summaryrefslogtreecommitdiffstats
path: root/llvm/tools/llvm-exegesis/lib/Clustering.h
blob: 70082044f56ea78bf8c2f4c9defec323e97463e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
//===-- Clustering.h --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Utilities to compute benchmark result clusters.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_TOOLS_LLVM_EXEGESIS_CLUSTERING_H
#define LLVM_TOOLS_LLVM_EXEGESIS_CLUSTERING_H

#include "BenchmarkResult.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/Error.h"
#include <limits>
#include <vector>

namespace llvm {
namespace exegesis {

class InstructionBenchmarkClustering {
public:
  // Clusters `Points` using DBSCAN with the given parameters. See the cc file
  // for more explanations on the algorithm.
  static llvm::Expected<InstructionBenchmarkClustering>
  create(const std::vector<InstructionBenchmark> &Points, size_t MinPts,
         double Epsilon, llvm::Optional<unsigned> NumOpcodes = llvm::None);

  class ClusterId {
  public:
    static ClusterId noise() { return ClusterId(kNoise); }
    static ClusterId error() { return ClusterId(kError); }
    static ClusterId makeValid(size_t Id) { return ClusterId(Id); }
    static ClusterId makeValidUnstable(size_t Id) {
      return ClusterId(Id, /*IsUnstable=*/true);
    }

    ClusterId() : Id_(kUndef), IsUnstable_(false) {}

    // Compare id's, ignoring the 'unstability' bit.
    bool operator==(const ClusterId &O) const { return Id_ == O.Id_; }
    bool operator<(const ClusterId &O) const { return Id_ < O.Id_; }

    bool isValid() const { return Id_ <= kMaxValid; }
    bool isUnstable() const { return IsUnstable_; }
    bool isNoise() const { return Id_ == kNoise; }
    bool isError() const { return Id_ == kError; }
    bool isUndef() const { return Id_ == kUndef; }

    // Precondition: isValid().
    size_t getId() const {
      assert(isValid());
      return Id_;
    }

  private:
    ClusterId(size_t Id, bool IsUnstable = false)
        : Id_(Id), IsUnstable_(IsUnstable) {}

    static constexpr const size_t kMaxValid =
        (std::numeric_limits<size_t>::max() >> 1) - 4;
    static constexpr const size_t kNoise = kMaxValid + 1;
    static constexpr const size_t kError = kMaxValid + 2;
    static constexpr const size_t kUndef = kMaxValid + 3;

    size_t Id_ : (std::numeric_limits<size_t>::digits - 1);
    size_t IsUnstable_ : 1;
  };
  static_assert(sizeof(ClusterId) == sizeof(size_t), "should be a bit field.");

  struct Cluster {
    Cluster() = delete;
    explicit Cluster(const ClusterId &Id) : Id(Id) {}

    const ClusterId Id;
    // Indices of benchmarks within the cluster.
    std::vector<int> PointIndices;
  };

  ClusterId getClusterIdForPoint(size_t P) const {
    return ClusterIdForPoint_[P];
  }

  const std::vector<InstructionBenchmark> &getPoints() const { return Points_; }

  const Cluster &getCluster(ClusterId Id) const {
    assert(!Id.isUndef() && "unlabeled cluster");
    if (Id.isNoise()) {
      return NoiseCluster_;
    }
    if (Id.isError()) {
      return ErrorCluster_;
    }
    return Clusters_[Id.getId()];
  }

  const std::vector<Cluster> &getValidClusters() const { return Clusters_; }

  // Returns true if the given point is within a distance Epsilon of each other.
  bool isNeighbour(const std::vector<BenchmarkMeasure> &P,
                   const std::vector<BenchmarkMeasure> &Q) const {
    double DistanceSquared = 0.0;
    for (size_t I = 0, E = P.size(); I < E; ++I) {
      const auto Diff = P[I].PerInstructionValue - Q[I].PerInstructionValue;
      DistanceSquared += Diff * Diff;
    }
    return DistanceSquared <= EpsilonSquared_;
  }

private:
  InstructionBenchmarkClustering(
      const std::vector<InstructionBenchmark> &Points, double EpsilonSquared);

  llvm::Error validateAndSetup();
  void dbScan(size_t MinPts);
  void stabilize(unsigned NumOpcodes);
  void rangeQuery(size_t Q, std::vector<size_t> &Scratchpad) const;

  const std::vector<InstructionBenchmark> &Points_;
  const double EpsilonSquared_;
  int NumDimensions_ = 0;
  // ClusterForPoint_[P] is the cluster id for Points[P].
  std::vector<ClusterId> ClusterIdForPoint_;
  std::vector<Cluster> Clusters_;
  Cluster NoiseCluster_;
  Cluster ErrorCluster_;
};

} // namespace exegesis
} // namespace llvm

#endif // LLVM_TOOLS_LLVM_EXEGESIS_CLUSTERING_H
OpenPOWER on IntegriCloud