summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/Mips/MipsISelLowering.cpp
blob: 3453e62402cfb20886cdb86d569223679175f4a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
//===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that Mips uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#include "MipsISelLowering.h"
#include "InstPrinter/MipsInstPrinter.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "MipsCCState.h"
#include "MipsInstrInfo.h"
#include "MipsMachineFunction.h"
#include "MipsRegisterInfo.h"
#include "MipsSubtarget.h"
#include "MipsTargetMachine.h"
#include "MipsTargetObjectFile.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <deque>
#include <iterator>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "mips-lower"

STATISTIC(NumTailCalls, "Number of tail calls");

static cl::opt<bool>
LargeGOT("mxgot", cl::Hidden,
         cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));

static cl::opt<bool>
NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
               cl::desc("MIPS: Don't trap on integer division by zero."),
               cl::init(false));

static const MCPhysReg Mips64DPRegs[8] = {
  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
};

// If I is a shifted mask, set the size (Size) and the first bit of the
// mask (Pos), and return true.
// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
  if (!isShiftedMask_64(I))
    return false;

  Size = countPopulation(I);
  Pos = countTrailingZeros(I);
  return true;
}

// The MIPS MSA ABI passes vector arguments in the integer register set.
// The number of integer registers used is dependant on the ABI used.
MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
                                                      CallingConv::ID CC,
                                                      EVT VT) const {
  if (VT.isVector()) {
      if (Subtarget.isABI_O32()) {
        return MVT::i32;
      } else {
        return (VT.getSizeInBits() == 32) ? MVT::i32 : MVT::i64;
      }
  }
  return MipsTargetLowering::getRegisterType(Context, VT);
}

unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
                                                           CallingConv::ID CC,
                                                           EVT VT) const {
  if (VT.isVector())
    return std::max((VT.getSizeInBits() / (Subtarget.isABI_O32() ? 32 : 64)),
                    1U);
  return MipsTargetLowering::getNumRegisters(Context, VT);
}

unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
    LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
    unsigned &NumIntermediates, MVT &RegisterVT) const {
  // Break down vector types to either 2 i64s or 4 i32s.
  RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT);
  IntermediateVT = RegisterVT;
  NumIntermediates = VT.getSizeInBits() < RegisterVT.getSizeInBits()
                         ? VT.getVectorNumElements()
                         : VT.getSizeInBits() / RegisterVT.getSizeInBits();

  return NumIntermediates;
}

SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
  MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
  return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
}

SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
                                          SelectionDAG &DAG,
                                          unsigned Flag) const {
  return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
}

SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
                                          SelectionDAG &DAG,
                                          unsigned Flag) const {
  return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
}

SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
                                          SelectionDAG &DAG,
                                          unsigned Flag) const {
  return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
}

SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
                                          SelectionDAG &DAG,
                                          unsigned Flag) const {
  return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
}

SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
                                          SelectionDAG &DAG,
                                          unsigned Flag) const {
  return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
                                   N->getOffset(), Flag);
}

const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch ((MipsISD::NodeType)Opcode) {
  case MipsISD::FIRST_NUMBER:      break;
  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
  case MipsISD::TailCall:          return "MipsISD::TailCall";
  case MipsISD::Highest:           return "MipsISD::Highest";
  case MipsISD::Higher:            return "MipsISD::Higher";
  case MipsISD::Hi:                return "MipsISD::Hi";
  case MipsISD::Lo:                return "MipsISD::Lo";
  case MipsISD::GotHi:             return "MipsISD::GotHi";
  case MipsISD::TlsHi:             return "MipsISD::TlsHi";
  case MipsISD::GPRel:             return "MipsISD::GPRel";
  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
  case MipsISD::Ret:               return "MipsISD::Ret";
  case MipsISD::ERet:              return "MipsISD::ERet";
  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
  case MipsISD::FMS:               return "MipsISD::FMS";
  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
  case MipsISD::FSELECT:           return "MipsISD::FSELECT";
  case MipsISD::MTC1_D64:          return "MipsISD::MTC1_D64";
  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
  case MipsISD::MFHI:              return "MipsISD::MFHI";
  case MipsISD::MFLO:              return "MipsISD::MFLO";
  case MipsISD::MTLOHI:            return "MipsISD::MTLOHI";
//  case MipsISD::Mult:              return "MipsISD::Mult";
//  case MipsISD::Multu:             return "MipsISD::Multu";
  case MipsISD::MAdd:              return "MipsISD::MAdd";
  case MipsISD::MAddu:             return "MipsISD::MAddu";
  case MipsISD::MSub:              return "MipsISD::MSub";
  case MipsISD::MSubu:             return "MipsISD::MSubu";
  case MipsISD::DivRem:            return "MipsISD::DivRem";
  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
  case MipsISD::Sync:              return "MipsISD::Sync";
  case MipsISD::Ext:               return "MipsISD::Ext";
  case MipsISD::Ins:               return "MipsISD::Ins";
  case MipsISD::CIns:              return "MipsISD::CIns";
  case MipsISD::LWL:               return "MipsISD::LWL";
  case MipsISD::LWR:               return "MipsISD::LWR";
  case MipsISD::SWL:               return "MipsISD::SWL";
  case MipsISD::SWR:               return "MipsISD::SWR";
  case MipsISD::LDL:               return "MipsISD::LDL";
  case MipsISD::LDR:               return "MipsISD::LDR";
  case MipsISD::SDL:               return "MipsISD::SDL";
  case MipsISD::SDR:               return "MipsISD::SDR";
  case MipsISD::EXTP:              return "MipsISD::EXTP";
  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
  case MipsISD::SHILO:             return "MipsISD::SHILO";
  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
  case MipsISD::MULSAQ_S_W_PH:     return "MipsISD::MULSAQ_S_W_PH";
  case MipsISD::MAQ_S_W_PHL:       return "MipsISD::MAQ_S_W_PHL";
  case MipsISD::MAQ_S_W_PHR:       return "MipsISD::MAQ_S_W_PHR";
  case MipsISD::MAQ_SA_W_PHL:      return "MipsISD::MAQ_SA_W_PHL";
  case MipsISD::MAQ_SA_W_PHR:      return "MipsISD::MAQ_SA_W_PHR";
  case MipsISD::DPAU_H_QBL:        return "MipsISD::DPAU_H_QBL";
  case MipsISD::DPAU_H_QBR:        return "MipsISD::DPAU_H_QBR";
  case MipsISD::DPSU_H_QBL:        return "MipsISD::DPSU_H_QBL";
  case MipsISD::DPSU_H_QBR:        return "MipsISD::DPSU_H_QBR";
  case MipsISD::DPAQ_S_W_PH:       return "MipsISD::DPAQ_S_W_PH";
  case MipsISD::DPSQ_S_W_PH:       return "MipsISD::DPSQ_S_W_PH";
  case MipsISD::DPAQ_SA_L_W:       return "MipsISD::DPAQ_SA_L_W";
  case MipsISD::DPSQ_SA_L_W:       return "MipsISD::DPSQ_SA_L_W";
  case MipsISD::DPA_W_PH:          return "MipsISD::DPA_W_PH";
  case MipsISD::DPS_W_PH:          return "MipsISD::DPS_W_PH";
  case MipsISD::DPAQX_S_W_PH:      return "MipsISD::DPAQX_S_W_PH";
  case MipsISD::DPAQX_SA_W_PH:     return "MipsISD::DPAQX_SA_W_PH";
  case MipsISD::DPAX_W_PH:         return "MipsISD::DPAX_W_PH";
  case MipsISD::DPSX_W_PH:         return "MipsISD::DPSX_W_PH";
  case MipsISD::DPSQX_S_W_PH:      return "MipsISD::DPSQX_S_W_PH";
  case MipsISD::DPSQX_SA_W_PH:     return "MipsISD::DPSQX_SA_W_PH";
  case MipsISD::MULSA_W_PH:        return "MipsISD::MULSA_W_PH";
  case MipsISD::MULT:              return "MipsISD::MULT";
  case MipsISD::MULTU:             return "MipsISD::MULTU";
  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
  case MipsISD::VNOR:              return "MipsISD::VNOR";
  case MipsISD::VSHF:              return "MipsISD::VSHF";
  case MipsISD::SHF:               return "MipsISD::SHF";
  case MipsISD::ILVEV:             return "MipsISD::ILVEV";
  case MipsISD::ILVOD:             return "MipsISD::ILVOD";
  case MipsISD::ILVL:              return "MipsISD::ILVL";
  case MipsISD::ILVR:              return "MipsISD::ILVR";
  case MipsISD::PCKEV:             return "MipsISD::PCKEV";
  case MipsISD::PCKOD:             return "MipsISD::PCKOD";
  case MipsISD::INSVE:             return "MipsISD::INSVE";
  }
  return nullptr;
}

MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
                                       const MipsSubtarget &STI)
    : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
  // Mips does not have i1 type, so use i32 for
  // setcc operations results (slt, sgt, ...).
  setBooleanContents(ZeroOrOneBooleanContent);
  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
  // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
  // does. Integer booleans still use 0 and 1.
  if (Subtarget.hasMips32r6())
    setBooleanContents(ZeroOrOneBooleanContent,
                       ZeroOrNegativeOneBooleanContent);

  // Load extented operations for i1 types must be promoted
  for (MVT VT : MVT::integer_valuetypes()) {
    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote);
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote);
  }

  // MIPS doesn't have extending float->double load/store.  Set LoadExtAction
  // for f32, f16
  for (MVT VT : MVT::fp_valuetypes()) {
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
  }

  // Set LoadExtAction for f16 vectors to Expand
  for (MVT VT : MVT::fp_vector_valuetypes()) {
    MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
    if (F16VT.isValid())
      setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
  }

  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
  setTruncStoreAction(MVT::f64, MVT::f16, Expand);

  setTruncStoreAction(MVT::f64, MVT::f32, Expand);

  // Used by legalize types to correctly generate the setcc result.
  // Without this, every float setcc comes with a AND/OR with the result,
  // we don't want this, since the fpcmp result goes to a flag register,
  // which is used implicitly by brcond and select operations.
  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);

  setOperationAction(MipsISD::LWL, MVT::i8, Expand);
  setOperationAction(MipsISD::LWL, MVT::i16, Expand);
  setOperationAction(MipsISD::LWL, MVT::i32, Expand);

  setOperationAction(ISD::MUL, MVT::i8, Expand);
  setOperationAction(ISD::MUL, MVT::i16, Expand);
  setOperationAction(ISD::MUL, MVT::i32, Expand);
  setOperationAction(ISD::MUL, MVT::i64, Expand);


  setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand);
  setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
  setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand);
  setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);


  // Mips Custom Operations
  setOperationAction(ISD::BR_JT,              MVT::Other, Expand);
  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);

  if (Subtarget.isGP64bit()) {
    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
    setOperationAction(ISD::SHL_PARTS,          MVT::i64,   Custom);
    setOperationAction(ISD::SRA_PARTS,          MVT::i64,   Custom);
    setOperationAction(ISD::SRL_PARTS,          MVT::i64,   Custom);
  }

  if (!Subtarget.isGP64bit()) {
    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
  }

  setOperationAction(ISD::EH_DWARF_CFA,         MVT::i32,   Custom);
  if (Subtarget.isGP64bit())
    setOperationAction(ISD::EH_DWARF_CFA,       MVT::i64,   Custom);

  setOperationAction(ISD::SDIV, MVT::i32, Expand);
  setOperationAction(ISD::SREM, MVT::i32, Expand);
  setOperationAction(ISD::UDIV, MVT::i32, Expand);
  setOperationAction(ISD::UREM, MVT::i32, Expand);
  setOperationAction(ISD::SDIV, MVT::i64, Expand);
  setOperationAction(ISD::SREM, MVT::i64, Expand);
  setOperationAction(ISD::UDIV, MVT::i64, Expand);
  setOperationAction(ISD::UREM, MVT::i64, Expand);

  // Operations not directly supported by Mips.
  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
  setOperationAction(ISD::SELECT_CC,         MVT::i32,   Expand);
  setOperationAction(ISD::SELECT_CC,         MVT::i64,   Expand);
  setOperationAction(ISD::SELECT_CC,         MVT::f32,   Expand);
  setOperationAction(ISD::SELECT_CC,         MVT::f64,   Expand);
  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
  if (Subtarget.hasCnMips()) {
    setOperationAction(ISD::CTPOP,           MVT::i32,   Legal);
    setOperationAction(ISD::CTPOP,           MVT::i64,   Legal);
  } else {
    setOperationAction(ISD::CTPOP,           MVT::i32,   Expand);
    setOperationAction(ISD::CTPOP,           MVT::i64,   Expand);
  }
  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);

  if (!Subtarget.hasMips32r2())
    setOperationAction(ISD::ROTR, MVT::i32,   Expand);

  if (!Subtarget.hasMips64r2())
    setOperationAction(ISD::ROTR, MVT::i64,   Expand);

  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
  setOperationAction(ISD::FREM,              MVT::f64,   Expand);

  // Lower f16 conversion operations into library calls
  setOperationAction(ISD::FP16_TO_FP,        MVT::f32,   Expand);
  setOperationAction(ISD::FP_TO_FP16,        MVT::f32,   Expand);
  setOperationAction(ISD::FP16_TO_FP,        MVT::f64,   Expand);
  setOperationAction(ISD::FP_TO_FP16,        MVT::f64,   Expand);

  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);

  setOperationAction(ISD::VASTART,           MVT::Other, Custom);
  setOperationAction(ISD::VAARG,             MVT::Other, Custom);
  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
  setOperationAction(ISD::VAEND,             MVT::Other, Expand);

  // Use the default for now
  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);

  if (!Subtarget.isGP64bit()) {
    setOperationAction(ISD::ATOMIC_LOAD,     MVT::i64,   Expand);
    setOperationAction(ISD::ATOMIC_STORE,    MVT::i64,   Expand);
  }

  if (!Subtarget.hasMips32r2()) {
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
  }

  // MIPS16 lacks MIPS32's clz and clo instructions.
  if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
  if (!Subtarget.hasMips64())
    setOperationAction(ISD::CTLZ, MVT::i64, Expand);

  if (!Subtarget.hasMips32r2())
    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
  if (!Subtarget.hasMips64r2())
    setOperationAction(ISD::BSWAP, MVT::i64, Expand);

  if (Subtarget.isGP64bit()) {
    setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
    setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
    setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
  }

  setOperationAction(ISD::TRAP, MVT::Other, Legal);

  setTargetDAGCombine(ISD::SDIVREM);
  setTargetDAGCombine(ISD::UDIVREM);
  setTargetDAGCombine(ISD::SELECT);
  setTargetDAGCombine(ISD::AND);
  setTargetDAGCombine(ISD::OR);
  setTargetDAGCombine(ISD::ADD);
  setTargetDAGCombine(ISD::SUB);
  setTargetDAGCombine(ISD::AssertZext);
  setTargetDAGCombine(ISD::SHL);

  if (ABI.IsO32()) {
    // These libcalls are not available in 32-bit.
    setLibcallName(RTLIB::SHL_I128, nullptr);
    setLibcallName(RTLIB::SRL_I128, nullptr);
    setLibcallName(RTLIB::SRA_I128, nullptr);
  }

  setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2);

  // The arguments on the stack are defined in terms of 4-byte slots on O32
  // and 8-byte slots on N32/N64.
  setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? 8 : 4);

  setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);

  MaxStoresPerMemcpy = 16;

  isMicroMips = Subtarget.inMicroMipsMode();
}

const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM,
                                                     const MipsSubtarget &STI) {
  if (STI.inMips16Mode())
    return createMips16TargetLowering(TM, STI);

  return createMipsSETargetLowering(TM, STI);
}

// Create a fast isel object.
FastISel *
MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
                                  const TargetLibraryInfo *libInfo) const {
  const MipsTargetMachine &TM =
      static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget());

  // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
  bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() &&
                     !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() &&
                     !Subtarget.inMicroMipsMode();

  // Disable if either of the following is true:
  // We do not generate PIC, the ABI is not O32, LargeGOT is being used.
  if (!TM.isPositionIndependent() || !TM.getABI().IsO32() || LargeGOT)
    UseFastISel = false;

  return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr;
}

EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
                                           EVT VT) const {
  if (!VT.isVector())
    return MVT::i32;
  return VT.changeVectorElementTypeToInteger();
}

static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
                                    TargetLowering::DAGCombinerInfo &DCI,
                                    const MipsSubtarget &Subtarget) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  EVT Ty = N->getValueType(0);
  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
                                                  MipsISD::DivRemU16;
  SDLoc DL(N);

  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
                               N->getOperand(0), N->getOperand(1));
  SDValue InChain = DAG.getEntryNode();
  SDValue InGlue = DivRem;

  // insert MFLO
  if (N->hasAnyUseOfValue(0)) {
    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
                                            InGlue);
    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
    InChain = CopyFromLo.getValue(1);
    InGlue = CopyFromLo.getValue(2);
  }

  // insert MFHI
  if (N->hasAnyUseOfValue(1)) {
    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
                                            HI, Ty, InGlue);
    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
  }

  return SDValue();
}

static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
  switch (CC) {
  default: llvm_unreachable("Unknown fp condition code!");
  case ISD::SETEQ:
  case ISD::SETOEQ: return Mips::FCOND_OEQ;
  case ISD::SETUNE: return Mips::FCOND_UNE;
  case ISD::SETLT:
  case ISD::SETOLT: return Mips::FCOND_OLT;
  case ISD::SETGT:
  case ISD::SETOGT: return Mips::FCOND_OGT;
  case ISD::SETLE:
  case ISD::SETOLE: return Mips::FCOND_OLE;
  case ISD::SETGE:
  case ISD::SETOGE: return Mips::FCOND_OGE;
  case ISD::SETULT: return Mips::FCOND_ULT;
  case ISD::SETULE: return Mips::FCOND_ULE;
  case ISD::SETUGT: return Mips::FCOND_UGT;
  case ISD::SETUGE: return Mips::FCOND_UGE;
  case ISD::SETUO:  return Mips::FCOND_UN;
  case ISD::SETO:   return Mips::FCOND_OR;
  case ISD::SETNE:
  case ISD::SETONE: return Mips::FCOND_ONE;
  case ISD::SETUEQ: return Mips::FCOND_UEQ;
  }
}

/// This function returns true if the floating point conditional branches and
/// conditional moves which use condition code CC should be inverted.
static bool invertFPCondCodeUser(Mips::CondCode CC) {
  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
    return false;

  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
         "Illegal Condition Code");

  return true;
}

// Creates and returns an FPCmp node from a setcc node.
// Returns Op if setcc is not a floating point comparison.
static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
  // must be a SETCC node
  if (Op.getOpcode() != ISD::SETCC)
    return Op;

  SDValue LHS = Op.getOperand(0);

  if (!LHS.getValueType().isFloatingPoint())
    return Op;

  SDValue RHS = Op.getOperand(1);
  SDLoc DL(Op);

  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
  // node if necessary.
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();

  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
                     DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
}

// // Creates and returns a CMovFPT/F node.
// static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
//                             SDValue False, const SDLoc &DL) {
//   ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
//   bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
//   SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);

//   return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
//                      True.getValueType(), True, FCC0, False, Cond);
// }

static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
                                    TargetLowering::DAGCombinerInfo &DCI,
                                    const MipsSubtarget &Subtarget) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  SDValue SetCC = N->getOperand(0);

  if ((SetCC.getOpcode() != ISD::SETCC) ||
      !SetCC.getOperand(0).getValueType().isInteger())
    return SDValue();

  SDValue False = N->getOperand(2);
  EVT FalseTy = False.getValueType();

  if (!FalseTy.isInteger())
    return SDValue();

  ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);

  // If the RHS (False) is 0, we swap the order of the operands
  // of ISD::SELECT (obviously also inverting the condition) so that we can
  // take advantage of conditional moves using the $0 register.
  // Example:
  //   return (a != 0) ? x : 0;
  //     load $reg, x
  //     movz $reg, $0, a
  if (!FalseC)
    return SDValue();

  const SDLoc DL(N);

  if (!FalseC->getZExtValue()) {
    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
    SDValue True = N->getOperand(1);

    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
                         SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));

    return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
  }

  // If both operands are integer constants there's a possibility that we
  // can do some interesting optimizations.
  SDValue True = N->getOperand(1);
  ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);

  if (!TrueC || !True.getValueType().isInteger())
    return SDValue();

  // We'll also ignore MVT::i64 operands as this optimizations proves
  // to be ineffective because of the required sign extensions as the result
  // of a SETCC operator is always MVT::i32 for non-vector types.
  if (True.getValueType() == MVT::i64)
    return SDValue();

  int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();

  // 1)  (a < x) ? y : y-1
  //  slti $reg1, a, x
  //  addiu $reg2, $reg1, y-1
  if (Diff == 1)
    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);

  // 2)  (a < x) ? y-1 : y
  //  slti $reg1, a, x
  //  xor $reg1, $reg1, 1
  //  addiu $reg2, $reg1, y-1
  if (Diff == -1) {
    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
                         SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
  }

  // Could not optimize.
  return SDValue();
}

static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
                                    TargetLowering::DAGCombinerInfo &DCI,
                                    const MipsSubtarget &Subtarget) {
  if (DCI.isBeforeLegalizeOps())
    return SDValue();

  SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);

  ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
  if (!FalseC || FalseC->getZExtValue())
    return SDValue();

  // Since RHS (False) is 0, we swap the order of the True/False operands
  // (obviously also inverting the condition) so that we can
  // take advantage of conditional moves using the $0 register.
  // Example:
  //   return (a != 0) ? x : 0;
  //     load $reg, x
  //     movz $reg, $0, a
  unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
                                                         MipsISD::CMovFP_T;

  SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
  return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
                     ValueIfFalse, FCC, ValueIfTrue, Glue);
}

static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const MipsSubtarget &Subtarget) {
  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
    return SDValue();

  SDValue FirstOperand = N->getOperand(0);
  unsigned FirstOperandOpc = FirstOperand.getOpcode();
  SDValue Mask = N->getOperand(1);
  EVT ValTy = N->getValueType(0);
  SDLoc DL(N);

  uint64_t Pos = 0, SMPos, SMSize;
  ConstantSDNode *CN;
  SDValue NewOperand;
  unsigned Opc;

  // Op's second operand must be a shifted mask.
  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
    return SDValue();

  if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
    // Pattern match EXT.
    //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
    //  => ext $dst, $src, pos, size

    // The second operand of the shift must be an immediate.
    if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
      return SDValue();

    Pos = CN->getZExtValue();

    // Return if the shifted mask does not start at bit 0 or the sum of its size
    // and Pos exceeds the word's size.
    if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
      return SDValue();

    Opc = MipsISD::Ext;
    NewOperand = FirstOperand.getOperand(0);
  } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) {
    // Pattern match CINS.
    //  $dst = and (shl $src , pos), mask
    //  => cins $dst, $src, pos, size
    // mask is a shifted mask with consecutive 1's, pos = shift amount,
    // size = population count.

    // The second operand of the shift must be an immediate.
    if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
      return SDValue();

    Pos = CN->getZExtValue();

    if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 ||
        Pos + SMSize > ValTy.getSizeInBits())
      return SDValue();

    NewOperand = FirstOperand.getOperand(0);
    // SMSize is 'location' (position) in this case, not size.
    SMSize--;
    Opc = MipsISD::CIns;
  } else {
    // Pattern match EXT.
    //  $dst = and $src, (2**size - 1) , if size > 16
    //  => ext $dst, $src, pos, size , pos = 0

    // If the mask is <= 0xffff, andi can be used instead.
    if (CN->getZExtValue() <= 0xffff)
      return SDValue();

    // Return if the mask doesn't start at position 0.
    if (SMPos)
      return SDValue();

    Opc = MipsISD::Ext;
    NewOperand = FirstOperand;
  }
  return DAG.getNode(Opc, DL, ValTy, NewOperand,
                     DAG.getConstant(Pos, DL, MVT::i32),
                     DAG.getConstant(SMSize, DL, MVT::i32));
}

static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
                                TargetLowering::DAGCombinerInfo &DCI,
                                const MipsSubtarget &Subtarget) {
  // Pattern match INS.
  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
  //  => ins $dst, $src, size, pos, $src1
  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
    return SDValue();

  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
  uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
  ConstantSDNode *CN, *CN1;

  // See if Op's first operand matches (and $src1 , mask0).
  if (And0.getOpcode() != ISD::AND)
    return SDValue();

  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
      !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
    return SDValue();

  // See if Op's second operand matches (and (shl $src, pos), mask1).
  if (And1.getOpcode() == ISD::AND &&
      And1.getOperand(0).getOpcode() == ISD::SHL) {

    if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
        !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
      return SDValue();

    // The shift masks must have the same position and size.
    if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
      return SDValue();

    SDValue Shl = And1.getOperand(0);

    if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
      return SDValue();

    unsigned Shamt = CN->getZExtValue();

    // Return if the shift amount and the first bit position of mask are not the
    // same.
    EVT ValTy = N->getValueType(0);
    if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
      return SDValue();

    SDLoc DL(N);
    return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
                       DAG.getConstant(SMPos0, DL, MVT::i32),
                       DAG.getConstant(SMSize0, DL, MVT::i32),
                       And0.getOperand(0));
  } else {
    // Pattern match DINS.
    //  $dst = or (and $src, mask0), mask1
    //  where mask0 = ((1 << SMSize0) -1) << SMPos0
    //  => dins $dst, $src, pos, size
    if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) &&
        ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) ||
         (SMSize0 + SMPos0 <= 32))) {
      // Check if AND instruction has constant as argument
      bool isConstCase = And1.getOpcode() != ISD::AND;
      if (And1.getOpcode() == ISD::AND) {
        if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1))))
          return SDValue();
      } else {
        if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1))))
          return SDValue();
      }
      // Don't generate INS if constant OR operand doesn't fit into bits
      // cleared by constant AND operand.
      if (CN->getSExtValue() & CN1->getSExtValue())
        return SDValue();

      SDLoc DL(N);
      EVT ValTy = N->getOperand(0)->getValueType(0);
      SDValue Const1;
      SDValue SrlX;
      if (!isConstCase) {
        Const1 = DAG.getConstant(SMPos0, DL, MVT::i32);
        SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1);
      }
      return DAG.getNode(
          MipsISD::Ins, DL, N->getValueType(0),
          isConstCase
              ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy)
              : SrlX,
          DAG.getConstant(SMPos0, DL, MVT::i32),
          DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31
                                                        : SMSize0,
                          DL, MVT::i32),
          And0->getOperand(0));

    }
    return SDValue();
  }
}

static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG,
                                       const MipsSubtarget &Subtarget) {
  // ROOTNode must have a multiplication as an operand for the match to be
  // successful.
  if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL &&
      ROOTNode->getOperand(1).getOpcode() != ISD::MUL)
    return SDValue();

  // We don't handle vector types here.
  if (ROOTNode->getValueType(0).isVector())
    return SDValue();

  // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
  // arithmetic. E.g.
  // (add (mul a b) c) =>
  //   let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
  //   MIPS64:   (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
  //   or
  //   MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
  //
  // The overhead of setting up the Hi/Lo registers and reassembling the
  // result makes this a dubious optimzation for MIPS64. The core of the
  // problem is that Hi/Lo contain the upper and lower 32 bits of the
  // operand and result.
  //
  // It requires a chain of 4 add/mul for MIPS64R2 to get better code
  // density than doing it naively, 5 for MIPS64. Additionally, using
  // madd/msub on MIPS64 requires the operands actually be 32 bit sign
  // extended operands, not true 64 bit values.
  //
  // FIXME: For the moment, disable this completely for MIPS64.
  if (Subtarget.hasMips64())
    return SDValue();

  SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
                     ? ROOTNode->getOperand(0)
                     : ROOTNode->getOperand(1);

  SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
                     ? ROOTNode->getOperand(1)
                     : ROOTNode->getOperand(0);

  // Transform this to a MADD only if the user of this node is the add.
  // If there are other users of the mul, this function returns here.
  if (!Mult.hasOneUse())
    return SDValue();

  // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
  // must be in canonical form, i.e. sign extended. For MIPS32, the operands
  // of the multiply must have 32 or more sign bits, otherwise we cannot
  // perform this optimization. We have to check this here as we're performing
  // this optimization pre-legalization.
  SDValue MultLHS = Mult->getOperand(0);
  SDValue MultRHS = Mult->getOperand(1);

  bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND &&
                  MultRHS->getOpcode() == ISD::SIGN_EXTEND;
  bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND &&
                    MultRHS->getOpcode() == ISD::ZERO_EXTEND;

  if (!IsSigned && !IsUnsigned)
    return SDValue();

  // Initialize accumulator.
  SDLoc DL(ROOTNode);
  SDValue TopHalf;
  SDValue BottomHalf;
  BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
                              CurDAG.getIntPtrConstant(0, DL));

  TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
                           CurDAG.getIntPtrConstant(1, DL));
  SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
                                  BottomHalf,
                                  TopHalf);

  // Create MipsMAdd(u) / MipsMSub(u) node.
  bool IsAdd = ROOTNode->getOpcode() == ISD::ADD;
  unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd)
                          : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub);
  SDValue MAddOps[3] = {
      CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)),
      CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn};
  EVT VTs[2] = {MVT::i32, MVT::i32};
  SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps);

  SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
  SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
  SDValue Combined =
      CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi);
  return Combined;
}

static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const MipsSubtarget &Subtarget) {
  // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
  if (DCI.isBeforeLegalizeOps()) {
    if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
        !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
      return performMADD_MSUBCombine(N, DAG, Subtarget);

    return SDValue();
  }

  return SDValue();
}

static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const MipsSubtarget &Subtarget) {
  // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
  if (DCI.isBeforeLegalizeOps()) {
    if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
        !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
      return performMADD_MSUBCombine(N, DAG, Subtarget);

    return SDValue();
  }

  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
  SDValue Add = N->getOperand(1);

  if (Add.getOpcode() != ISD::ADD)
    return SDValue();

  SDValue Lo = Add.getOperand(1);

  if ((Lo.getOpcode() != MipsISD::Lo) ||
      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
    return SDValue();

  EVT ValTy = N->getValueType(0);
  SDLoc DL(N);

  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
                             Add.getOperand(0));
  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
}

static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
                                 TargetLowering::DAGCombinerInfo &DCI,
                                 const MipsSubtarget &Subtarget) {
  // Pattern match CINS.
  //  $dst = shl (and $src , imm), pos
  //  => cins $dst, $src, pos, size

  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips())
    return SDValue();

  SDValue FirstOperand = N->getOperand(0);
  unsigned FirstOperandOpc = FirstOperand.getOpcode();
  SDValue SecondOperand = N->getOperand(1);
  EVT ValTy = N->getValueType(0);
  SDLoc DL(N);

  uint64_t Pos = 0, SMPos, SMSize;
  ConstantSDNode *CN;
  SDValue NewOperand;

  // The second operand of the shift must be an immediate.
  if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)))
    return SDValue();

  Pos = CN->getZExtValue();

  if (Pos >= ValTy.getSizeInBits())
    return SDValue();

  if (FirstOperandOpc != ISD::AND)
    return SDValue();

  // AND's second operand must be a shifted mask.
  if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
      !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
    return SDValue();

  // Return if the shifted mask does not start at bit 0 or the sum of its size
  // and Pos exceeds the word's size.
  if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits())
    return SDValue();

  NewOperand = FirstOperand.getOperand(0);
  // SMSize is 'location' (position) in this case, not size.
  SMSize--;

  return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand,
                     DAG.getConstant(Pos, DL, MVT::i32),
                     DAG.getConstant(SMSize, DL, MVT::i32));
}

SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
  const {
  SelectionDAG &DAG = DCI.DAG;
  unsigned Opc = N->getOpcode();

  switch (Opc) {
  default: break;
  case ISD::SDIVREM:
  case ISD::UDIVREM:
    return performDivRemCombine(N, DAG, DCI, Subtarget);
  case ISD::SELECT:
    return performSELECTCombine(N, DAG, DCI, Subtarget);
  case MipsISD::CMovFP_F:
  case MipsISD::CMovFP_T:
    return performCMovFPCombine(N, DAG, DCI, Subtarget);
  case ISD::AND:
    return performANDCombine(N, DAG, DCI, Subtarget);
  case ISD::OR:
    return performORCombine(N, DAG, DCI, Subtarget);
  case ISD::ADD:
    return performADDCombine(N, DAG, DCI, Subtarget);
  case ISD::SHL:
    return performSHLCombine(N, DAG, DCI, Subtarget);
  case ISD::SUB:
    return performSUBCombine(N, DAG, DCI, Subtarget);
  }

  return SDValue();
}

bool MipsTargetLowering::isCheapToSpeculateCttz() const {
  return Subtarget.hasMips32();
}

bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
  return Subtarget.hasMips32();
}

void
MipsTargetLowering::LowerOperationWrapper(SDNode *N,
                                          SmallVectorImpl<SDValue> &Results,
                                          SelectionDAG &DAG) const {
  SDValue Res = LowerOperation(SDValue(N, 0), DAG);

  for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
    Results.push_back(Res.getValue(I));
}

void
MipsTargetLowering::ReplaceNodeResults(SDNode *N,
                                       SmallVectorImpl<SDValue> &Results,
                                       SelectionDAG &DAG) const {
  return LowerOperationWrapper(N, Results, DAG);
}

SDValue MipsTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) const
{
  switch (Op.getOpcode())
  {
  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
  case ISD::SELECT:             return lowerSELECT(Op, DAG);
  case ISD::SETCC:              return lowerSETCC(Op, DAG);
  case ISD::VASTART:            return lowerVASTART(Op, DAG);
  case ISD::VAARG:              return lowerVAARG(Op, DAG);
  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
  case ISD::LOAD:               return lowerLOAD(Op, DAG);
  case ISD::STORE:              return lowerSTORE(Op, DAG);
  case ISD::EH_DWARF_CFA:       return lowerEH_DWARF_CFA(Op, DAG);
  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
  }
  return SDValue();
}

//===----------------------------------------------------------------------===//
//  Lower helper functions
//===----------------------------------------------------------------------===//

// addLiveIn - This helper function adds the specified physical register to the
// MachineFunction as a live in value.  It also creates a corresponding
// virtual register for it.
static unsigned
addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
{
  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
  MF.getRegInfo().addLiveIn(PReg, VReg);
  return VReg;
}

static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
                                              MachineBasicBlock &MBB,
                                              const TargetInstrInfo &TII,
                                              bool Is64Bit, bool IsMicroMips) {
  if (NoZeroDivCheck)
    return &MBB;

  // Insert instruction "teq $divisor_reg, $zero, 7".
  MachineBasicBlock::iterator I(MI);
  MachineInstrBuilder MIB;
  MachineOperand &Divisor = MI.getOperand(2);
  MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
                TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
            .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
            .addReg(Mips::ZERO)
            .addImm(7);

  // Use the 32-bit sub-register if this is a 64-bit division.
  if (Is64Bit)
    MIB->getOperand(0).setSubReg(Mips::sub_32);

  // Clear Divisor's kill flag.
  Divisor.setIsKill(false);

  // We would normally delete the original instruction here but in this case
  // we only needed to inject an additional instruction rather than replace it.

  return &MBB;
}

MachineBasicBlock *
MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
                                                MachineBasicBlock *BB) const {
  switch (MI.getOpcode()) {
  default:
    llvm_unreachable("Unexpected instr type to insert");
  case Mips::ATOMIC_LOAD_ADD_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_ADD_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_ADD_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_ADD_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_LOAD_AND_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_AND_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_AND_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_AND_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_LOAD_OR_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_OR_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_OR_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_OR_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_LOAD_XOR_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_XOR_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_XOR_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_XOR_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_LOAD_NAND_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_NAND_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_NAND_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_NAND_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_LOAD_SUB_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_LOAD_SUB_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_LOAD_SUB_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_LOAD_SUB_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_SWAP_I8:
    return emitAtomicBinaryPartword(MI, BB, 1);
  case Mips::ATOMIC_SWAP_I16:
    return emitAtomicBinaryPartword(MI, BB, 2);
  case Mips::ATOMIC_SWAP_I32:
    return emitAtomicBinary(MI, BB);
  case Mips::ATOMIC_SWAP_I64:
    return emitAtomicBinary(MI, BB);

  case Mips::ATOMIC_CMP_SWAP_I8:
    return emitAtomicCmpSwapPartword(MI, BB, 1);
  case Mips::ATOMIC_CMP_SWAP_I16:
    return emitAtomicCmpSwapPartword(MI, BB, 2);
  case Mips::ATOMIC_CMP_SWAP_I32:
    return emitAtomicCmpSwap(MI, BB);
  case Mips::ATOMIC_CMP_SWAP_I64:
    return emitAtomicCmpSwap(MI, BB);
  case Mips::PseudoSDIV:
  case Mips::PseudoUDIV:
  case Mips::DIV:
  case Mips::DIVU:
  case Mips::MOD:
  case Mips::MODU:
    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
                               false);
  case Mips::SDIV_MM_Pseudo:
  case Mips::UDIV_MM_Pseudo:
  case Mips::SDIV_MM:
  case Mips::UDIV_MM:
  case Mips::DIV_MMR6:
  case Mips::DIVU_MMR6:
  case Mips::MOD_MMR6:
  case Mips::MODU_MMR6:
    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
  case Mips::PseudoDSDIV:
  case Mips::PseudoDUDIV:
  case Mips::DDIV:
  case Mips::DDIVU:
  case Mips::DMOD:
  case Mips::DMODU:
    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);

  case Mips::PseudoSELECT_I:
  case Mips::PseudoSELECT_I64:
  case Mips::PseudoSELECT_S:
  case Mips::PseudoSELECT_D32:
  case Mips::PseudoSELECT_D64:
    return emitPseudoSELECT(MI, BB, false, Mips::BNE);
  case Mips::PseudoSELECTFP_F_I:
  case Mips::PseudoSELECTFP_F_I64:
  case Mips::PseudoSELECTFP_F_S:
  case Mips::PseudoSELECTFP_F_D32:
  case Mips::PseudoSELECTFP_F_D64:
    return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
  case Mips::PseudoSELECTFP_T_I:
  case Mips::PseudoSELECTFP_T_I64:
  case Mips::PseudoSELECTFP_T_S:
  case Mips::PseudoSELECTFP_T_D32:
  case Mips::PseudoSELECTFP_T_D64:
    return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
  }
}

// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
MachineBasicBlock *
MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
                                     MachineBasicBlock *BB) const {

  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &RegInfo = MF->getRegInfo();
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  unsigned AtomicOp;
  switch (MI.getOpcode()) {
  case Mips::ATOMIC_LOAD_ADD_I32:
    AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_SUB_I32:
    AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_AND_I32:
    AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_OR_I32:
    AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_XOR_I32:
    AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_NAND_I32:
    AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA;
    break;
  case Mips::ATOMIC_SWAP_I32:
    AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_ADD_I64:
    AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_SUB_I64:
    AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_AND_I64:
    AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_OR_I64:
    AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_XOR_I64:
    AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_NAND_I64:
    AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA;
    break;
  case Mips::ATOMIC_SWAP_I64:
    AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA;
    break;
  default:
    llvm_unreachable("Unknown pseudo atomic for replacement!");
  }

  unsigned OldVal = MI.getOperand(0).getReg();
  unsigned Ptr = MI.getOperand(1).getReg();
  unsigned Incr = MI.getOperand(2).getReg();
  unsigned Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));

  MachineBasicBlock::iterator II(MI);

  // The scratch registers here with the EarlyClobber | Define | Implicit
  // flags is used to persuade the register allocator and the machine
  // verifier to accept the usage of this register. This has to be a real
  // register which has an UNDEF value but is dead after the instruction which
  // is unique among the registers chosen for the instruction.

  // The EarlyClobber flag has the semantic properties that the operand it is
  // attached to is clobbered before the rest of the inputs are read. Hence it
  // must be unique among the operands to the instruction.
  // The Define flag is needed to coerce the machine verifier that an Undef
  // value isn't a problem.
  // The Dead flag is needed as the value in scratch isn't used by any other
  // instruction. Kill isn't used as Dead is more precise.
  // The implicit flag is here due to the interaction between the other flags
  // and the machine verifier.

  // For correctness purpose, a new pseudo is introduced here. We need this
  // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
  // that is spread over >1 basic blocks. A register allocator which
  // introduces (or any codegen infact) a store, can violate the expectations
  // of the hardware.
  //
  // An atomic read-modify-write sequence starts with a linked load
  // instruction and ends with a store conditional instruction. The atomic
  // read-modify-write sequence fails if any of the following conditions
  // occur between the execution of ll and sc:
  //   * A coherent store is completed by another process or coherent I/O
  //     module into the block of synchronizable physical memory containing
  //     the word. The size and alignment of the block is
  //     implementation-dependent.
  //   * A coherent store is executed between an LL and SC sequence on the
  //     same processor to the block of synchornizable physical memory
  //     containing the word.
  //

  unsigned PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr));
  unsigned IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr));

  BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr);
  BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);

  BuildMI(*BB, II, DL, TII->get(AtomicOp))
      .addReg(OldVal, RegState::Define | RegState::EarlyClobber)
      .addReg(PtrCopy)
      .addReg(IncrCopy)
      .addReg(Scratch, RegState::Define | RegState::EarlyClobber |
                           RegState::Implicit | RegState::Dead);

  MI.eraseFromParent();

  return BB;
}

MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
    MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
    unsigned SrcReg) const {
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  const DebugLoc &DL = MI.getDebugLoc();

  if (Subtarget.hasMips32r2() && Size == 1) {
    BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
    return BB;
  }

  if (Subtarget.hasMips32r2() && Size == 2) {
    BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
    return BB;
  }

  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &RegInfo = MF->getRegInfo();
  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
  unsigned ScrReg = RegInfo.createVirtualRegister(RC);

  assert(Size < 32);
  int64_t ShiftImm = 32 - (Size * 8);

  BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
  BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);

  return BB;
}

MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
    MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
  assert((Size == 1 || Size == 2) &&
         "Unsupported size for EmitAtomicBinaryPartial.");

  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &RegInfo = MF->getRegInfo();
  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
  const bool ArePtrs64bit = ABI.ArePtrs64bit();
  const TargetRegisterClass *RCp =
    getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  unsigned Dest = MI.getOperand(0).getReg();
  unsigned Ptr = MI.getOperand(1).getReg();
  unsigned Incr = MI.getOperand(2).getReg();

  unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
  unsigned Mask = RegInfo.createVirtualRegister(RC);
  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
  unsigned Incr2 = RegInfo.createVirtualRegister(RC);
  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
  unsigned Scratch = RegInfo.createVirtualRegister(RC);
  unsigned Scratch2 = RegInfo.createVirtualRegister(RC);
  unsigned Scratch3 = RegInfo.createVirtualRegister(RC);

  unsigned AtomicOp = 0;
  switch (MI.getOpcode()) {
  case Mips::ATOMIC_LOAD_NAND_I8:
    AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_NAND_I16:
    AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA;
    break;
  case Mips::ATOMIC_SWAP_I8:
    AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA;
    break;
  case Mips::ATOMIC_SWAP_I16:
    AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_ADD_I8:
    AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_ADD_I16:
    AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_SUB_I8:
    AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_SUB_I16:
    AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_AND_I8:
    AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_AND_I16:
    AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_OR_I8:
    AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_OR_I16:
    AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_XOR_I8:
    AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA;
    break;
  case Mips::ATOMIC_LOAD_XOR_I16:
    AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA;
    break;
  default:
    llvm_unreachable("Unknown subword atomic pseudo for expansion!");
  }

  // insert new blocks after the current block
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineFunction::iterator It = ++BB->getIterator();
  MF->insert(It, exitMBB);

  // Transfer the remainder of BB and its successor edges to exitMBB.
  exitMBB->splice(exitMBB->begin(), BB,
                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);

  BB->addSuccessor(exitMBB, BranchProbability::getOne());

  //  thisMBB:
  //    addiu   masklsb2,$0,-4                # 0xfffffffc
  //    and     alignedaddr,ptr,masklsb2
  //    andi    ptrlsb2,ptr,3
  //    sll     shiftamt,ptrlsb2,3
  //    ori     maskupper,$0,255               # 0xff
  //    sll     mask,maskupper,shiftamt
  //    nor     mask2,$0,mask
  //    sll     incr2,incr,shiftamt

  int64_t MaskImm = (Size == 1) ? 255 : 65535;
  BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
    .addReg(ABI.GetNullPtr()).addImm(-4);
  BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
    .addReg(Ptr).addReg(MaskLSB2);
  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
      .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
  if (Subtarget.isLittle()) {
    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
  } else {
    unsigned Off = RegInfo.createVirtualRegister(RC);
    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
  }
  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
    .addReg(Mips::ZERO).addImm(MaskImm);
  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
    .addReg(MaskUpper).addReg(ShiftAmt);
  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);


  // The purposes of the flags on the scratch registers is explained in
  // emitAtomicBinary. In summary, we need a scratch register which is going to
  // be undef, that is unique among registers chosen for the instruction.

  BuildMI(BB, DL, TII->get(AtomicOp))
      .addReg(Dest, RegState::Define | RegState::EarlyClobber)
      .addReg(AlignedAddr)
      .addReg(Incr2)
      .addReg(Mask)
      .addReg(Mask2)
      .addReg(ShiftAmt)
      .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
                           RegState::Dead | RegState::Implicit)
      .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
                            RegState::Dead | RegState::Implicit)
      .addReg(Scratch3, RegState::EarlyClobber | RegState::Define |
                            RegState::Dead | RegState::Implicit);

  MI.eraseFromParent(); // The instruction is gone now.

  return exitMBB;
}

// Lower atomic compare and swap to a pseudo instruction, taking care to
// define a scratch register for the pseudo instruction's expansion. The
// instruction is expanded after the register allocator as to prevent
// the insertion of stores between the linked load and the store conditional.

MachineBasicBlock *
MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
                                      MachineBasicBlock *BB) const {

  assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ||
          MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) &&
         "Unsupported atomic psseudo for EmitAtomicCmpSwap.");

  const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8;

  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
                          ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
                          : Mips::ATOMIC_CMP_SWAP_I64_POSTRA;
  unsigned Dest = MI.getOperand(0).getReg();
  unsigned Ptr = MI.getOperand(1).getReg();
  unsigned OldVal = MI.getOperand(2).getReg();
  unsigned NewVal = MI.getOperand(3).getReg();

  unsigned Scratch = MRI.createVirtualRegister(RC);
  MachineBasicBlock::iterator II(MI);

  // We need to create copies of the various registers and kill them at the
  // atomic pseudo. If the copies are not made, when the atomic is expanded
  // after fast register allocation, the spills will end up outside of the
  // blocks that their values are defined in, causing livein errors.

  unsigned DestCopy = MRI.createVirtualRegister(MRI.getRegClass(Dest));
  unsigned PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr));
  unsigned OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal));
  unsigned NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal));

  BuildMI(*BB, II, DL, TII->get(Mips::COPY), DestCopy).addReg(Dest);
  BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
  BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal);
  BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal);

  // The purposes of the flags on the scratch registers is explained in
  // emitAtomicBinary. In summary, we need a scratch register which is going to
  // be undef, that is unique among registers chosen for the instruction.

  BuildMI(*BB, II, DL, TII->get(AtomicOp))
      .addReg(Dest, RegState::Define | RegState::EarlyClobber)
      .addReg(PtrCopy, RegState::Kill)
      .addReg(OldValCopy, RegState::Kill)
      .addReg(NewValCopy, RegState::Kill)
      .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
                           RegState::Dead | RegState::Implicit);

  MI.eraseFromParent(); // The instruction is gone now.

  return BB;
}

MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
    MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
  assert((Size == 1 || Size == 2) &&
      "Unsupported size for EmitAtomicCmpSwapPartial.");

  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &RegInfo = MF->getRegInfo();
  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
  const bool ArePtrs64bit = ABI.ArePtrs64bit();
  const TargetRegisterClass *RCp =
    getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  unsigned Dest = MI.getOperand(0).getReg();
  unsigned Ptr = MI.getOperand(1).getReg();
  unsigned CmpVal = MI.getOperand(2).getReg();
  unsigned NewVal = MI.getOperand(3).getReg();

  unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
  unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
  unsigned Mask = RegInfo.createVirtualRegister(RC);
  unsigned Mask2 = RegInfo.createVirtualRegister(RC);
  unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
  unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
  unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
  unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
  unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
  unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
  unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
  unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
                          ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
                          : Mips::ATOMIC_CMP_SWAP_I16_POSTRA;

  // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
  // flags are used to coerce the register allocator and the machine verifier to
  // accept the usage of these registers.
  // The EarlyClobber flag has the semantic properties that the operand it is
  // attached to is clobbered before the rest of the inputs are read. Hence it
  // must be unique among the operands to the instruction.
  // The Define flag is needed to coerce the machine verifier that an Undef
  // value isn't a problem.
  // The Dead flag is needed as the value in scratch isn't used by any other
  // instruction. Kill isn't used as Dead is more precise.
  unsigned Scratch = RegInfo.createVirtualRegister(RC);
  unsigned Scratch2 = RegInfo.createVirtualRegister(RC);

  // insert new blocks after the current block
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
  MachineFunction::iterator It = ++BB->getIterator();
  MF->insert(It, exitMBB);

  // Transfer the remainder of BB and its successor edges to exitMBB.
  exitMBB->splice(exitMBB->begin(), BB,
                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);

  BB->addSuccessor(exitMBB, BranchProbability::getOne());

  //  thisMBB:
  //    addiu   masklsb2,$0,-4                # 0xfffffffc
  //    and     alignedaddr,ptr,masklsb2
  //    andi    ptrlsb2,ptr,3
  //    xori    ptrlsb2,ptrlsb2,3              # Only for BE
  //    sll     shiftamt,ptrlsb2,3
  //    ori     maskupper,$0,255               # 0xff
  //    sll     mask,maskupper,shiftamt
  //    nor     mask2,$0,mask
  //    andi    maskedcmpval,cmpval,255
  //    sll     shiftedcmpval,maskedcmpval,shiftamt
  //    andi    maskednewval,newval,255
  //    sll     shiftednewval,maskednewval,shiftamt
  int64_t MaskImm = (Size == 1) ? 255 : 65535;
  BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
    .addReg(ABI.GetNullPtr()).addImm(-4);
  BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
    .addReg(Ptr).addReg(MaskLSB2);
  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
      .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
  if (Subtarget.isLittle()) {
    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
  } else {
    unsigned Off = RegInfo.createVirtualRegister(RC);
    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
  }
  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
    .addReg(Mips::ZERO).addImm(MaskImm);
  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
    .addReg(MaskUpper).addReg(ShiftAmt);
  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
    .addReg(CmpVal).addImm(MaskImm);
  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
    .addReg(MaskedCmpVal).addReg(ShiftAmt);
  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
    .addReg(NewVal).addImm(MaskImm);
  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
    .addReg(MaskedNewVal).addReg(ShiftAmt);

  // The purposes of the flags on the scratch registers are explained in
  // emitAtomicBinary. In summary, we need a scratch register which is going to
  // be undef, that is unique among the register chosen for the instruction.

  BuildMI(BB, DL, TII->get(AtomicOp))
      .addReg(Dest, RegState::Define | RegState::EarlyClobber)
      .addReg(AlignedAddr)
      .addReg(Mask)
      .addReg(ShiftedCmpVal)
      .addReg(Mask2)
      .addReg(ShiftedNewVal)
      .addReg(ShiftAmt)
      .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
                           RegState::Dead | RegState::Implicit)
      .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
                            RegState::Dead | RegState::Implicit);

  MI.eraseFromParent(); // The instruction is gone now.

  return exitMBB;
}

SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
  // The first operand is the chain, the second is the condition, the third is
  // the block to branch to if the condition is true.
  SDValue Chain = Op.getOperand(0);
  SDValue Dest = Op.getOperand(2);
  SDLoc DL(Op);

  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));

  // Return if flag is not set by a floating point comparison.
  if (CondRes.getOpcode() != MipsISD::FPCmp)
    return Op;

  SDValue CCNode  = CondRes.getOperand(2);
  Mips::CondCode CC =
    (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
  SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
                     FCC0, Dest, CondRes);
}

SDValue MipsTargetLowering::
lowerSELECT(SDValue Op, SelectionDAG &DAG) const
{
  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));

  // Return if flag is not set by a floating point comparison.
  // if (Cond.getOpcode() != MipsISD::FPCmp)
    return Op;

  // return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
  //                     SDLoc(Op));
}

SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
  SDValue Cond = createFPCmp(DAG, Op);

  assert(Cond.getOpcode() == MipsISD::FPCmp &&
         "Floating point operand expected.");

  SDLoc DL(Op);
  SDValue True  = DAG.getConstant(1, DL, MVT::i32);
  SDValue False = DAG.getConstant(0, DL, MVT::i32);

  // return createCMovFP(DAG, Cond, True, False, DL);
  return Op;
}

SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
                                               SelectionDAG &DAG) const {
  EVT Ty = Op.getValueType();
  GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
  const GlobalValue *GV = N->getGlobal();

  if (!isPositionIndependent()) {
    const MipsTargetObjectFile *TLOF =
        static_cast<const MipsTargetObjectFile *>(
            getTargetMachine().getObjFileLowering());
    const GlobalObject *GO = GV->getBaseObject();
    if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine()))
      // %gp_rel relocation
      return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());

                                 // %hi/%lo relocation
    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
                                 // %highest/%higher/%hi/%lo relocation
                                 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
  }

  // Every other architecture would use shouldAssumeDSOLocal in here, but
  // mips is special.
  // * In PIC code mips requires got loads even for local statics!
  // * To save on got entries, for local statics the got entry contains the
  //   page and an additional add instruction takes care of the low bits.
  // * It is legal to access a hidden symbol with a non hidden undefined,
  //   so one cannot guarantee that all access to a hidden symbol will know
  //   it is hidden.
  // * Mips linkers don't support creating a page and a full got entry for
  //   the same symbol.
  // * Given all that, we have to use a full got entry for hidden symbols :-(
  if (GV->hasLocalLinkage())
    return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());

  if (LargeGOT)
    return getAddrGlobalLargeGOT(
        N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
        DAG.getEntryNode(),
        MachinePointerInfo::getGOT(DAG.getMachineFunction()));

  return getAddrGlobal(
      N, SDLoc(N), Ty, DAG,
      (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
      DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
}

SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
                                              SelectionDAG &DAG) const {
  BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
  EVT Ty = Op.getValueType();

  if (!isPositionIndependent())
    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
                                : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);

  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
}

SDValue MipsTargetLowering::
lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
{
  // If the relocation model is PIC, use the General Dynamic TLS Model or
  // Local Dynamic TLS model, otherwise use the Initial Exec or
  // Local Exec TLS Model.

  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
  if (DAG.getTarget().useEmulatedTLS())
    return LowerToTLSEmulatedModel(GA, DAG);

  SDLoc DL(GA);
  const GlobalValue *GV = GA->getGlobal();
  EVT PtrVT = getPointerTy(DAG.getDataLayout());

  TLSModel::Model model = getTargetMachine().getTLSModel(GV);

  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
    // General Dynamic and Local Dynamic TLS Model.
    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
                                                      : MipsII::MO_TLSGD;

    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
                                   getGlobalReg(DAG, PtrVT), TGA);
    unsigned PtrSize = PtrVT.getSizeInBits();
    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);

    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);

    ArgListTy Args;
    ArgListEntry Entry;
    Entry.Node = Argument;
    Entry.Ty = PtrTy;
    Args.push_back(Entry);

    TargetLowering::CallLoweringInfo CLI(DAG);
    CLI.setDebugLoc(DL)
        .setChain(DAG.getEntryNode())
        .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);

    SDValue Ret = CallResult.first;

    if (model != TLSModel::LocalDynamic)
      return Ret;

    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
                                               MipsII::MO_DTPREL_HI);
    SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
                                               MipsII::MO_DTPREL_LO);
    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
  }

  SDValue Offset;
  if (model == TLSModel::InitialExec) {
    // Initial Exec TLS Model
    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
                                             MipsII::MO_GOTTPREL);
    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
                      TGA);
    Offset =
        DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo());
  } else {
    // Local Exec TLS Model
    assert(model == TLSModel::LocalExec);
    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
                                               MipsII::MO_TPREL_HI);
    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
                                               MipsII::MO_TPREL_LO);
    SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
  }

  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
}

SDValue MipsTargetLowering::
lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
{
  JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
  EVT Ty = Op.getValueType();

  if (!isPositionIndependent())
    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
                                : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);

  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
}

SDValue MipsTargetLowering::
lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
{
  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
  EVT Ty = Op.getValueType();

  if (!isPositionIndependent()) {
    const MipsTargetObjectFile *TLOF =
        static_cast<const MipsTargetObjectFile *>(
            getTargetMachine().getObjFileLowering());

    if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
                                       getTargetMachine()))
      // %gp_rel relocation
      return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());

    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
                                : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
  }

 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
}

SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();

  SDLoc DL(Op);
  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
                                 getPointerTy(MF.getDataLayout()));

  // vastart just stores the address of the VarArgsFrameIndex slot into the
  // memory location argument.
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
                      MachinePointerInfo(SV));
}

SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
  SDNode *Node = Op.getNode();
  EVT VT = Node->getValueType(0);
  SDValue Chain = Node->getOperand(0);
  SDValue VAListPtr = Node->getOperand(1);
  unsigned Align = Node->getConstantOperandVal(3);
  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
  SDLoc DL(Node);
  unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;

  SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain,
                                   VAListPtr, MachinePointerInfo(SV));
  SDValue VAList = VAListLoad;

  // Re-align the pointer if necessary.
  // It should only ever be necessary for 64-bit types on O32 since the minimum
  // argument alignment is the same as the maximum type alignment for N32/N64.
  //
  // FIXME: We currently align too often. The code generator doesn't notice
  //        when the pointer is still aligned from the last va_arg (or pair of
  //        va_args for the i64 on O32 case).
  if (Align > getMinStackArgumentAlignment()) {
    assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");

    VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
                         DAG.getConstant(Align - 1, DL, VAList.getValueType()));

    VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList,
                         DAG.getConstant(-(int64_t)Align, DL,
                                         VAList.getValueType()));
  }

  // Increment the pointer, VAList, to the next vaarg.
  auto &TD = DAG.getDataLayout();
  unsigned ArgSizeInBytes =
      TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
  SDValue Tmp3 =
      DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
                  DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
                                  DL, VAList.getValueType()));
  // Store the incremented VAList to the legalized pointer
  Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
                       MachinePointerInfo(SV));

  // In big-endian mode we must adjust the pointer when the load size is smaller
  // than the argument slot size. We must also reduce the known alignment to
  // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
  // the correct half of the slot, and reduce the alignment from 8 (slot
  // alignment) down to 4 (type alignment).
  if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
    unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
    VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
                         DAG.getIntPtrConstant(Adjustment, DL));
  }
  // Load the actual argument out of the pointer VAList
  return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo());
}

static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
                                bool HasExtractInsert) {
  EVT TyX = Op.getOperand(0).getValueType();
  EVT TyY = Op.getOperand(1).getValueType();
  SDLoc DL(Op);
  SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
  SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
  SDValue Res;

  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
  // to i32.
  SDValue X = (TyX == MVT::f32) ?
    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
                Const1);
  SDValue Y = (TyY == MVT::f32) ?
    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
                Const1);

  if (HasExtractInsert) {
    // ext  E, Y, 31, 1  ; extract bit31 of Y
    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
  } else {
    // sll SllX, X, 1
    // srl SrlX, SllX, 1
    // srl SrlY, Y, 31
    // sll SllY, SrlX, 31
    // or  Or, SrlX, SllY
    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
  }

  if (TyX == MVT::f32)
    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);

  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
                             Op.getOperand(0),
                             DAG.getConstant(0, DL, MVT::i32));
  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
}

static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
                                bool HasExtractInsert) {
  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
  SDLoc DL(Op);
  SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);

  // Bitcast to integer nodes.
  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));

  if (HasExtractInsert) {
    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
                            DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);

    if (WidthX > WidthY)
      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
    else if (WidthY > WidthX)
      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);

    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
                            DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
                            X);
    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
  }

  // (d)sll SllX, X, 1
  // (d)srl SrlX, SllX, 1
  // (d)srl SrlY, Y, width(Y)-1
  // (d)sll SllY, SrlX, width(Y)-1
  // or     Or, SrlX, SllY
  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
                             DAG.getConstant(WidthY - 1, DL, MVT::i32));

  if (WidthX > WidthY)
    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
  else if (WidthY > WidthX)
    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);

  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
                             DAG.getConstant(WidthX - 1, DL, MVT::i32));
  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
}

SDValue
MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
  if (Subtarget.isGP64bit())
    return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());

  return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
}

SDValue MipsTargetLowering::
lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
  // check the depth
  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
         "Frame address can only be determined for current frame.");

  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  MFI.setFrameAddressIsTaken(true);
  EVT VT = Op.getValueType();
  SDLoc DL(Op);
  SDValue FrameAddr = DAG.getCopyFromReg(
      DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
  return FrameAddr;
}

SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
                                            SelectionDAG &DAG) const {
  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
    return SDValue();

  // check the depth
  assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
         "Return address can be determined only for current frame.");

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MVT VT = Op.getSimpleValueType();
  unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
  MFI.setReturnAddressIsTaken(true);

  // Return RA, which contains the return address. Mark it an implicit live-in.
  unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
}

// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
// generated from __builtin_eh_return (offset, handler)
// The effect of this is to adjust the stack pointer by "offset"
// and then branch to "handler".
SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
                                                                     const {
  MachineFunction &MF = DAG.getMachineFunction();
  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();

  MipsFI->setCallsEhReturn();
  SDValue Chain     = Op.getOperand(0);
  SDValue Offset    = Op.getOperand(1);
  SDValue Handler   = Op.getOperand(2);
  SDLoc DL(Op);
  EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;

  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
  // EH_RETURN nodes, so that instructions are emitted back-to-back.
  unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
  unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
                     DAG.getRegister(OffsetReg, Ty),
                     DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
                     Chain.getValue(1));
}

SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
                                              SelectionDAG &DAG) const {
  // FIXME: Need pseudo-fence for 'singlethread' fences
  // FIXME: Set SType for weaker fences where supported/appropriate.
  unsigned SType = 0;
  SDLoc DL(Op);
  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
                     DAG.getConstant(SType, DL, MVT::i32));
}

SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
                                                SelectionDAG &DAG) const {
  SDLoc DL(Op);
  MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;

  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
  SDValue Shamt = Op.getOperand(2);
  // if shamt < (VT.bits):
  //  lo = (shl lo, shamt)
  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
  // else:
  //  lo = 0
  //  hi = (shl lo, shamt[4:0])
  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
                            DAG.getConstant(-1, DL, MVT::i32));
  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
                                      DAG.getConstant(1, DL, VT));
  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
  SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
                             DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
  Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
                   DAG.getConstant(0, DL, VT), ShiftLeftLo);
  Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);

  SDValue Ops[2] = {Lo, Hi};
  return DAG.getMergeValues(Ops, DL);
}

SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
                                                 bool IsSRA) const {
  SDLoc DL(Op);
  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
  SDValue Shamt = Op.getOperand(2);
  MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;

  // if shamt < (VT.bits):
  //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
  //  if isSRA:
  //    hi = (sra hi, shamt)
  //  else:
  //    hi = (srl hi, shamt)
  // else:
  //  if isSRA:
  //   lo = (sra hi, shamt[4:0])
  //   hi = (sra hi, 31)
  //  else:
  //   lo = (srl hi, shamt[4:0])
  //   hi = 0
  SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
                            DAG.getConstant(-1, DL, MVT::i32));
  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
                                     DAG.getConstant(1, DL, VT));
  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
  SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
                                     DL, VT, Hi, Shamt);
  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
                             DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
  SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
                            DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));
  Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
  Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
                   IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);

  SDValue Ops[2] = {Lo, Hi};
  return DAG.getMergeValues(Ops, DL);
}

static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
                            SDValue Chain, SDValue Src, unsigned Offset) {
  SDValue Ptr = LD->getBasePtr();
  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
  EVT BasePtrVT = Ptr.getValueType();
  SDLoc DL(LD);
  SDVTList VTList = DAG.getVTList(VT, MVT::Other);

  if (Offset)
    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
                      DAG.getConstant(Offset, DL, BasePtrVT));

  SDValue Ops[] = { Chain, Ptr, Src };
  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
                                 LD->getMemOperand());
}

// Expand an unaligned 32 or 64-bit integer load node.
SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
  LoadSDNode *LD = cast<LoadSDNode>(Op);
  EVT MemVT = LD->getMemoryVT();

  if (Subtarget.systemSupportsUnalignedAccess())
    return Op;

  // Return if load is aligned or if MemVT is neither i32 nor i64.
  if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
    return SDValue();

  bool IsLittle = Subtarget.isLittle();
  EVT VT = Op.getValueType();
  ISD::LoadExtType ExtType = LD->getExtensionType();
  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);

  assert((VT == MVT::i32) || (VT == MVT::i64));

  // Expand
  //  (set dst, (i64 (load baseptr)))
  // to
  //  (set tmp, (ldl (add baseptr, 7), undef))
  //  (set dst, (ldr baseptr, tmp))
  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
                               IsLittle ? 7 : 0);
    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
                        IsLittle ? 0 : 7);
  }

  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
                             IsLittle ? 3 : 0);
  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
                             IsLittle ? 0 : 3);

  // Expand
  //  (set dst, (i32 (load baseptr))) or
  //  (set dst, (i64 (sextload baseptr))) or
  //  (set dst, (i64 (extload baseptr)))
  // to
  //  (set tmp, (lwl (add baseptr, 3), undef))
  //  (set dst, (lwr baseptr, tmp))
  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
      (ExtType == ISD::EXTLOAD))
    return LWR;

  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));

  // Expand
  //  (set dst, (i64 (zextload baseptr)))
  // to
  //  (set tmp0, (lwl (add baseptr, 3), undef))
  //  (set tmp1, (lwr baseptr, tmp0))
  //  (set tmp2, (shl tmp1, 32))
  //  (set dst, (srl tmp2, 32))
  SDLoc DL(LD);
  SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
  SDValue Ops[] = { SRL, LWR.getValue(1) };
  return DAG.getMergeValues(Ops, DL);
}

static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
                             SDValue Chain, unsigned Offset) {
  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
  SDLoc DL(SD);
  SDVTList VTList = DAG.getVTList(MVT::Other);

  if (Offset)
    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
                      DAG.getConstant(Offset, DL, BasePtrVT));

  SDValue Ops[] = { Chain, Value, Ptr };
  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
                                 SD->getMemOperand());
}

// Expand an unaligned 32 or 64-bit integer store node.
static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
                                      bool IsLittle) {
  SDValue Value = SD->getValue(), Chain = SD->getChain();
  EVT VT = Value.getValueType();

  // Expand
  //  (store val, baseptr) or
  //  (truncstore val, baseptr)
  // to
  //  (swl val, (add baseptr, 3))
  //  (swr val, baseptr)
  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
                                IsLittle ? 3 : 0);
    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
  }

  assert(VT == MVT::i64);

  // Expand
  //  (store val, baseptr)
  // to
  //  (sdl val, (add baseptr, 7))
  //  (sdr val, baseptr)
  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
}

// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
  SDValue Val = SD->getValue();

  if (Val.getOpcode() != ISD::FP_TO_SINT)
    return SDValue();

  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
                           Val.getOperand(0));
  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
                      SD->getPointerInfo(), SD->getAlignment(),
                      SD->getMemOperand()->getFlags());
}

SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
  StoreSDNode *SD = cast<StoreSDNode>(Op);
  EVT MemVT = SD->getMemoryVT();

  // Lower unaligned integer stores.
  if (!Subtarget.systemSupportsUnalignedAccess() &&
      (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
    return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());

  return lowerFP_TO_SINT_STORE(SD, DAG);
}

SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
                                              SelectionDAG &DAG) const {

  // Return a fixed StackObject with offset 0 which points to the old stack
  // pointer.
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  EVT ValTy = Op->getValueType(0);
  int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
  return DAG.getFrameIndex(FI, ValTy);
}

SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
                                            SelectionDAG &DAG) const {
  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
                              Op.getOperand(0));
  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
}

//===----------------------------------------------------------------------===//
//                      Calling Convention Implementation
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// TODO: Implement a generic logic using tblgen that can support this.
// Mips O32 ABI rules:
// ---
// i32 - Passed in A0, A1, A2, A3 and stack
// f32 - Only passed in f32 registers if no int reg has been used yet to hold
//       an argument. Otherwise, passed in A1, A2, A3 and stack.
// f64 - Only passed in two aliased f32 registers if no int reg has been used
//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
//       not used, it must be shadowed. If only A3 is available, shadow it and
//       go to stack.
// vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
// vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
//         with the remainder spilled to the stack.
// vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
//         spilling the remainder to the stack.
//
//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
//===----------------------------------------------------------------------===//

static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
                       CCState &State, ArrayRef<MCPhysReg> F64Regs) {
  const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
      State.getMachineFunction().getSubtarget());

  static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };

  const MipsCCState * MipsState = static_cast<MipsCCState *>(&State);

  static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };

  static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 };

  // Do not process byval args here.
  if (ArgFlags.isByVal())
    return true;

  // Promote i8 and i16
  if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
    if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
      LocVT = MVT::i32;
      if (ArgFlags.isSExt())
        LocInfo = CCValAssign::SExtUpper;
      else if (ArgFlags.isZExt())
        LocInfo = CCValAssign::ZExtUpper;
      else
        LocInfo = CCValAssign::AExtUpper;
    }
  }

  // Promote i8 and i16
  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
    LocVT = MVT::i32;
    if (ArgFlags.isSExt())
      LocInfo = CCValAssign::SExt;
    else if (ArgFlags.isZExt())
      LocInfo = CCValAssign::ZExt;
    else
      LocInfo = CCValAssign::AExt;
  }

  unsigned Reg;

  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
  // is true: function is vararg, argument is 3rd or higher, there is previous
  // argument which is not f32 or f64.
  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
                                State.getFirstUnallocated(F32Regs) != ValNo;
  unsigned OrigAlign = ArgFlags.getOrigAlign();
  bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
  bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo);

  // The MIPS vector ABI for floats passes them in a pair of registers
  if (ValVT == MVT::i32 && isVectorFloat) {
    // This is the start of an vector that was scalarized into an unknown number
    // of components. It doesn't matter how many there are. Allocate one of the
    // notional 8 byte aligned registers which map onto the argument stack, and
    // shadow the register lost to alignment requirements.
    if (ArgFlags.isSplit()) {
      Reg = State.AllocateReg(FloatVectorIntRegs);
      if (Reg == Mips::A2)
        State.AllocateReg(Mips::A1);
      else if (Reg == 0)
        State.AllocateReg(Mips::A3);
    } else {
      // If we're an intermediate component of the split, we can just attempt to
      // allocate a register directly.
      Reg = State.AllocateReg(IntRegs);
    }
  } else if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
    Reg = State.AllocateReg(IntRegs);
    // If this is the first part of an i64 arg,
    // the allocated register must be either A0 or A2.
    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
      Reg = State.AllocateReg(IntRegs);
    LocVT = MVT::i32;
  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
    // Allocate int register and shadow next int register. If first
    // available register is Mips::A1 or Mips::A3, shadow it too.
    Reg = State.AllocateReg(IntRegs);
    if (Reg == Mips::A1 || Reg == Mips::A3)
      Reg = State.AllocateReg(IntRegs);
    State.AllocateReg(IntRegs);
    LocVT = MVT::i32;
  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
    // we are guaranteed to find an available float register
    if (ValVT == MVT::f32) {
      Reg = State.AllocateReg(F32Regs);
      // Shadow int register
      State.AllocateReg(IntRegs);
    } else {
      Reg = State.AllocateReg(F64Regs);
      // Shadow int registers
      unsigned Reg2 = State.AllocateReg(IntRegs);
      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
        State.AllocateReg(IntRegs);
      State.AllocateReg(IntRegs);
    }
  } else
    llvm_unreachable("Cannot handle this ValVT.");

  if (!Reg) {
    unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
  } else
    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));

  return false;
}

static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
                            MVT LocVT, CCValAssign::LocInfo LocInfo,
                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
  static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };

  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
}

static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
                            MVT LocVT, CCValAssign::LocInfo LocInfo,
                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
  static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };

  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
}

static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
                       CCState &State) LLVM_ATTRIBUTE_UNUSED;

#include "MipsGenCallingConv.inc"

 CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{
   return CC_Mips;
 }

 CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{
   return RetCC_Mips;
 }
//===----------------------------------------------------------------------===//
//                  Call Calling Convention Implementation
//===----------------------------------------------------------------------===//

// Return next O32 integer argument register.
static unsigned getNextIntArgReg(unsigned Reg) {
  assert((Reg == Mips::A0) || (Reg == Mips::A2));
  return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
}

SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
                                           SDValue Chain, SDValue Arg,
                                           const SDLoc &DL, bool IsTailCall,
                                           SelectionDAG &DAG) const {
  if (!IsTailCall) {
    SDValue PtrOff =
        DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
                    DAG.getIntPtrConstant(Offset, DL));
    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo());
  }

  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
                      /* Alignment = */ 0, MachineMemOperand::MOVolatile);
}

void MipsTargetLowering::
getOpndList(SmallVectorImpl<SDValue> &Ops,
            std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
            bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
            SDValue Chain) const {
  // Insert node "GP copy globalreg" before call to function.
  //
  // R_MIPS_CALL* operators (emitted when non-internal functions are called
  // in PIC mode) allow symbols to be resolved via lazy binding.
  // The lazy binding stub requires GP to point to the GOT.
  // Note that we don't need GP to point to the GOT for indirect calls
  // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
  // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
  // used for the function (that is, Mips linker doesn't generate lazy binding
  // stub for a function whose address is taken in the program).
  if (IsPICCall && !InternalLinkage && IsCallReloc) {
    unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
    EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
  }

  // Build a sequence of copy-to-reg nodes chained together with token
  // chain and flag operands which copy the outgoing args into registers.
  // The InFlag in necessary since all emitted instructions must be
  // stuck together.
  SDValue InFlag;

  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
                                 RegsToPass[i].second, InFlag);
    InFlag = Chain.getValue(1);
  }

  // Add argument registers to the end of the list so that they are
  // known live into the call.
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
    Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
                                      RegsToPass[i].second.getValueType()));

  // Add a register mask operand representing the call-preserved registers.
  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
  const uint32_t *Mask =
      TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
  assert(Mask && "Missing call preserved mask for calling convention");
  if (Subtarget.inMips16HardFloat()) {
    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
      StringRef Sym = G->getGlobal()->getName();
      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
      if (F && F->hasFnAttribute("__Mips16RetHelper")) {
        Mask = MipsRegisterInfo::getMips16RetHelperMask();
      }
    }
  }
  Ops.push_back(CLI.DAG.getRegisterMask(Mask));

  if (InFlag.getNode())
    Ops.push_back(InFlag);
}

/// LowerCall - functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
SDValue
MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                              SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG                     = CLI.DAG;
  SDLoc DL                              = CLI.DL;
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
  SDValue Chain                         = CLI.Chain;
  SDValue Callee                        = CLI.Callee;
  bool &IsTailCall                      = CLI.IsTailCall;
  CallingConv::ID CallConv              = CLI.CallConv;
  bool IsVarArg                         = CLI.IsVarArg;

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
  bool IsPIC = isPositionIndependent();

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  MipsCCState CCInfo(
      CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
      MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));

  const ExternalSymbolSDNode *ES =
      dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode());

  // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
  // is during the lowering of a call with a byval argument which produces
  // a call to memcpy. For the O32 case, this causes the caller to allocate
  // stack space for the reserved argument area for the callee, then recursively
  // again for the memcpy call. In the NEWABI case, this doesn't occur as those
  // ABIs mandate that the callee allocates the reserved argument area. We do
  // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
  //
  // If the callee has a byval argument and memcpy is used, we are mandated
  // to already have produced a reserved argument area for the callee for O32.
  // Therefore, the reserved argument area can be reused for both calls.
  //
  // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
  // present, as we have yet to hook that node onto the chain.
  //
  // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
  // case. GCC does a similar trick, in that wherever possible, it calculates
  // the maximum out going argument area (including the reserved area), and
  // preallocates the stack space on entrance to the caller.
  //
  // FIXME: We should do the same for efficency and space.

  // Note: The check on the calling convention below must match
  //       MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
  bool MemcpyInByVal = ES &&
                       StringRef(ES->getSymbol()) == StringRef("memcpy") &&
                       CallConv != CallingConv::Fast &&
                       Chain.getOpcode() == ISD::CALLSEQ_START;

  // Allocate the reserved argument area. It seems strange to do this from the
  // caller side but removing it breaks the frame size calculation.
  unsigned ReservedArgArea =
      MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv);
  CCInfo.AllocateStack(ReservedArgArea, 1);

  CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(),
                             ES ? ES->getSymbol() : nullptr);

  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NextStackOffset = CCInfo.getNextStackOffset();

  // Check if it's really possible to do a tail call. Restrict it to functions
  // that are part of this compilation unit.
  bool InternalLinkage = false;
  if (IsTailCall) {
    IsTailCall = isEligibleForTailCallOptimization(
        CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
      InternalLinkage = G->getGlobal()->hasInternalLinkage();
      IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() ||
                     G->getGlobal()->hasPrivateLinkage() ||
                     G->getGlobal()->hasHiddenVisibility() ||
                     G->getGlobal()->hasProtectedVisibility());
     }
  }
  if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
    report_fatal_error("failed to perform tail call elimination on a call "
                       "site marked musttail");

  if (IsTailCall)
    ++NumTailCalls;

  // Chain is the output chain of the last Load/Store or CopyToReg node.
  // ByValChain is the output chain of the last Memcpy node created for copying
  // byval arguments to the stack.
  unsigned StackAlignment = TFL->getStackAlignment();
  NextStackOffset = alignTo(NextStackOffset, StackAlignment);
  SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true);

  if (!(IsTailCall || MemcpyInByVal))
    Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL);

  SDValue StackPtr =
      DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
                         getPointerTy(DAG.getDataLayout()));

  std::deque<std::pair<unsigned, SDValue>> RegsToPass;
  SmallVector<SDValue, 8> MemOpChains;

  CCInfo.rewindByValRegsInfo();

  // Walk the register/memloc assignments, inserting copies/loads.
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    SDValue Arg = OutVals[i];
    CCValAssign &VA = ArgLocs[i];
    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
    bool UseUpperBits = false;

    // ByVal Arg.
    if (Flags.isByVal()) {
      unsigned FirstByValReg, LastByValReg;
      unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
      CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);

      assert(Flags.getByValSize() &&
             "ByVal args of size 0 should have been ignored by front-end.");
      assert(ByValIdx < CCInfo.getInRegsParamsCount());
      assert(!IsTailCall &&
             "Do not tail-call optimize if there is a byval argument.");
      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
                   FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
                   VA);
      CCInfo.nextInRegsParam();
      continue;
    }

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full:
      if (VA.isRegLoc()) {
        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
            (ValVT == MVT::i64 && LocVT == MVT::f64))
          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
                                   Arg, DAG.getConstant(0, DL, MVT::i32));
          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
                                   Arg, DAG.getConstant(1, DL, MVT::i32));
          if (!Subtarget.isLittle())
            std::swap(Lo, Hi);
          unsigned LocRegLo = VA.getLocReg();
          unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
          continue;
        }
      }
      break;
    case CCValAssign::BCvt:
      Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
      break;
    case CCValAssign::SExtUpper:
      UseUpperBits = true;
      LLVM_FALLTHROUGH;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
      break;
    case CCValAssign::ZExtUpper:
      UseUpperBits = true;
      LLVM_FALLTHROUGH;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
      break;
    case CCValAssign::AExtUpper:
      UseUpperBits = true;
      LLVM_FALLTHROUGH;
    case CCValAssign::AExt:
      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
      break;
    }

    if (UseUpperBits) {
      unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
      Arg = DAG.getNode(
          ISD::SHL, DL, VA.getLocVT(), Arg,
          DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
    }

    // Arguments that can be passed on register must be kept at
    // RegsToPass vector
    if (VA.isRegLoc()) {
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
      continue;
    }

    // Register can't get to this point...
    assert(VA.isMemLoc());

    // emit ISD::STORE whichs stores the
    // parameter value to a stack Location
    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
                                         Chain, Arg, DL, IsTailCall, DAG));
  }

  // Transform all store nodes into one single node because all store
  // nodes are independent of each other.
  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);

  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
  // node so that legalize doesn't hack it.

  EVT Ty = Callee.getValueType();
  bool GlobalOrExternal = false, IsCallReloc = false;

  // The long-calls feature is ignored in case of PIC.
  // While we do not support -mshared / -mno-shared properly,
  // ignore long-calls in case of -mabicalls too.
  if (!Subtarget.isABICalls() && !IsPIC) {
    // If the function should be called using "long call",
    // get its address into a register to prevent using
    // of the `jal` instruction for the direct call.
    if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) {
      if (Subtarget.useLongCalls())
        Callee = Subtarget.hasSym32()
                     ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
                     : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
    } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) {
      bool UseLongCalls = Subtarget.useLongCalls();
      // If the function has long-call/far/near attribute
      // it overrides command line switch pased to the backend.
      if (auto *F = dyn_cast<Function>(N->getGlobal())) {
        if (F->hasFnAttribute("long-call"))
          UseLongCalls = true;
        else if (F->hasFnAttribute("short-call"))
          UseLongCalls = false;
      }
      if (UseLongCalls)
        Callee = Subtarget.hasSym32()
                     ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
                     : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
    }
  }

  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    if (IsPIC) {
      const GlobalValue *Val = G->getGlobal();
      InternalLinkage = Val->hasInternalLinkage();

      if (InternalLinkage)
        Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
      else if (LargeGOT) {
        Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
                                       MipsII::MO_CALL_LO16, Chain,
                                       FuncInfo->callPtrInfo(Val));
        IsCallReloc = true;
      } else {
        Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
                               FuncInfo->callPtrInfo(Val));
        IsCallReloc = true;
      }
    } else
      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
                                          getPointerTy(DAG.getDataLayout()), 0,
                                          MipsII::MO_NO_FLAG);
    GlobalOrExternal = true;
  }
  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    const char *Sym = S->getSymbol();

    if (!IsPIC) // static
      Callee = DAG.getTargetExternalSymbol(
          Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
    else if (LargeGOT) {
      Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
                                     MipsII::MO_CALL_LO16, Chain,
                                     FuncInfo->callPtrInfo(Sym));
      IsCallReloc = true;
    } else { // PIC
      Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
                             FuncInfo->callPtrInfo(Sym));
      IsCallReloc = true;
    }

    GlobalOrExternal = true;
  }

  SmallVector<SDValue, 8> Ops(1, Chain);
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);

  getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage,
              IsCallReloc, CLI, Callee, Chain);

  if (IsTailCall) {
    MF.getFrameInfo().setHasTailCall();
    return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
  }

  Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
  SDValue InFlag = Chain.getValue(1);

  // Create the CALLSEQ_END node in the case of where it is not a call to
  // memcpy.
  if (!(MemcpyInByVal)) {
    Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
                               DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
    InFlag = Chain.getValue(1);
  }

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
                         InVals, CLI);
}

/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue MipsTargetLowering::LowerCallResult(
    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
    TargetLowering::CallLoweringInfo &CLI) const {
  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
                     *DAG.getContext());

  const ExternalSymbolSDNode *ES =
      dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode());
  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy,
                           ES ? ES->getSymbol() : nullptr);

  // Copy all of the result registers out of their specified physreg.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");

    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
                                     RVLocs[i].getLocVT(), InFlag);
    Chain = Val.getValue(1);
    InFlag = Val.getValue(2);

    if (VA.isUpperBitsInLoc()) {
      unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
      unsigned Shift =
          VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
      Val = DAG.getNode(
          Shift, DL, VA.getLocVT(), Val,
          DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
    }

    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full:
      break;
    case CCValAssign::BCvt:
      Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
      break;
    case CCValAssign::AExt:
    case CCValAssign::AExtUpper:
      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
      break;
    case CCValAssign::ZExt:
    case CCValAssign::ZExtUpper:
      Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
                        DAG.getValueType(VA.getValVT()));
      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
      break;
    case CCValAssign::SExt:
    case CCValAssign::SExtUpper:
      Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
                        DAG.getValueType(VA.getValVT()));
      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
      break;
    }

    InVals.push_back(Val);
  }

  return Chain;
}

static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
                                      EVT ArgVT, const SDLoc &DL,
                                      SelectionDAG &DAG) {
  MVT LocVT = VA.getLocVT();
  EVT ValVT = VA.getValVT();

  // Shift into the upper bits if necessary.
  switch (VA.getLocInfo()) {
  default:
    break;
  case CCValAssign::AExtUpper:
  case CCValAssign::SExtUpper:
  case CCValAssign::ZExtUpper: {
    unsigned ValSizeInBits = ArgVT.getSizeInBits();
    unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
    unsigned Opcode =
        VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
    Val = DAG.getNode(
        Opcode, DL, VA.getLocVT(), Val,
        DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
    break;
  }
  }

  // If this is an value smaller than the argument slot size (32-bit for O32,
  // 64-bit for N32/N64), it has been promoted in some way to the argument slot
  // size. Extract the value and insert any appropriate assertions regarding
  // sign/zero extension.
  switch (VA.getLocInfo()) {
  default:
    llvm_unreachable("Unknown loc info!");
  case CCValAssign::Full:
    break;
  case CCValAssign::AExtUpper:
  case CCValAssign::AExt:
    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
    break;
  case CCValAssign::SExtUpper:
  case CCValAssign::SExt:
    Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
    break;
  case CCValAssign::ZExtUpper:
  case CCValAssign::ZExt:
    Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
    break;
  case CCValAssign::BCvt:
    Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
    break;
  }

  return Val;
}

//===----------------------------------------------------------------------===//
//             Formal Arguments Calling Convention Implementation
//===----------------------------------------------------------------------===//
/// LowerFormalArguments - transform physical registers into virtual registers
/// and generate load operations for arguments places on the stack.
SDValue MipsTargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();

  MipsFI->setVarArgsFrameIndex(0);

  // Used with vargs to acumulate store chains.
  std::vector<SDValue> OutChains;

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
                     *DAG.getContext());
  CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
  const Function &Func = DAG.getMachineFunction().getFunction();
  Function::const_arg_iterator FuncArg = Func.arg_begin();

  if (Func.hasFnAttribute("interrupt") && !Func.arg_empty())
    report_fatal_error(
        "Functions with the interrupt attribute cannot have arguments!");

  CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
  MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
                           CCInfo.getInRegsParamsCount() > 0);

  unsigned CurArgIdx = 0;
  CCInfo.rewindByValRegsInfo();

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    if (Ins[i].isOrigArg()) {
      std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx);
      CurArgIdx = Ins[i].getOrigArgIndex();
    }
    EVT ValVT = VA.getValVT();
    ISD::ArgFlagsTy Flags = Ins[i].Flags;
    bool IsRegLoc = VA.isRegLoc();

    if (Flags.isByVal()) {
      assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit");
      unsigned FirstByValReg, LastByValReg;
      unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
      CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);

      assert(Flags.getByValSize() &&
             "ByVal args of size 0 should have been ignored by front-end.");
      assert(ByValIdx < CCInfo.getInRegsParamsCount());
      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
                    FirstByValReg, LastByValReg, VA, CCInfo);
      CCInfo.nextInRegsParam();
      continue;
    }

    // Arguments stored on registers
    if (IsRegLoc) {
      MVT RegVT = VA.getLocVT();
      unsigned ArgReg = VA.getLocReg();
      const TargetRegisterClass *RC = getRegClassFor(RegVT);

      // Transform the arguments stored on
      // physical registers into virtual ones
      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);

      ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);

      // Handle floating point arguments passed in integer registers and
      // long double arguments passed in floating point registers.
      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
          (RegVT == MVT::f64 && ValVT == MVT::i64))
        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
      else if (ABI.IsO32() && RegVT == MVT::i32 &&
               ValVT == MVT::f64) {
        unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
                                  getNextIntArgReg(ArgReg), RC);
        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
        if (!Subtarget.isLittle())
          std::swap(ArgValue, ArgValue2);
        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
                               ArgValue, ArgValue2);
      }

      InVals.push_back(ArgValue);
    } else { // VA.isRegLoc()
      MVT LocVT = VA.getLocVT();

      if (ABI.IsO32()) {
        // We ought to be able to use LocVT directly but O32 sets it to i32
        // when allocating floating point values to integer registers.
        // This shouldn't influence how we load the value into registers unless
        // we are targeting softfloat.
        if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat())
          LocVT = VA.getValVT();
      }

      // sanity check
      assert(VA.isMemLoc());

      // The stack pointer offset is relative to the caller stack frame.
      int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
                                     VA.getLocMemOffset(), true);

      // Create load nodes to retrieve arguments from the stack
      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
      SDValue ArgValue = DAG.getLoad(
          LocVT, DL, Chain, FIN,
          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
      OutChains.push_back(ArgValue.getValue(1));

      ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);

      InVals.push_back(ArgValue);
    }
  }

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    // The mips ABIs for returning structs by value requires that we copy
    // the sret argument into $v0 for the return. Save the argument into
    // a virtual register so that we can access it from the return points.
    if (Ins[i].Flags.isSRet()) {
      unsigned Reg = MipsFI->getSRetReturnReg();
      if (!Reg) {
        Reg = MF.getRegInfo().createVirtualRegister(
            getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
        MipsFI->setSRetReturnReg(Reg);
      }
      SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
      break;
    }
  }

  if (IsVarArg)
    writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);

  // All stores are grouped in one node to allow the matching between
  // the size of Ins and InVals. This only happens when on varg functions
  if (!OutChains.empty()) {
    OutChains.push_back(Chain);
    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
  }

  return Chain;
}

//===----------------------------------------------------------------------===//
//               Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//

bool
MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
                                   MachineFunction &MF, bool IsVarArg,
                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
                                   LLVMContext &Context) const {
  SmallVector<CCValAssign, 16> RVLocs;
  MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
  return CCInfo.CheckReturn(Outs, RetCC_Mips);
}

bool
MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
  if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32)
      return true;

  return IsSigned;
}

SDValue
MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
                                         const SDLoc &DL,
                                         SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();

  MipsFI->setISR();

  return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
}

SDValue
MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                                bool IsVarArg,
                                const SmallVectorImpl<ISD::OutputArg> &Outs,
                                const SmallVectorImpl<SDValue> &OutVals,
                                const SDLoc &DL, SelectionDAG &DAG) const {
  // CCValAssign - represent the assignment of
  // the return value to a location
  SmallVector<CCValAssign, 16> RVLocs;
  MachineFunction &MF = DAG.getMachineFunction();

  // CCState - Info about the registers and stack slot.
  MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());

  // Analyze return values.
  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);

  SDValue Flag;
  SmallVector<SDValue, 4> RetOps(1, Chain);

  // Copy the result values into the output registers.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    SDValue Val = OutVals[i];
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");
    bool UseUpperBits = false;

    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info!");
    case CCValAssign::Full:
      break;
    case CCValAssign::BCvt:
      Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
      break;
    case CCValAssign::AExtUpper:
      UseUpperBits = true;
      LLVM_FALLTHROUGH;
    case CCValAssign::AExt:
      Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
      break;
    case CCValAssign::ZExtUpper:
      UseUpperBits = true;
      LLVM_FALLTHROUGH;
    case CCValAssign::ZExt:
      Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
      break;
    case CCValAssign::SExtUpper:
      UseUpperBits = true;
      LLVM_FALLTHROUGH;
    case CCValAssign::SExt:
      Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
      break;
    }

    if (UseUpperBits) {
      unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
      Val = DAG.getNode(
          ISD::SHL, DL, VA.getLocVT(), Val,
          DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
    }

    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);

    // Guarantee that all emitted copies are stuck together with flags.
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
  }

  // The mips ABIs for returning structs by value requires that we copy
  // the sret argument into $v0 for the return. We saved the argument into
  // a virtual register in the entry block, so now we copy the value out
  // and into $v0.
  if (MF.getFunction().hasStructRetAttr()) {
    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
    unsigned Reg = MipsFI->getSRetReturnReg();

    if (!Reg)
      llvm_unreachable("sret virtual register not created in the entry block");
    SDValue Val =
        DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
    unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;

    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
  }

  RetOps[0] = Chain;  // Update chain.

  // Add the flag if we have it.
  if (Flag.getNode())
    RetOps.push_back(Flag);

  // ISRs must use "eret".
  if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
    return LowerInterruptReturn(RetOps, DL, DAG);

  // Standard return on Mips is a "jr $ra"
  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
}

//===----------------------------------------------------------------------===//
//                           Mips Inline Assembly Support
//===----------------------------------------------------------------------===//

/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
MipsTargetLowering::ConstraintType
MipsTargetLowering::getConstraintType(StringRef Constraint) const {
  // Mips specific constraints
  // GCC config/mips/constraints.md
  //
  // 'd' : An address register. Equivalent to r
  //       unless generating MIPS16 code.
  // 'y' : Equivalent to r; retained for
  //       backwards compatibility.
  // 'c' : A register suitable for use in an indirect
  //       jump. This will always be $25 for -mabicalls.
  // 'l' : The lo register. 1 word storage.
  // 'x' : The hilo register pair. Double word storage.
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
      default : break;
      case 'd':
      case 'y':
      case 'f':
      case 'c':
      case 'l':
      case 'x':
        return C_RegisterClass;
      case 'R':
        return C_Memory;
    }
  }

  if (Constraint == "ZC")
    return C_Memory;

  return TargetLowering::getConstraintType(Constraint);
}

/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
MipsTargetLowering::getSingleConstraintMatchWeight(
    AsmOperandInfo &info, const char *constraint) const {
  ConstraintWeight weight = CW_Invalid;
  Value *CallOperandVal = info.CallOperandVal;
    // If we don't have a value, we can't do a match,
    // but allow it at the lowest weight.
  if (!CallOperandVal)
    return CW_Default;
  Type *type = CallOperandVal->getType();
  // Look at the constraint type.
  switch (*constraint) {
  default:
    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
    break;
  case 'd':
  case 'y':
    if (type->isIntegerTy())
      weight = CW_Register;
    break;
  case 'f': // FPU or MSA register
    if (Subtarget.hasMSA() && type->isVectorTy() &&
        cast<VectorType>(type)->getBitWidth() == 128)
      weight = CW_Register;
    else if (type->isFloatTy())
      weight = CW_Register;
    break;
  case 'c': // $25 for indirect jumps
  case 'l': // lo register
  case 'x': // hilo register pair
    if (type->isIntegerTy())
      weight = CW_SpecificReg;
    break;
  case 'I': // signed 16 bit immediate
  case 'J': // integer zero
  case 'K': // unsigned 16 bit immediate
  case 'L': // signed 32 bit immediate where lower 16 bits are 0
  case 'N': // immediate in the range of -65535 to -1 (inclusive)
  case 'O': // signed 15 bit immediate (+- 16383)
  case 'P': // immediate in the range of 65535 to 1 (inclusive)
    if (isa<ConstantInt>(CallOperandVal))
      weight = CW_Constant;
    break;
  case 'R':
    weight = CW_Memory;
    break;
  }
  return weight;
}

/// This is a helper function to parse a physical register string and split it
/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
/// that is returned indicates whether parsing was successful. The second flag
/// is true if the numeric part exists.
static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
                                              unsigned long long &Reg) {
  if (C.front() != '{' || C.back() != '}')
    return std::make_pair(false, false);

  // Search for the first numeric character.
  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
  I = std::find_if(B, E, isdigit);

  Prefix = StringRef(B, I - B);

  // The second flag is set to false if no numeric characters were found.
  if (I == E)
    return std::make_pair(true, false);

  // Parse the numeric characters.
  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
                        true);
}

EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
                                            ISD::NodeType) const {
  bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32;
  EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32);
  return VT.bitsLT(MinVT) ? MinVT : VT;
}

std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
  const TargetRegisterInfo *TRI =
      Subtarget.getRegisterInfo();
  const TargetRegisterClass *RC;
  StringRef Prefix;
  unsigned long long Reg;

  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);

  if (!R.first)
    return std::make_pair(0U, nullptr);

  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
    // No numeric characters follow "hi" or "lo".
    if (R.second)
      return std::make_pair(0U, nullptr);

    RC = TRI->getRegClass(Prefix == "hi" ?
                          Mips::HI32RegClassID : Mips::LO32RegClassID);
    return std::make_pair(*(RC->begin()), RC);
  } else if (Prefix.startswith("$msa")) {
    // Parse $msa(ir|csr|access|save|modify|request|map|unmap)

    // No numeric characters follow the name.
    if (R.second)
      return std::make_pair(0U, nullptr);

    Reg = StringSwitch<unsigned long long>(Prefix)
              .Case("$msair", Mips::MSAIR)
              .Case("$msacsr", Mips::MSACSR)
              .Case("$msaaccess", Mips::MSAAccess)
              .Case("$msasave", Mips::MSASave)
              .Case("$msamodify", Mips::MSAModify)
              .Case("$msarequest", Mips::MSARequest)
              .Case("$msamap", Mips::MSAMap)
              .Case("$msaunmap", Mips::MSAUnmap)
              .Default(0);

    if (!Reg)
      return std::make_pair(0U, nullptr);

    RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
    return std::make_pair(Reg, RC);
  }

  if (!R.second)
    return std::make_pair(0U, nullptr);

  if (Prefix == "$f") { // Parse $f0-$f31.
    // If the size of FP registers is 64-bit or Reg is an even number, select
    // the 64-bit register class. Otherwise, select the 32-bit register class.
    if (VT == MVT::Other)
      VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;

    RC = getRegClassFor(VT);

    if (RC == &Mips::AFGR64RegClass) {
      assert(Reg % 2 == 0);
      Reg >>= 1;
    }
  } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
    RC = TRI->getRegClass(Mips::FCCRegClassID);
  else if (Prefix == "$w") { // Parse $w0-$w31.
    RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
  } else { // Parse $0-$31.
    assert(Prefix == "$");
    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
  }

  assert(Reg < RC->getNumRegs());
  return std::make_pair(*(RC->begin() + Reg), RC);
}

/// Given a register class constraint, like 'r', if this corresponds directly
/// to an LLVM register class, return a register of 0 and the register class
/// pointer.
std::pair<unsigned, const TargetRegisterClass *>
MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                                 StringRef Constraint,
                                                 MVT VT) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
    case 'y': // Same as 'r'. Exists for compatibility.
    case 'r':
      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
        if (Subtarget.inMips16Mode())
          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
        return std::make_pair(0U, &Mips::GPR32RegClass);
      }
      if (VT == MVT::i64 && !Subtarget.isGP64bit())
        return std::make_pair(0U, &Mips::GPR32RegClass);
      if (VT == MVT::i64 && Subtarget.isGP64bit())
        return std::make_pair(0U, &Mips::GPR64RegClass);
      // This will generate an error message
      return std::make_pair(0U, nullptr);
    case 'f': // FPU or MSA register
      if (VT == MVT::v16i8)
        return std::make_pair(0U, &Mips::MSA128BRegClass);
      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
        return std::make_pair(0U, &Mips::MSA128HRegClass);
      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
        return std::make_pair(0U, &Mips::MSA128WRegClass);
      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
        return std::make_pair(0U, &Mips::MSA128DRegClass);
      else if (VT == MVT::f32)
        return std::make_pair(0U, &Mips::FGR32RegClass);
      else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
        if (Subtarget.isFP64bit())
          return std::make_pair(0U, &Mips::FGR64RegClass);
        return std::make_pair(0U, &Mips::AFGR64RegClass);
      }
      break;
    case 'c': // register suitable for indirect jump
      if (VT == MVT::i32)
        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
      if (VT == MVT::i64)
        return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
      // This will generate an error message
      return std::make_pair(0U, nullptr);
    case 'l': // use the `lo` register to store values
              // that are no bigger than a word
      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
    case 'x': // use the concatenated `hi` and `lo` registers
              // to store doubleword values
      // Fixme: Not triggering the use of both hi and low
      // This will generate an error message
      return std::make_pair(0U, nullptr);
    }
  }

  std::pair<unsigned, const TargetRegisterClass *> R;
  R = parseRegForInlineAsmConstraint(Constraint, VT);

  if (R.second)
    return R;

  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}

/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector.  If it is invalid, don't add anything to Ops.
void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
                                                     std::string &Constraint,
                                                     std::vector<SDValue>&Ops,
                                                     SelectionDAG &DAG) const {
  SDLoc DL(Op);
  SDValue Result;

  // Only support length 1 constraints for now.
  if (Constraint.length() > 1) return;

  char ConstraintLetter = Constraint[0];
  switch (ConstraintLetter) {
  default: break; // This will fall through to the generic implementation
  case 'I': // Signed 16 bit constant
    // If this fails, the parent routine will give an error
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      EVT Type = Op.getValueType();
      int64_t Val = C->getSExtValue();
      if (isInt<16>(Val)) {
        Result = DAG.getTargetConstant(Val, DL, Type);
        break;
      }
    }
    return;
  case 'J': // integer zero
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      EVT Type = Op.getValueType();
      int64_t Val = C->getZExtValue();
      if (Val == 0) {
        Result = DAG.getTargetConstant(0, DL, Type);
        break;
      }
    }
    return;
  case 'K': // unsigned 16 bit immediate
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      EVT Type = Op.getValueType();
      uint64_t Val = (uint64_t)C->getZExtValue();
      if (isUInt<16>(Val)) {
        Result = DAG.getTargetConstant(Val, DL, Type);
        break;
      }
    }
    return;
  case 'L': // signed 32 bit immediate where lower 16 bits are 0
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      EVT Type = Op.getValueType();
      int64_t Val = C->getSExtValue();
      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
        Result = DAG.getTargetConstant(Val, DL, Type);
        break;
      }
    }
    return;
  case 'N': // immediate in the range of -65535 to -1 (inclusive)
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      EVT Type = Op.getValueType();
      int64_t Val = C->getSExtValue();
      if ((Val >= -65535) && (Val <= -1)) {
        Result = DAG.getTargetConstant(Val, DL, Type);
        break;
      }
    }
    return;
  case 'O': // signed 15 bit immediate
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      EVT Type = Op.getValueType();
      int64_t Val = C->getSExtValue();
      if ((isInt<15>(Val))) {
        Result = DAG.getTargetConstant(Val, DL, Type);
        break;
      }
    }
    return;
  case 'P': // immediate in the range of 1 to 65535 (inclusive)
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      EVT Type = Op.getValueType();
      int64_t Val = C->getSExtValue();
      if ((Val <= 65535) && (Val >= 1)) {
        Result = DAG.getTargetConstant(Val, DL, Type);
        break;
      }
    }
    return;
  }

  if (Result.getNode()) {
    Ops.push_back(Result);
    return;
  }

  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}

bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
                                               const AddrMode &AM, Type *Ty,
                                               unsigned AS, Instruction *I) const {
  // No global is ever allowed as a base.
  if (AM.BaseGV)
    return false;

  switch (AM.Scale) {
  case 0: // "r+i" or just "i", depending on HasBaseReg.
    break;
  case 1:
    if (!AM.HasBaseReg) // allow "r+i".
      break;
    return false; // disallow "r+r" or "r+r+i".
  default:
    return false;
  }

  return true;
}

bool
MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
  // The Mips target isn't yet aware of offsets.
  return false;
}

EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
                                            unsigned SrcAlign,
                                            bool IsMemset, bool ZeroMemset,
                                            bool MemcpyStrSrc,
                                            MachineFunction &MF) const {
  if (Subtarget.hasMips64())
    return MVT::i64;

  return MVT::i32;
}

bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
  if (VT != MVT::f32 && VT != MVT::f64)
    return false;
  if (Imm.isNegZero())
    return false;
  return Imm.isZero();
}

unsigned MipsTargetLowering::getJumpTableEncoding() const {

  // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
  if (ABI.IsN64() && isPositionIndependent())
    return MachineJumpTableInfo::EK_GPRel64BlockAddress;

  return TargetLowering::getJumpTableEncoding();
}

bool MipsTargetLowering::useSoftFloat() const {
  return Subtarget.useSoftFloat();
}

void MipsTargetLowering::copyByValRegs(
    SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
    SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
    SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
    unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
    MipsCCState &State) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
  unsigned NumRegs = LastReg - FirstReg;
  unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
  int FrameObjOffset;
  ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();

  if (RegAreaSize)
    FrameObjOffset =
        (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
        (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
  else
    FrameObjOffset = VA.getLocMemOffset();

  // Create frame object.
  EVT PtrTy = getPointerTy(DAG.getDataLayout());
  // Make the fixed object stored to mutable so that the load instructions
  // referencing it have their memory dependencies added.
  // Set the frame object as isAliased which clears the underlying objects
  // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
  // stores as dependencies for loads referencing this fixed object.
  int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true);
  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
  InVals.push_back(FIN);

  if (!NumRegs)
    return;

  // Copy arg registers.
  MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
  const TargetRegisterClass *RC = getRegClassFor(RegTy);

  for (unsigned I = 0; I < NumRegs; ++I) {
    unsigned ArgReg = ByValArgRegs[FirstReg + I];
    unsigned VReg = addLiveIn(MF, ArgReg, RC);
    unsigned Offset = I * GPRSizeInBytes;
    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
                                   DAG.getConstant(Offset, DL, PtrTy));
    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
                                 StorePtr, MachinePointerInfo(FuncArg, Offset));
    OutChains.push_back(Store);
  }
}

// Copy byVal arg to registers and stack.
void MipsTargetLowering::passByValArg(
    SDValue Chain, const SDLoc &DL,
    std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
    SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
    MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
    unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
    const CCValAssign &VA) const {
  unsigned ByValSizeInBytes = Flags.getByValSize();
  unsigned OffsetInBytes = 0; // From beginning of struct
  unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
  unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
  EVT PtrTy = getPointerTy(DAG.getDataLayout()),
      RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
  unsigned NumRegs = LastReg - FirstReg;

  if (NumRegs) {
    ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
    bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
    unsigned I = 0;

    // Copy words to registers.
    for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
                                    DAG.getConstant(OffsetInBytes, DL, PtrTy));
      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
                                    MachinePointerInfo(), Alignment);
      MemOpChains.push_back(LoadVal.getValue(1));
      unsigned ArgReg = ArgRegs[FirstReg + I];
      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
    }

    // Return if the struct has been fully copied.
    if (ByValSizeInBytes == OffsetInBytes)
      return;

    // Copy the remainder of the byval argument with sub-word loads and shifts.
    if (LeftoverBytes) {
      SDValue Val;

      for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
           OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
        unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;

        if (RemainingSizeInBytes < LoadSizeInBytes)
          continue;

        // Load subword.
        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
                                      DAG.getConstant(OffsetInBytes, DL,
                                                      PtrTy));
        SDValue LoadVal = DAG.getExtLoad(
            ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
            MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment);
        MemOpChains.push_back(LoadVal.getValue(1));

        // Shift the loaded value.
        unsigned Shamt;

        if (isLittle)
          Shamt = TotalBytesLoaded * 8;
        else
          Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;

        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
                                    DAG.getConstant(Shamt, DL, MVT::i32));

        if (Val.getNode())
          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
        else
          Val = Shift;

        OffsetInBytes += LoadSizeInBytes;
        TotalBytesLoaded += LoadSizeInBytes;
        Alignment = std::min(Alignment, LoadSizeInBytes);
      }

      unsigned ArgReg = ArgRegs[FirstReg + I];
      RegsToPass.push_back(std::make_pair(ArgReg, Val));
      return;
    }
  }

  // Copy remainder of byval arg to it with memcpy.
  unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
                            DAG.getConstant(OffsetInBytes, DL, PtrTy));
  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
                            DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
  Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
                        DAG.getConstant(MemCpySize, DL, PtrTy),
                        Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
                        /*isTailCall=*/false,
                        MachinePointerInfo(), MachinePointerInfo());
  MemOpChains.push_back(Chain);
}

void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
                                         SDValue Chain, const SDLoc &DL,
                                         SelectionDAG &DAG,
                                         CCState &State) const {
  ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
  unsigned Idx = State.getFirstUnallocated(ArgRegs);
  unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
  MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
  const TargetRegisterClass *RC = getRegClassFor(RegTy);
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();

  // Offset of the first variable argument from stack pointer.
  int VaArgOffset;

  if (ArgRegs.size() == Idx)
    VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes);
  else {
    VaArgOffset =
        (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
        (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
  }

  // Record the frame index of the first variable argument
  // which is a value necessary to VASTART.
  int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
  MipsFI->setVarArgsFrameIndex(FI);

  // Copy the integer registers that have not been used for argument passing
  // to the argument register save area. For O32, the save area is allocated
  // in the caller's stack frame, while for N32/64, it is allocated in the
  // callee's stack frame.
  for (unsigned I = Idx; I < ArgRegs.size();
       ++I, VaArgOffset += RegSizeInBytes) {
    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
    FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
    SDValue Store =
        DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo());
    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
        (Value *)nullptr);
    OutChains.push_back(Store);
  }
}

void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
                                     unsigned Align) const {
  const TargetFrameLowering *TFL = Subtarget.getFrameLowering();

  assert(Size && "Byval argument's size shouldn't be 0.");

  Align = std::min(Align, TFL->getStackAlignment());

  unsigned FirstReg = 0;
  unsigned NumRegs = 0;

  if (State->getCallingConv() != CallingConv::Fast) {
    unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
    ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
    // FIXME: The O32 case actually describes no shadow registers.
    const MCPhysReg *ShadowRegs =
        ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;

    // We used to check the size as well but we can't do that anymore since
    // CCState::HandleByVal() rounds up the size after calling this function.
    assert(!(Align % RegSizeInBytes) &&
           "Byval argument's alignment should be a multiple of"
           "RegSizeInBytes.");

    FirstReg = State->getFirstUnallocated(IntArgRegs);

    // If Align > RegSizeInBytes, the first arg register must be even.
    // FIXME: This condition happens to do the right thing but it's not the
    //        right way to test it. We want to check that the stack frame offset
    //        of the register is aligned.
    if ((Align > RegSizeInBytes) && (FirstReg % 2)) {
      State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
      ++FirstReg;
    }

    // Mark the registers allocated.
    Size = alignTo(Size, RegSizeInBytes);
    for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
         Size -= RegSizeInBytes, ++I, ++NumRegs)
      State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
  }

  State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
}

MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
                                                        MachineBasicBlock *BB,
                                                        bool isFPCmp,
                                                        unsigned Opc) const {
  assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
         "Subtarget already supports SELECT nodes with the use of"
         "conditional-move instructions.");

  const TargetInstrInfo *TII =
      Subtarget.getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();

  // To "insert" a SELECT instruction, we actually have to insert the
  // diamond control-flow pattern.  The incoming instruction knows the
  // destination vreg to set, the condition code register to branch on, the
  // true/false values to select between, and a branch opcode to use.
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction::iterator It = ++BB->getIterator();

  //  thisMBB:
  //  ...
  //   TrueVal = ...
  //   setcc r1, r2, r3
  //   bNE   r1, r0, copy1MBB
  //   fallthrough --> copy0MBB
  MachineBasicBlock *thisMBB  = BB;
  MachineFunction *F = BB->getParent();
  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
  F->insert(It, copy0MBB);
  F->insert(It, sinkMBB);

  // Transfer the remainder of BB and its successor edges to sinkMBB.
  sinkMBB->splice(sinkMBB->begin(), BB,
                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);

  // Next, add the true and fallthrough blocks as its successors.
  BB->addSuccessor(copy0MBB);
  BB->addSuccessor(sinkMBB);

  if (isFPCmp) {
    // bc1[tf] cc, sinkMBB
    BuildMI(BB, DL, TII->get(Opc))
        .addReg(MI.getOperand(1).getReg())
        .addMBB(sinkMBB);
  } else {
    // bne rs, $0, sinkMBB
    BuildMI(BB, DL, TII->get(Opc))
        .addReg(MI.getOperand(1).getReg())
        .addReg(Mips::ZERO)
        .addMBB(sinkMBB);
  }

  //  copy0MBB:
  //   %FalseValue = ...
  //   # fallthrough to sinkMBB
  BB = copy0MBB;

  // Update machine-CFG edges
  BB->addSuccessor(sinkMBB);

  //  sinkMBB:
  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
  //  ...
  BB = sinkMBB;

  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
      .addReg(MI.getOperand(2).getReg())
      .addMBB(thisMBB)
      .addReg(MI.getOperand(3).getReg())
      .addMBB(copy0MBB);

  MI.eraseFromParent(); // The pseudo instruction is gone now.

  return BB;
}

// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
unsigned MipsTargetLowering::getRegisterByName(const char* RegName, EVT VT,
                                               SelectionDAG &DAG) const {
  // Named registers is expected to be fairly rare. For now, just support $28
  // since the linux kernel uses it.
  if (Subtarget.isGP64bit()) {
    unsigned Reg = StringSwitch<unsigned>(RegName)
                         .Case("$28", Mips::GP_64)
                         .Default(0);
    if (Reg)
      return Reg;
  } else {
    unsigned Reg = StringSwitch<unsigned>(RegName)
                         .Case("$28", Mips::GP)
                         .Default(0);
    if (Reg)
      return Reg;
  }
  report_fatal_error("Invalid register name global variable");
}
OpenPOWER on IntegriCloud