance of the operation described by 'opDefinition' into the
  /// provided operation state.
  ParseResult parseOperation(OperationState &opState) {
    if (opDefinition->parseAssembly(*this, opState))
      return failure();
    return success();
  }

  Operation *parseGenericOperation(Block *insertBlock,
                                   Block::iterator insertPt) final {
    return parser.parseGenericOperation(insertBlock, insertPt);
  }

  //===--------------------------------------------------------------------===//
  // Utilities
  //===--------------------------------------------------------------------===//

  /// Return if any errors were emitted during parsing.
  bool didEmitError() const { return emittedError; }

  /// Emit a diagnostic at the specified location and return failure.
  InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override {
    emittedError = true;
    return parser.emitError(loc, "custom op '" + opDefinition->name + "' " +
                                     message);
  }

  llvm::SMLoc getCurrentLocation() override {
    return parser.getToken().getLoc();
  }

  Builder &getBuilder() const override { return parser.builder; }

  llvm::SMLoc getNameLoc() const override { return nameLoc; }

  //===--------------------------------------------------------------------===//
  // Token Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a `->` token.
  ParseResult parseArrow() override {
    return parser.parseToken(Token::arrow, "expected '->'");
  }

  /// Parses a `->` if present.
  ParseResult parseOptionalArrow() override {
    return success(parser.consumeIf(Token::arrow));
  }

  /// Parse a `:` token.
  ParseResult parseColon() override {
    return parser.parseToken(Token::colon, "expected ':'");
  }

  /// Parse a `:` token if present.
  ParseResult parseOptionalColon() override {
    return success(parser.consumeIf(Token::colon));
  }

  /// Parse a `,` token.
  ParseResult parseComma() override {
    return parser.parseToken(Token::comma, "expected ','");
  }

  /// Parse a `,` token if present.
  ParseResult parseOptionalComma() override {
    return success(parser.consumeIf(Token::comma));
  }

  /// Parses a `...` if present.
  ParseResult parseOptionalEllipsis() override {
    return success(parser.consumeIf(Token::ellipsis));
  }

  /// Parse a `=` token.
  ParseResult parseEqual() override {
    return parser.parseToken(Token::equal, "expected '='");
  }

  /// Parse a '<' token.
  ParseResult parseLess() override {
    return parser.parseToken(Token::less, "expected '<'");
  }

  /// Parse a '>' token.
  ParseResult parseGreater() override {
    return parser.parseToken(Token::greater, "expected '>'");
  }

  /// Parse a `(` token.
  ParseResult parseLParen() override {
    return parser.parseToken(Token::l_paren, "expected '('");
  }

  /// Parses a '(' if present.
  ParseResult parseOptionalLParen() override {
    return success(parser.consumeIf(Token::l_paren));
  }

  /// Parse a `)` token.
  ParseResult parseRParen() override {
    return parser.parseToken(Token::r_paren, "expected ')'");
  }

  /// Parses a ')' if present.
  ParseResult parseOptionalRParen() override {
    return success(parser.consumeIf(Token::r_paren));
  }

  /// Parse a `[` token.
  ParseResult parseLSquare() override {
    return parser.parseToken(Token::l_square, "expected '['");
  }

  /// Parses a '[' if present.
  ParseResult parseOptionalLSquare() override {
    return success(parser.consumeIf(Token::l_square));
  }

  /// Parse a `]` token.
  ParseResult parseRSquare() override {
    return parser.parseToken(Token::r_square, "expected ']'");
  }

  /// Parses a ']' if present.
  ParseResult parseOptionalRSquare() override {
    return success(parser.consumeIf(Token::r_square));
  }

  //===--------------------------------------------------------------------===//
  // Attribute Parsing
  //===--------------------------------------------------------------------===//

  /// Parse an arbitrary attribute of a given type and return it in result. This
  /// also adds the attribute to the specified attribute list with the specified
  /// name.
  ParseResult parseAttribute(Attribute &result, Type type, StringRef attrName,
                             SmallVectorImpl<NamedAttribute> &attrs) override {
    result = parser.parseAttribute(type);
    if (!result)
      return failure();

    attrs.push_back(parser.builder.getNamedAttr(attrName, result));
    return success();
  }

  /// Parse a named dictionary into 'result' if it is present.
  ParseResult
  parseOptionalAttrDict(SmallVectorImpl<NamedAttribute> &result) override {
    if (parser.getToken().isNot(Token::l_brace))
      return success();
    return parser.parseAttributeDict(result);
  }

  /// Parse a named dictionary into 'result' if the `attributes` keyword is
  /// present.
  ParseResult parseOptionalAttrDictWithKeyword(
      SmallVectorImpl<NamedAttribute> &result) override {
    if (failed(parseOptionalKeyword("attributes")))
      return success();
    return parser.parseAttributeDict(result);
  }

  /// Parse an affine map instance into 'map'.
  ParseResult parseAffineMap(AffineMap &map) override {
    return parser.parseAffineMapReference(map);
  }

  /// Parse an integer set instance into 'set'.
  ParseResult printIntegerSet(IntegerSet &set) override {
    return parser.parseIntegerSetReference(set);
  }

  //===--------------------------------------------------------------------===//
  // Identifier Parsing
  //===--------------------------------------------------------------------===//

  /// Returns if the current token corresponds to a keyword.
  bool isCurrentTokenAKeyword() const {
    return parser.getToken().is(Token::bare_identifier) ||
           parser.getToken().isKeyword();
  }

  /// Parse the given keyword if present.
  ParseResult parseOptionalKeyword(StringRef keyword) override {
    // Check that the current token has the same spelling.
    if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword)
      return failure();
    parser.consumeToken();
    return success();
  }

  /// Parse a keyword, if present, into 'keyword'.
  ParseResult parseOptionalKeyword(StringRef *keyword) override {
    // Check that the current token is a keyword.
    if (!isCurrentTokenAKeyword())
      return failure();

    *keyword = parser.getTokenSpelling();
    parser.consumeToken();
    return success();
  }

  /// Parse an optional @-identifier and store it (without the '@' symbol) in a
  /// string attribute named 'attrName'.
  ParseResult
  parseOptionalSymbolName(StringAttr &result, StringRef attrName,
                          SmallVectorImpl<NamedAttribute> &attrs) override {
    Token atToken = parser.getToken();
    if (atToken.isNot(Token::at_identifier))
      return failure();

    result = getBuilder().getStringAttr(extractSymbolReference(atToken));
    attrs.push_back(getBuilder().getNamedAttr(attrName, result));
    parser.consumeToken();
    return success();
  }

  //===--------------------------------------------------------------------===//
  // Operand Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a single operand.
  ParseResult parseOperand(OperandType &result) override {
    OperationParser::SSAUseInfo useInfo;
    if (parser.parseSSAUse(useInfo))
      return failure();

    result = {useInfo.loc, useInfo.name, useInfo.number};
    return success();
  }

  /// Parse zero or more SSA comma-separated operand references with a specified
  /// surrounding delimiter, and an optional required operand count.
  ParseResult parseOperandList(SmallVectorImpl<OperandType> &result,
                               int requiredOperandCount = -1,
                               Delimiter delimiter = Delimiter::None) override {
    return parseOperandOrRegionArgList(result, /*isOperandList=*/true,
                                       requiredOperandCount, delimiter);
  }

  /// Parse zero or more SSA comma-separated operand or region arguments with
  ///  optional surrounding delimiter and required operand count.
  ParseResult
  parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result,
                              bool isOperandList, int requiredOperandCount = -1,
                              Delimiter delimiter = Delimiter::None) {
    auto startLoc = parser.getToken().getLoc();

    // Handle delimiters.
    switch (delimiter) {
    case Delimiter::None:
      // Don't check for the absence of a delimiter if the number of operands
      // is unknown (and hence the operand list could be empty).
      if (requiredOperandCount == -1)
        break;
      // Token already matches an identifier and so can't be a delimiter.
      if (parser.getToken().is(Token::percent_identifier))
        break;
      // Test against known delimiters.
      if (parser.getToken().is(Token::l_paren) ||
          parser.getToken().is(Token::l_square))
        return emitError(startLoc, "unexpected delimiter");
      return emitError(startLoc, "invalid operand");
    case Delimiter::OptionalParen:
      if (parser.getToken().isNot(Token::l_paren))
        return success();
      LLVM_FALLTHROUGH;
    case Delimiter::Paren:
      if (parser.parseToken(Token::l_paren, "expected '(' in operand list"))
        return failure();
      break;
    case Delimiter::OptionalSquare:
      if (parser.getToken().isNot(Token::l_square))
        return success();
      LLVM_FALLTHROUGH;
    case Delimiter::Square:
      if (parser.parseToken(Token::l_square, "expected '[' in operand list"))
        return failure();
      break;
    }

    // Check for zero operands.
    if (parser.getToken().is(Token::percent_identifier)) {
      do {
        OperandType operandOrArg;
        if (isOperandList ? parseOperand(operandOrArg)
                          : parseRegionArgument(operandOrArg))
          return failure();
        result.push_back(operandOrArg);
      } while (parser.consumeIf(Token::comma));
    }

    // Handle delimiters.   If we reach here, the optional delimiters were
    // present, so we need to parse their closing one.
    switch (delimiter) {
    case Delimiter::None:
      break;
    case Delimiter::OptionalParen:
    case Delimiter::Paren:
      if (parser.parseToken(Token::r_paren, "expected ')' in operand list"))
        return failure();
      break;
    case Delimiter::OptionalSquare:
    case Delimiter::Square:
      if (parser.parseToken(Token::r_square, "expected ']' in operand list"))
        return failure();
      break;
    }

    if (requiredOperandCount != -1 &&
        result.size() != static_cast<size_t>(requiredOperandCount))
      return emitError(startLoc, "expected ")
             << requiredOperandCount << " operands";
    return success();
  }

  /// Parse zero or more trailing SSA comma-separated trailing operand
  /// references with a specified surrounding delimiter, and an optional
  /// required operand count. A leading comma is expected before the operands.
  ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result,
                                       int requiredOperandCount,
                                       Delimiter delimiter) override {
    if (parser.getToken().is(Token::comma)) {
      parseComma();
      return parseOperandList(result, requiredOperandCount, delimiter);
    }
    if (requiredOperandCount != -1)
      return emitError(parser.getToken().getLoc(), "expected ")
             << requiredOperandCount << " operands";
    return success();
  }

  /// Resolve an operand to an SSA value, emitting an error on failure.
  ParseResult resolveOperand(const OperandType &operand, Type type,
                             SmallVectorImpl<Value> &result) override {
    OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
                                               operand.location};
    if (auto value = parser.resolveSSAUse(operandInfo, type)) {
      result.push_back(value);
      return success();
    }
    return failure();
  }

  /// Parse an AffineMap of SSA ids.
  ParseResult
  parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands,
                         Attribute &mapAttr, StringRef attrName,
                         SmallVectorImpl<NamedAttribute> &attrs) override {
    SmallVector<OperandType, 2> dimOperands;
    SmallVector<OperandType, 1> symOperands;

    auto parseElement = [&](bool isSymbol) -> ParseResult {
      OperandType operand;
      if (parseOperand(operand))
        return failure();
      if (isSymbol)
        symOperands.push_back(operand);
      else
        dimOperands.push_back(operand);
      return success();
    };

    AffineMap map;
    if (parser.parseAffineMapOfSSAIds(map, parseElement))
      return failure();
    // Add AffineMap attribute.
    if (map) {
      mapAttr = AffineMapAttr::get(map);
      attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr));
    }

    // Add dim operands before symbol operands in 'operands'.
    operands.assign(dimOperands.begin(), dimOperands.end());
    operands.append(symOperands.begin(), symOperands.end());
    return success();
  }

  //===--------------------------------------------------------------------===//
  // Region Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a region that takes `arguments` of `argTypes` types.  This
  /// effectively defines the SSA values of `arguments` and assigns their type.
  ParseResult parseRegion(Region &region, ArrayRef<OperandType> arguments,
                          ArrayRef<Type> argTypes,
                          bool enableNameShadowing) override {
    assert(arguments.size() == argTypes.size() &&
           "mismatching number of arguments and types");

    SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2>
        regionArguments;
    for (auto pair : llvm::zip(arguments, argTypes)) {
      const OperandType &operand = std::get<0>(pair);
      Type type = std::get<1>(pair);
      OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
                                                 operand.location};
      regionArguments.emplace_back(operandInfo, type);
    }

    // Try to parse the region.
    assert((!enableNameShadowing ||
            opDefinition->hasProperty(OperationProperty::IsolatedFromAbove)) &&
           "name shadowing is only allowed on isolated regions");
    if (parser.parseRegion(region, regionArguments, enableNameShadowing))
      return failure();
    return success();
  }

  /// Parses a region if present.
  ParseResult parseOptionalRegion(Region &region,
                                  ArrayRef<OperandType> arguments,
                                  ArrayRef<Type> argTypes,
                                  bool enableNameShadowing) override {
    if (parser.getToken().isNot(Token::l_brace))
      return success();
    return parseRegion(region, arguments, argTypes, enableNameShadowing);
  }

  /// Parse a region argument. The type of the argument will be resolved later
  /// by a call to `parseRegion`.
  ParseResult parseRegionArgument(OperandType &argument) override {
    return parseOperand(argument);
  }

  /// Parse a region argument if present.
  ParseResult parseOptionalRegionArgument(OperandType &argument) override {
    if (parser.getToken().isNot(Token::percent_identifier))
      return success();
    return parseRegionArgument(argument);
  }

  ParseResult
  parseRegionArgumentList(SmallVectorImpl<OperandType> &result,
                          int requiredOperandCount = -1,
                          Delimiter delimiter = Delimiter::None) override {
    return parseOperandOrRegionArgList(result, /*isOperandList=*/false,
                                       requiredOperandCount, delimiter);
  }

  //===--------------------------------------------------------------------===//
  // Successor Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a single operation successor and its operand list.
  ParseResult
  parseSuccessorAndUseList(Block *&dest,
                           SmallVectorImpl<Value> &operands) override {
    return parser.parseSuccessorAndUseList(dest, operands);
  }

  //===--------------------------------------------------------------------===//
  // Type Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a type.
  ParseResult parseType(Type &result) override {
    return failure(!(result = parser.parseType()));
  }

  /// Parse an optional arrow followed by a type list.
  ParseResult
  parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override {
    if (!parser.consumeIf(Token::arrow))
      return success();
    return parser.parseFunctionResultTypes(result);
  }

  /// Parse a colon followed by a type.
  ParseResult parseColonType(Type &result) override {
    return failure(parser.parseToken(Token::colon, "expected ':'") ||
                   !(result = parser.parseType()));
  }

  /// Parse a colon followed by a type list, which must have at least one type.
  ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override {
    if (parser.parseToken(Token::colon, "expected ':'"))
      return failure();
    return parser.parseTypeListNoParens(result);
  }

  /// Parse an optional colon followed by a type list, which if present must
  /// have at least one type.
  ParseResult
  parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override {
    if (!parser.consumeIf(Token::colon))
      return success();
    return parser.parseTypeListNoParens(result);
  }

private:
  /// The source location of the operation name.
  SMLoc nameLoc;

  /// The abstract information of the operation.
  const AbstractOperation *opDefinition;

  /// The main operation parser.
  OperationParser &parser;

  /// A flag that indicates if any errors were emitted during parsing.
  bool emittedError = false;
};
} // end anonymous namespace.

Operation *OperationParser::parseCustomOperation() {
  auto opLoc = getToken().getLoc();
  auto opName = getTokenSpelling();

  auto *opDefinition = AbstractOperation::lookup(opName, getContext());
  if (!opDefinition && !opName.contains('.')) {
    // If the operation name has no namespace prefix we treat it as a standard
    // operation and prefix it with "std".
    // TODO: Would it be better to just build a mapping of the registered
    // operations in the standard dialect?
    opDefinition =
        AbstractOperation::lookup(Twine("std." + opName).str(), getContext());
  }

  if (!opDefinition) {
    emitError(opLoc) << "custom op '" << opName << "' is unknown";
    return nullptr;
  }

  consumeToken();

  // If the custom op parser crashes, produce some indication to help
  // debugging.
  std::string opNameStr = opName.str();
  llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'",
                                   opNameStr.c_str());

  // Get location information for the operation.
  auto srcLocation = getEncodedSourceLocation(opLoc);

  // Have the op implementation take a crack and parsing this.
  OperationState opState(srcLocation, opDefinition->name);
  CleanupOpStateRegions guard{opState};
  CustomOpAsmParser opAsmParser(opLoc, opDefinition, *this);
  if (opAsmParser.parseOperation(opState))
    return nullptr;

  // If it emitted an error, we failed.
  if (opAsmParser.didEmitError())
    return nullptr;

  // Parse a location if one is present.
  if (parseOptionalTrailingLocation(opState.location))
    return nullptr;

  // Otherwise, we succeeded.  Use the state it parsed as our op information.
  return opBuilder.createOperation(opState);
}

//===----------------------------------------------------------------------===//
// Region Parsing
//===----------------------------------------------------------------------===//

/// Region.
///
///   region ::= '{' region-body
///
ParseResult OperationParser::parseRegion(
    Region &region,
    ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments,
    bool isIsolatedNameScope) {
  // Parse the '{'.
  if (parseToken(Token::l_brace, "expected '{' to begin a region"))
    return failure();

  // Check for an empty region.
  if (entryArguments.empty() && consumeIf(Token::r_brace))
    return success();
  auto currentPt = opBuilder.saveInsertionPoint();

  // Push a new named value scope.
  pushSSANameScope(isIsolatedNameScope);

  // Parse the first block directly to allow for it to be unnamed.
  Block *block = new Block();

  // Add arguments to the entry block.
  if (!entryArguments.empty()) {
    for (auto &placeholderArgPair : entryArguments) {
      auto &argInfo = placeholderArgPair.first;
      // Ensure that the argument was not already defined.
      if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) {
        return emitError(argInfo.loc, "region entry argument '" + argInfo.name +
                                          "' is already in use")
                   .attachNote(getEncodedSourceLocation(*defLoc))
               << "previously referenced here";
      }
      if (addDefinition(placeholderArgPair.first,
                        block->addArgument(placeholderArgPair.second))) {
        delete block;
        return failure();
      }
    }

    // If we had named arguments, then don't allow a block name.
    if (getToken().is(Token::caret_identifier))
      return emitError("invalid block name in region with named arguments");
  }

  if (parseBlock(block)) {
    delete block;
    return failure();
  }

  // Verify that no other arguments were parsed.
  if (!entryArguments.empty() &&
      block->getNumArguments() > entryArguments.size()) {
    delete block;
    return emitError("entry block arguments were already defined");
  }

  // Parse the rest of the region.
  region.push_back(block);
  if (parseRegionBody(region))
    return failure();

  // Pop the SSA value scope for this region.
  if (popSSANameScope())
    return failure();

  // Reset the original insertion point.
  opBuilder.restoreInsertionPoint(currentPt);
  return success();
}

/// Region.
///
///   region-body ::= block* '}'
///
ParseResult OperationParser::parseRegionBody(Region &region) {
  // Parse the list of blocks.
  while (!consumeIf(Token::r_brace)) {
    Block *newBlock = nullptr;
    if (parseBlock(newBlock))
      return failure();
    region.push_back(newBlock);
  }
  return success();
}

//===----------------------------------------------------------------------===//
// Block Parsing
//===----------------------------------------------------------------------===//

/// Block declaration.
///
///   block ::= block-label? operation*
///   block-label    ::= block-id block-arg-list? `:`
///   block-id       ::= caret-id
///   block-arg-list ::= `(` ssa-id-and-type-list? `)`
///
ParseResult OperationParser::parseBlock(Block *&block) {
  // The first block of a region may already exist, if it does the caret
  // identifier is optional.
  if (block && getToken().isNot(Token::caret_identifier))
    return parseBlockBody(block);

  SMLoc nameLoc = getToken().getLoc();
  auto name = getTokenSpelling();
  if (parseToken(Token::caret_identifier, "expected block name"))
    return failure();

  block = defineBlockNamed(name, nameLoc, block);

  // Fail if the block was already defined.
  if (!block)
    return emitError(nameLoc, "redefinition of block '") << name << "'";

  // If an argument list is present, parse it.
  if (consumeIf(Token::l_paren)) {
    SmallVector<BlockArgument, 8> bbArgs;
    if (parseOptionalBlockArgList(bbArgs, block) ||
        parseToken(Token::r_paren, "expected ')' to end argument list"))
      return failure();
  }

  if (parseToken(Token::colon, "expected ':' after block name"))
    return failure();

  return parseBlockBody(block);
}

ParseResult OperationParser::parseBlockBody(Block *block) {
  // Set the insertion point to the end of the block to parse.
  opBuilder.setInsertionPointToEnd(block);

  // Parse the list of operations that make up the body of the block.
  while (getToken().isNot(Token::caret_identifier, Token::r_brace))
    if (parseOperation())
      return failure();

  return success();
}

/// Get the block with the specified name, creating it if it doesn't already
/// exist.  The location specified is the point of use, which allows
/// us to diagnose references to blocks that are not defined precisely.
Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) {
  auto &blockAndLoc = getBlockInfoByName(name);
  if (!blockAndLoc.first) {
    blockAndLoc = {new Block(), loc};
    insertForwardRef(blockAndLoc.first, loc);
  }

  return blockAndLoc.first;
}

/// Define the block with the specified name. Returns the Block* or nullptr in
/// the case of redefinition.
Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc,
                                         Block *existing) {
  auto &blockAndLoc = getBlockInfoByName(name);
  if (!blockAndLoc.first) {
    // If the caller provided a block, use it.  Otherwise create a new one.
    if (!existing)
      existing = new Block();
    blockAndLoc.first = existing;
    blockAndLoc.second = loc;
    return blockAndLoc.first;
  }

  // Forward declarations are removed once defined, so if we are defining a
  // existing block and it is not a forward declaration, then it is a
  // redeclaration.
  if (!eraseForwardRef(blockAndLoc.first))
    return nullptr;
  return blockAndLoc.first;
}

/// Parse a (possibly empty) list of SSA operands with types as block arguments.
///
///   ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)*
///
ParseResult OperationParser::parseOptionalBlockArgList(
    SmallVectorImpl<BlockArgument> &results, Block *owner) {
  if (getToken().is(Token::r_brace))
    return success();

  // If the block already has arguments, then we're handling the entry block.
  // Parse and register the names for the arguments, but do not add them.
  bool definingExistingArgs = owner->getNumArguments() != 0;
  unsigned nextArgument = 0;

  return parseCommaSeparatedList([&]() -> ParseResult {
    return parseSSADefOrUseAndType(
        [&](SSAUseInfo useInfo, Type type) -> ParseResult {
          // If this block did not have existing arguments, define a new one.
          if (!definingExistingArgs)
            return addDefinition(useInfo, owner->addArgument(type));

          // Otherwise, ensure that this argument has already been created.
          if (nextArgument >= owner->getNumArguments())
            return emitError("too many arguments specified in argument list");

          // Finally, make sure the existing argument has the correct type.
          auto arg = owner->getArgument(nextArgument++);
          if (arg.getType() != type)
            return emitError("argument and block argument type mismatch");
          return addDefinition(useInfo, arg);
        });
  });
}

//===----------------------------------------------------------------------===//
// Top-level entity parsing.
//===----------------------------------------------------------------------===//

namespace {
/// This parser handles entities that are only valid at the top level of the
/// file.
class ModuleParser : public Parser {
public:
  explicit ModuleParser(ParserState &state) : Parser(state) {}

  ParseResult parseModule(ModuleOp module);

private:
  /// Parse an attribute alias declaration.
  ParseResult parseAttributeAliasDef();

  /// Parse an attribute alias declaration.
  ParseResult parseTypeAliasDef();
};
} // end anonymous namespace

/// Parses an attribute alias declaration.
///
///   attribute-alias-def ::= '#' alias-name `=` attribute-value
///
ParseResult ModuleParser::parseAttributeAliasDef() {
  assert(getToken().is(Token::hash_identifier));
  StringRef aliasName = getTokenSpelling().drop_front();

  // Check for redefinitions.
  if (getState().symbols.attributeAliasDefinitions.count(aliasName) > 0)
    return emitError("redefinition of attribute alias id '" + aliasName + "'");

  // Make sure this isn't invading the dialect attribute namespace.
  if (aliasName.contains('.'))
    return emitError("attribute names with a '.' are reserved for "
                     "dialect-defined names");

  consumeToken(Token::hash_identifier);

  // Parse the '='.
  if (parseToken(Token::equal, "expected '=' in attribute alias definition"))
    return failure();

  // Parse the attribute value.
  Attribute attr = parseAttribute();
  if (!attr)
    return failure();

  getState().symbols.attributeAliasDefinitions[aliasName] = attr;
  return success();
}

/// Parse a type alias declaration.
///
///   type-alias-def ::= '!' alias-name `=` 'type' type
///
ParseResult ModuleParser::parseTypeAliasDef() {
  assert(getToken().is(Token::exclamation_identifier));
  StringRef aliasName = getTokenSpelling().drop_front();

  // Check for redefinitions.
  if (getState().symbols.typeAliasDefinitions.count(aliasName) > 0)
    return emitError("redefinition of type alias id '" + aliasName + "'");

  // Make sure this isn't invading the dialect type namespace.
  if (aliasName.contains('.'))
    return emitError("type names with a '.' are reserved for "
                     "dialect-defined names");

  consumeToken(Token::exclamation_identifier);

  // Parse the '=' and 'type'.
  if (parseToken(Token::equal, "expected '=' in type alias definition") ||
      parseToken(Token::kw_type, "expected 'type' in type alias definition"))
    return failure();

  // Parse the type.
  Type aliasedType = parseType();
  if (!aliasedType)
    return failure();

  // Register this alias with the parser state.
  getState().symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType);
  return success();
}

/// This is the top-level module parser.
ParseResult ModuleParser::parseModule(ModuleOp module) {
  OperationParser opParser(getState(), module);

  // Module itself is a name scope.
  opParser.pushSSANameScope(/*isIsolated=*/true);

  while (true) {
    switch (getToken().getKind()) {
    default:
      // Parse a top-level operation.
      if (opParser.parseOperation())
        return failure();
      break;

    // If we got to the end of the file, then we're done.
    case Token::eof: {
      if (opParser.finalize())
        return failure();

      // Handle the case where the top level module was explicitly defined.
      auto &bodyBlocks = module.getBodyRegion().getBlocks();
      auto &operations = bodyBlocks.front().getOperations();
      assert(!operations.empty() && "expected a valid module terminator");

      // Check that the first operation is a module, and it is the only
      // non-terminator operation.
      ModuleOp nested = dyn_cast<ModuleOp>(operations.front());
      if (nested && std::next(operations.begin(), 2) == operations.end()) {
        // Merge the data of the nested module operation into 'module'.
        module.setLoc(nested.getLoc());
        module.setAttrs(nested.getOperation()->getAttrList());
        bodyBlocks.splice(bodyBlocks.end(), nested.getBodyRegion().getBlocks());

        // Erase the original module body.
        bodyBlocks.pop_front();
      }

      return opParser.popSSANameScope();
    }

    // If we got an error token, then the lexer already emitted an error, just
    // stop.  Someday we could introduce error recovery if there was demand
    // for it.
    case Token::error:
      return failure();

    // Parse an attribute alias.
    case Token::hash_identifier:
      if (parseAttributeAliasDef())
        return failure();
      break;

    // Parse a type alias.
    case Token::exclamation_identifier:
      if (parseTypeAliasDef())
        return failure();
      break;
    }
  }
}

//===----------------------------------------------------------------------===//

/// This parses the file specified by the indicated SourceMgr and returns an
/// MLIR module if it was valid.  If not, it emits diagnostics and returns
/// null.
OwningModuleRef mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr,
                                      MLIRContext *context) {
  auto sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID());

  // This is the result module we are parsing into.
  OwningModuleRef module(ModuleOp::create(FileLineColLoc::get(
      sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0, context)));

  SymbolState aliasState;
  ParserState state(sourceMgr, context, aliasState);
  if (ModuleParser(state).parseModule(*module))
    return nullptr;

  // Make sure the parse module has no other structural problems detected by
  // the verifier.
  if (failed(verify(*module)))
    return nullptr;

  return module;
}

/// This parses the file specified by the indicated filename and returns an
/// MLIR module if it was valid.  If not, the error message is emitted through
/// the error handler registered in the context, and a null pointer is returned.
OwningModuleRef mlir::parseSourceFile(StringRef filename,
                                      MLIRContext *context) {
  llvm::SourceMgr sourceMgr;
  return parseSourceFile(filename, sourceMgr, context);
}

/// This parses the file specified by the indicated filename using the provided
/// SourceMgr and returns an MLIR module if it was valid.  If not, the error
/// message is emitted through the error handler registered in the context, and
/// a null pointer is returned.
OwningModuleRef mlir::parseSourceFile(StringRef filename,
                                      llvm::SourceMgr &sourceMgr,
                                      MLIRContext *context) {
  if (sourceMgr.getNumBuffers() != 0) {
    // TODO(b/136086478): Extend to support multiple buffers.
    emitError(mlir::UnknownLoc::get(context),
              "only main buffer parsed at the moment");
    return nullptr;
  }
  auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename);
  if (std::error_code error = file_or_err.getError()) {
    emitError(mlir::UnknownLoc::get(context),
              "could not open input file " + filename);
    return nullptr;
  }

  // Load the MLIR module.
  sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc());
  return parseSourceFile(sourceMgr, context);
}

/// This parses the program string to a MLIR module if it was valid. If not,
/// it emits diagnostics and returns null.
OwningModuleRef mlir::parseSourceString(StringRef moduleStr,
                                        MLIRContext *context) {
  auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr);
  if (!memBuffer)
    return nullptr;

  SourceMgr sourceMgr;
  sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
  return parseSourceFile(sourceMgr, context);
}

/// Parses a symbol, of type 'T', and returns it if parsing was successful. If
/// parsing failed, nullptr is returned. The number of bytes read from the input
/// string is returned in 'numRead'.
template <typename T, typename ParserFn>
static T parseSymbol(StringRef inputStr, MLIRContext *context, size_t &numRead,
                     ParserFn &&parserFn) {
  SymbolState aliasState;
  return parseSymbol<T>(
      inputStr, context, aliasState,
      [&](Parser &parser) {
        SourceMgrDiagnosticHandler handler(
            const_cast<llvm::SourceMgr &>(parser.getSourceMgr()),
            parser.getContext());
        return parserFn(parser);
      },
      &numRead);
}

Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context) {
  size_t numRead = 0;
  return parseAttribute(attrStr, context, numRead);
}
Attribute mlir::parseAttribute(StringRef attrStr, Type type) {
  size_t numRead = 0;
  return parseAttribute(attrStr, type, numRead);
}

Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context,
                               size_t &numRead) {
  return parseSymbol<Attribute>(attrStr, context, numRead, [](Parser &parser) {
    return parser.parseAttribute();
  });
}
Attribute mlir::parseAttribute(StringRef attrStr, Type type, size_t &numRead) {
  return parseSymbol<Attribute>(
      attrStr, type.getContext(), numRead,
      [type](Parser &parser) { return parser.parseAttribute(type); });
}

Type mlir::parseType(StringRef typeStr, MLIRContext *context) {
  size_t numRead = 0;
  return parseType(typeStr, context, numRead);
}

Type mlir::parseType(StringRef typeStr, MLIRContext *context, size_t &numRead) {
  return parseSymbol<Type>(typeStr, context, numRead,
                           [](Parser &parser) { return parser.parseType(); });
}
OpenPOWER on IntegriCloud