1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
//===-- Target.cpp ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "../Target.h"
#include "../Latency.h"
#include "../Uops.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "X86.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/MC/MCInstBuilder.h"
namespace exegesis {
namespace {
static llvm::Error IsInvalidOpcode(const Instruction &Instr) {
const auto OpcodeName = Instr.Name;
if (OpcodeName.startswith("POPF") || OpcodeName.startswith("PUSHF") ||
OpcodeName.startswith("ADJCALLSTACK"))
return llvm::make_error<BenchmarkFailure>(
"Unsupported opcode: Push/Pop/AdjCallStack");
return llvm::Error::success();
}
static unsigned GetX86FPFlags(const Instruction &Instr) {
return Instr.Description->TSFlags & llvm::X86II::FPTypeMask;
}
class X86LatencySnippetGenerator : public LatencySnippetGenerator {
public:
using LatencySnippetGenerator::LatencySnippetGenerator;
llvm::Expected<std::vector<CodeTemplate>>
generateCodeTemplates(const Instruction &Instr) const override {
if (auto E = IsInvalidOpcode(Instr))
return std::move(E);
switch (GetX86FPFlags(Instr)) {
case llvm::X86II::NotFP:
return LatencySnippetGenerator::generateCodeTemplates(Instr);
case llvm::X86II::ZeroArgFP:
case llvm::X86II::OneArgFP:
case llvm::X86II::SpecialFP:
case llvm::X86II::CompareFP:
case llvm::X86II::CondMovFP:
return llvm::make_error<BenchmarkFailure>("Unsupported x87 Instruction");
case llvm::X86II::OneArgFPRW:
case llvm::X86II::TwoArgFP:
// These are instructions like
// - `ST(0) = fsqrt(ST(0))` (OneArgFPRW)
// - `ST(0) = ST(0) + ST(i)` (TwoArgFP)
// They are intrinsically serial and do not modify the state of the stack.
return generateSelfAliasingCodeTemplates(Instr);
default:
llvm_unreachable("Unknown FP Type!");
}
}
};
class X86UopsSnippetGenerator : public UopsSnippetGenerator {
public:
using UopsSnippetGenerator::UopsSnippetGenerator;
llvm::Expected<std::vector<CodeTemplate>>
generateCodeTemplates(const Instruction &Instr) const override {
if (auto E = IsInvalidOpcode(Instr))
return std::move(E);
switch (GetX86FPFlags(Instr)) {
case llvm::X86II::NotFP:
return UopsSnippetGenerator::generateCodeTemplates(Instr);
case llvm::X86II::ZeroArgFP:
case llvm::X86II::OneArgFP:
case llvm::X86II::SpecialFP:
return llvm::make_error<BenchmarkFailure>("Unsupported x87 Instruction");
case llvm::X86II::OneArgFPRW:
case llvm::X86II::TwoArgFP:
// These are instructions like
// - `ST(0) = fsqrt(ST(0))` (OneArgFPRW)
// - `ST(0) = ST(0) + ST(i)` (TwoArgFP)
// They are intrinsically serial and do not modify the state of the stack.
// We generate the same code for latency and uops.
return generateSelfAliasingCodeTemplates(Instr);
case llvm::X86II::CompareFP:
case llvm::X86II::CondMovFP:
// We can compute uops for any FP instruction that does not grow or shrink
// the stack (either do not touch the stack or push as much as they pop).
return generateUnconstrainedCodeTemplates(
Instr, "instruction does not grow/shrink the FP stack");
default:
llvm_unreachable("Unknown FP Type!");
}
}
};
static unsigned GetLoadImmediateOpcode(unsigned RegBitWidth) {
switch (RegBitWidth) {
case 8:
return llvm::X86::MOV8ri;
case 16:
return llvm::X86::MOV16ri;
case 32:
return llvm::X86::MOV32ri;
case 64:
return llvm::X86::MOV64ri;
}
llvm_unreachable("Invalid Value Width");
}
// Generates instruction to load an immediate value into a register.
static llvm::MCInst loadImmediate(unsigned Reg, unsigned RegBitWidth,
const llvm::APInt &Value) {
if (Value.getBitWidth() > RegBitWidth)
llvm_unreachable("Value must fit in the Register");
return llvm::MCInstBuilder(GetLoadImmediateOpcode(RegBitWidth))
.addReg(Reg)
.addImm(Value.getZExtValue());
}
// Allocates scratch memory on the stack.
static llvm::MCInst allocateStackSpace(unsigned Bytes) {
return llvm::MCInstBuilder(llvm::X86::SUB64ri8)
.addReg(llvm::X86::RSP)
.addReg(llvm::X86::RSP)
.addImm(Bytes);
}
// Fills scratch memory at offset `OffsetBytes` with value `Imm`.
static llvm::MCInst fillStackSpace(unsigned MovOpcode, unsigned OffsetBytes,
uint64_t Imm) {
return llvm::MCInstBuilder(MovOpcode)
// Address = ESP
.addReg(llvm::X86::RSP) // BaseReg
.addImm(1) // ScaleAmt
.addReg(0) // IndexReg
.addImm(OffsetBytes) // Disp
.addReg(0) // Segment
// Immediate.
.addImm(Imm);
}
// Loads scratch memory into register `Reg` using opcode `RMOpcode`.
static llvm::MCInst loadToReg(unsigned Reg, unsigned RMOpcode) {
return llvm::MCInstBuilder(RMOpcode)
.addReg(Reg)
// Address = ESP
.addReg(llvm::X86::RSP) // BaseReg
.addImm(1) // ScaleAmt
.addReg(0) // IndexReg
.addImm(0) // Disp
.addReg(0); // Segment
}
// Releases scratch memory.
static llvm::MCInst releaseStackSpace(unsigned Bytes) {
return llvm::MCInstBuilder(llvm::X86::ADD64ri8)
.addReg(llvm::X86::RSP)
.addReg(llvm::X86::RSP)
.addImm(Bytes);
}
// Reserves some space on the stack, fills it with the content of the provided
// constant and provide methods to load the stack value into a register.
struct ConstantInliner {
explicit ConstantInliner(const llvm::APInt &Constant) : Constant_(Constant) {}
std::vector<llvm::MCInst> loadAndFinalize(unsigned Reg, unsigned RegBitWidth,
unsigned Opcode) {
assert((RegBitWidth & 7) == 0 &&
"RegBitWidth must be a multiple of 8 bits");
initStack(RegBitWidth / 8);
add(loadToReg(Reg, Opcode));
add(releaseStackSpace(RegBitWidth / 8));
return std::move(Instructions);
}
std::vector<llvm::MCInst> loadX87STAndFinalize(unsigned Reg) {
initStack(kF80Bytes);
add(llvm::MCInstBuilder(llvm::X86::LD_F80m)
// Address = ESP
.addReg(llvm::X86::RSP) // BaseReg
.addImm(1) // ScaleAmt
.addReg(0) // IndexReg
.addImm(0) // Disp
.addReg(0)); // Segment
if (Reg != llvm::X86::ST0)
add(llvm::MCInstBuilder(llvm::X86::ST_Frr).addReg(Reg));
add(releaseStackSpace(kF80Bytes));
return std::move(Instructions);
}
std::vector<llvm::MCInst> loadX87FPAndFinalize(unsigned Reg) {
initStack(kF80Bytes);
add(llvm::MCInstBuilder(llvm::X86::LD_Fp80m)
.addReg(Reg)
// Address = ESP
.addReg(llvm::X86::RSP) // BaseReg
.addImm(1) // ScaleAmt
.addReg(0) // IndexReg
.addImm(0) // Disp
.addReg(0)); // Segment
add(releaseStackSpace(kF80Bytes));
return std::move(Instructions);
}
std::vector<llvm::MCInst> popFlagAndFinalize() {
initStack(8);
add(llvm::MCInstBuilder(llvm::X86::POPF64));
return std::move(Instructions);
}
private:
static constexpr const unsigned kF80Bytes = 10; // 80 bits.
ConstantInliner &add(const llvm::MCInst &Inst) {
Instructions.push_back(Inst);
return *this;
}
void initStack(unsigned Bytes) {
assert(Constant_.getBitWidth() <= Bytes * 8 &&
"Value does not have the correct size");
const llvm::APInt WideConstant = Constant_.getBitWidth() < Bytes * 8
? Constant_.sext(Bytes * 8)
: Constant_;
add(allocateStackSpace(Bytes));
size_t ByteOffset = 0;
for (; Bytes - ByteOffset >= 4; ByteOffset += 4)
add(fillStackSpace(
llvm::X86::MOV32mi, ByteOffset,
WideConstant.extractBits(32, ByteOffset * 8).getZExtValue()));
if (Bytes - ByteOffset >= 2) {
add(fillStackSpace(
llvm::X86::MOV16mi, ByteOffset,
WideConstant.extractBits(16, ByteOffset * 8).getZExtValue()));
ByteOffset += 2;
}
if (Bytes - ByteOffset >= 1)
add(fillStackSpace(
llvm::X86::MOV8mi, ByteOffset,
WideConstant.extractBits(8, ByteOffset * 8).getZExtValue()));
}
llvm::APInt Constant_;
std::vector<llvm::MCInst> Instructions;
};
class ExegesisX86Target : public ExegesisTarget {
void addTargetSpecificPasses(llvm::PassManagerBase &PM) const override {
// Lowers FP pseudo-instructions, e.g. ABS_Fp32 -> ABS_F.
PM.add(llvm::createX86FloatingPointStackifierPass());
}
unsigned getScratchMemoryRegister(const llvm::Triple &TT) const override {
if (!TT.isArch64Bit()) {
// FIXME: This would require popping from the stack, so we would have to
// add some additional setup code.
return 0;
}
return TT.isOSWindows() ? llvm::X86::RCX : llvm::X86::RDI;
}
unsigned getMaxMemoryAccessSize() const override { return 64; }
void fillMemoryOperands(InstructionTemplate &IT, unsigned Reg,
unsigned Offset) const override {
// FIXME: For instructions that read AND write to memory, we use the same
// value for input and output.
for (size_t I = 0, E = IT.Instr.Operands.size(); I < E; ++I) {
const Operand *Op = &IT.Instr.Operands[I];
if (Op->isExplicit() && Op->isMemory()) {
// Case 1: 5-op memory.
assert((I + 5 <= E) && "x86 memory references are always 5 ops");
IT.getValueFor(*Op) = llvm::MCOperand::createReg(Reg); // BaseReg
Op = &IT.Instr.Operands[++I];
assert(Op->isMemory());
assert(Op->isExplicit());
IT.getValueFor(*Op) = llvm::MCOperand::createImm(1); // ScaleAmt
Op = &IT.Instr.Operands[++I];
assert(Op->isMemory());
assert(Op->isExplicit());
IT.getValueFor(*Op) = llvm::MCOperand::createReg(0); // IndexReg
Op = &IT.Instr.Operands[++I];
assert(Op->isMemory());
assert(Op->isExplicit());
IT.getValueFor(*Op) = llvm::MCOperand::createImm(Offset); // Disp
Op = &IT.Instr.Operands[++I];
assert(Op->isMemory());
assert(Op->isExplicit());
IT.getValueFor(*Op) = llvm::MCOperand::createReg(0); // Segment
// Case2: segment:index addressing. We assume that ES is 0.
}
}
}
std::vector<llvm::MCInst> setRegTo(const llvm::MCSubtargetInfo &STI,
unsigned Reg,
const llvm::APInt &Value) const override {
if (llvm::X86::GR8RegClass.contains(Reg))
return {loadImmediate(Reg, 8, Value)};
if (llvm::X86::GR16RegClass.contains(Reg))
return {loadImmediate(Reg, 16, Value)};
if (llvm::X86::GR32RegClass.contains(Reg))
return {loadImmediate(Reg, 32, Value)};
if (llvm::X86::GR64RegClass.contains(Reg))
return {loadImmediate(Reg, 64, Value)};
ConstantInliner CI(Value);
if (llvm::X86::VR64RegClass.contains(Reg))
return CI.loadAndFinalize(Reg, 64, llvm::X86::MMX_MOVQ64rm);
if (llvm::X86::VR128XRegClass.contains(Reg)) {
if (STI.getFeatureBits()[llvm::X86::FeatureAVX512])
return CI.loadAndFinalize(Reg, 128, llvm::X86::VMOVDQU32Z128rm);
if (STI.getFeatureBits()[llvm::X86::FeatureAVX])
return CI.loadAndFinalize(Reg, 128, llvm::X86::VMOVDQUrm);
return CI.loadAndFinalize(Reg, 128, llvm::X86::MOVDQUrm);
}
if (llvm::X86::VR256XRegClass.contains(Reg)) {
if (STI.getFeatureBits()[llvm::X86::FeatureAVX512])
return CI.loadAndFinalize(Reg, 256, llvm::X86::VMOVDQU32Z256rm);
if (STI.getFeatureBits()[llvm::X86::FeatureAVX])
return CI.loadAndFinalize(Reg, 256, llvm::X86::VMOVDQUYrm);
}
if (llvm::X86::VR512RegClass.contains(Reg))
if (STI.getFeatureBits()[llvm::X86::FeatureAVX512])
return CI.loadAndFinalize(Reg, 512, llvm::X86::VMOVDQU32Zrm);
if (llvm::X86::RSTRegClass.contains(Reg)) {
return CI.loadX87STAndFinalize(Reg);
}
if (llvm::X86::RFP32RegClass.contains(Reg) ||
llvm::X86::RFP64RegClass.contains(Reg) ||
llvm::X86::RFP80RegClass.contains(Reg)) {
return CI.loadX87FPAndFinalize(Reg);
}
if (Reg == llvm::X86::EFLAGS)
return CI.popFlagAndFinalize();
return {}; // Not yet implemented.
}
std::unique_ptr<SnippetGenerator>
createLatencySnippetGenerator(const LLVMState &State) const override {
return llvm::make_unique<X86LatencySnippetGenerator>(State);
}
std::unique_ptr<SnippetGenerator>
createUopsSnippetGenerator(const LLVMState &State) const override {
return llvm::make_unique<X86UopsSnippetGenerator>(State);
}
bool matchesArch(llvm::Triple::ArchType Arch) const override {
return Arch == llvm::Triple::x86_64 || Arch == llvm::Triple::x86;
}
};
} // namespace
static ExegesisTarget *getTheExegesisX86Target() {
static ExegesisX86Target Target;
return &Target;
}
void InitializeX86ExegesisTarget() {
ExegesisTarget::registerTarget(getTheExegesisX86Target());
}
} // namespace exegesis
|