summaryrefslogtreecommitdiffstats
path: root/clang/lib/CodeGen/CodeGenFunction.h
blob: d374f3943661a9a716c2b5b97ff12ddcb2198d37 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the internal per-function state used for llvm translation.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H

#include "CGBuilder.h"
#include "CGDebugInfo.h"
#include "CGLoopInfo.h"
#include "CGValue.h"
#include "CodeGenModule.h"
#include "CodeGenPGO.h"
#include "EHScopeStack.h"
#include "VarBypassDetector.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprOpenMP.h"
#include "clang/AST/Type.h"
#include "clang/Basic/ABI.h"
#include "clang/Basic/CapturedStmt.h"
#include "clang/Basic/OpenMPKinds.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Frontend/CodeGenOptions.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/SanitizerStats.h"

namespace llvm {
class BasicBlock;
class LLVMContext;
class MDNode;
class Module;
class SwitchInst;
class Twine;
class Value;
class CallSite;
}

namespace clang {
class ASTContext;
class BlockDecl;
class CXXDestructorDecl;
class CXXForRangeStmt;
class CXXTryStmt;
class Decl;
class LabelDecl;
class EnumConstantDecl;
class FunctionDecl;
class FunctionProtoType;
class LabelStmt;
class ObjCContainerDecl;
class ObjCInterfaceDecl;
class ObjCIvarDecl;
class ObjCMethodDecl;
class ObjCImplementationDecl;
class ObjCPropertyImplDecl;
class TargetInfo;
class VarDecl;
class ObjCForCollectionStmt;
class ObjCAtTryStmt;
class ObjCAtThrowStmt;
class ObjCAtSynchronizedStmt;
class ObjCAutoreleasePoolStmt;

namespace analyze_os_log {
class OSLogBufferLayout;
}

namespace CodeGen {
class CodeGenTypes;
class CGCallee;
class CGFunctionInfo;
class CGRecordLayout;
class CGBlockInfo;
class CGCXXABI;
class BlockByrefHelpers;
class BlockByrefInfo;
class BlockFlags;
class BlockFieldFlags;
class RegionCodeGenTy;
class TargetCodeGenInfo;
struct OMPTaskDataTy;
struct CGCoroData;

/// The kind of evaluation to perform on values of a particular
/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
/// CGExprAgg?
///
/// TODO: should vectors maybe be split out into their own thing?
enum TypeEvaluationKind {
  TEK_Scalar,
  TEK_Complex,
  TEK_Aggregate
};

#define LIST_SANITIZER_CHECKS                                                  \
  SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
  SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
  SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
  SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
  SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)

enum SanitizerHandler {
#define SANITIZER_CHECK(Enum, Name, Version) Enum,
  LIST_SANITIZER_CHECKS
#undef SANITIZER_CHECK
};

/// Helper class with most of the code for saving a value for a
/// conditional expression cleanup.
struct DominatingLLVMValue {
  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;

  /// Answer whether the given value needs extra work to be saved.
  static bool needsSaving(llvm::Value *value) {
    // If it's not an instruction, we don't need to save.
    if (!isa<llvm::Instruction>(value)) return false;

    // If it's an instruction in the entry block, we don't need to save.
    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
    return (block != &block->getParent()->getEntryBlock());
  }

  static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
};

/// A partial specialization of DominatingValue for llvm::Values that
/// might be llvm::Instructions.
template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
  typedef T *type;
  static type restore(CodeGenFunction &CGF, saved_type value) {
    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
  }
};

/// A specialization of DominatingValue for Address.
template <> struct DominatingValue<Address> {
  typedef Address type;

  struct saved_type {
    DominatingLLVMValue::saved_type SavedValue;
    CharUnits Alignment;
  };

  static bool needsSaving(type value) {
    return DominatingLLVMValue::needsSaving(value.getPointer());
  }
  static saved_type save(CodeGenFunction &CGF, type value) {
    return { DominatingLLVMValue::save(CGF, value.getPointer()),
             value.getAlignment() };
  }
  static type restore(CodeGenFunction &CGF, saved_type value) {
    return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
                   value.Alignment);
  }
};

/// A specialization of DominatingValue for RValue.
template <> struct DominatingValue<RValue> {
  typedef RValue type;
  class saved_type {
    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
                AggregateAddress, ComplexAddress };

    llvm::Value *Value;
    unsigned K : 3;
    unsigned Align : 29;
    saved_type(llvm::Value *v, Kind k, unsigned a = 0)
      : Value(v), K(k), Align(a) {}

  public:
    static bool needsSaving(RValue value);
    static saved_type save(CodeGenFunction &CGF, RValue value);
    RValue restore(CodeGenFunction &CGF);

    // implementations in CGCleanup.cpp
  };

  static bool needsSaving(type value) {
    return saved_type::needsSaving(value);
  }
  static saved_type save(CodeGenFunction &CGF, type value) {
    return saved_type::save(CGF, value);
  }
  static type restore(CodeGenFunction &CGF, saved_type value) {
    return value.restore(CGF);
  }
};

/// CodeGenFunction - This class organizes the per-function state that is used
/// while generating LLVM code.
class CodeGenFunction : public CodeGenTypeCache {
  CodeGenFunction(const CodeGenFunction &) = delete;
  void operator=(const CodeGenFunction &) = delete;

  friend class CGCXXABI;
public:
  /// A jump destination is an abstract label, branching to which may
  /// require a jump out through normal cleanups.
  struct JumpDest {
    JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
    JumpDest(llvm::BasicBlock *Block,
             EHScopeStack::stable_iterator Depth,
             unsigned Index)
      : Block(Block), ScopeDepth(Depth), Index(Index) {}

    bool isValid() const { return Block != nullptr; }
    llvm::BasicBlock *getBlock() const { return Block; }
    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
    unsigned getDestIndex() const { return Index; }

    // This should be used cautiously.
    void setScopeDepth(EHScopeStack::stable_iterator depth) {
      ScopeDepth = depth;
    }

  private:
    llvm::BasicBlock *Block;
    EHScopeStack::stable_iterator ScopeDepth;
    unsigned Index;
  };

  CodeGenModule &CGM;  // Per-module state.
  const TargetInfo &Target;

  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
  LoopInfoStack LoopStack;
  CGBuilderTy Builder;

  // Stores variables for which we can't generate correct lifetime markers
  // because of jumps.
  VarBypassDetector Bypasses;

  // CodeGen lambda for loops and support for ordered clause
  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
                                  JumpDest)>
      CodeGenLoopTy;
  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
                                  const unsigned, const bool)>
      CodeGenOrderedTy;

  // Codegen lambda for loop bounds in worksharing loop constructs
  typedef llvm::function_ref<std::pair<LValue, LValue>(
      CodeGenFunction &, const OMPExecutableDirective &S)>
      CodeGenLoopBoundsTy;

  // Codegen lambda for loop bounds in dispatch-based loop implementation
  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
      CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
      Address UB)>
      CodeGenDispatchBoundsTy;

  /// CGBuilder insert helper. This function is called after an
  /// instruction is created using Builder.
  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
                    llvm::BasicBlock *BB,
                    llvm::BasicBlock::iterator InsertPt) const;

  /// CurFuncDecl - Holds the Decl for the current outermost
  /// non-closure context.
  const Decl *CurFuncDecl;
  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
  const Decl *CurCodeDecl;
  const CGFunctionInfo *CurFnInfo;
  QualType FnRetTy;
  llvm::Function *CurFn = nullptr;

  // Holds coroutine data if the current function is a coroutine. We use a
  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
  // in this header.
  struct CGCoroInfo {
    std::unique_ptr<CGCoroData> Data;
    CGCoroInfo();
    ~CGCoroInfo();
  };
  CGCoroInfo CurCoro;

  bool isCoroutine() const {
    return CurCoro.Data != nullptr;
  }

  /// CurGD - The GlobalDecl for the current function being compiled.
  GlobalDecl CurGD;

  /// PrologueCleanupDepth - The cleanup depth enclosing all the
  /// cleanups associated with the parameters.
  EHScopeStack::stable_iterator PrologueCleanupDepth;

  /// ReturnBlock - Unified return block.
  JumpDest ReturnBlock;

  /// ReturnValue - The temporary alloca to hold the return
  /// value. This is invalid iff the function has no return value.
  Address ReturnValue = Address::invalid();

  /// Return true if a label was seen in the current scope.
  bool hasLabelBeenSeenInCurrentScope() const {
    if (CurLexicalScope)
      return CurLexicalScope->hasLabels();
    return !LabelMap.empty();
  }

  /// AllocaInsertPoint - This is an instruction in the entry block before which
  /// we prefer to insert allocas.
  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;

  /// API for captured statement code generation.
  class CGCapturedStmtInfo {
  public:
    explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
        : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
    explicit CGCapturedStmtInfo(const CapturedStmt &S,
                                CapturedRegionKind K = CR_Default)
      : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {

      RecordDecl::field_iterator Field =
        S.getCapturedRecordDecl()->field_begin();
      for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
                                                E = S.capture_end();
           I != E; ++I, ++Field) {
        if (I->capturesThis())
          CXXThisFieldDecl = *Field;
        else if (I->capturesVariable())
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
        else if (I->capturesVariableByCopy())
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
      }
    }

    virtual ~CGCapturedStmtInfo();

    CapturedRegionKind getKind() const { return Kind; }

    virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
    // Retrieve the value of the context parameter.
    virtual llvm::Value *getContextValue() const { return ThisValue; }

    /// Lookup the captured field decl for a variable.
    virtual const FieldDecl *lookup(const VarDecl *VD) const {
      return CaptureFields.lookup(VD->getCanonicalDecl());
    }

    bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
    virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }

    static bool classof(const CGCapturedStmtInfo *) {
      return true;
    }

    /// Emit the captured statement body.
    virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
      CGF.incrementProfileCounter(S);
      CGF.EmitStmt(S);
    }

    /// Get the name of the capture helper.
    virtual StringRef getHelperName() const { return "__captured_stmt"; }

  private:
    /// The kind of captured statement being generated.
    CapturedRegionKind Kind;

    /// Keep the map between VarDecl and FieldDecl.
    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;

    /// The base address of the captured record, passed in as the first
    /// argument of the parallel region function.
    llvm::Value *ThisValue;

    /// Captured 'this' type.
    FieldDecl *CXXThisFieldDecl;
  };
  CGCapturedStmtInfo *CapturedStmtInfo = nullptr;

  /// RAII for correct setting/restoring of CapturedStmtInfo.
  class CGCapturedStmtRAII {
  private:
    CodeGenFunction &CGF;
    CGCapturedStmtInfo *PrevCapturedStmtInfo;
  public:
    CGCapturedStmtRAII(CodeGenFunction &CGF,
                       CGCapturedStmtInfo *NewCapturedStmtInfo)
        : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
      CGF.CapturedStmtInfo = NewCapturedStmtInfo;
    }
    ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
  };

  /// An abstract representation of regular/ObjC call/message targets.
  class AbstractCallee {
    /// The function declaration of the callee.
    const Decl *CalleeDecl;

  public:
    AbstractCallee() : CalleeDecl(nullptr) {}
    AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
    AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
    bool hasFunctionDecl() const {
      return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
    }
    const Decl *getDecl() const { return CalleeDecl; }
    unsigned getNumParams() const {
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
        return FD->getNumParams();
      return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
    }
    const ParmVarDecl *getParamDecl(unsigned I) const {
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
        return FD->getParamDecl(I);
      return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
    }
  };

  /// Sanitizers enabled for this function.
  SanitizerSet SanOpts;

  /// True if CodeGen currently emits code implementing sanitizer checks.
  bool IsSanitizerScope = false;

  /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
  class SanitizerScope {
    CodeGenFunction *CGF;
  public:
    SanitizerScope(CodeGenFunction *CGF);
    ~SanitizerScope();
  };

  /// In C++, whether we are code generating a thunk.  This controls whether we
  /// should emit cleanups.
  bool CurFuncIsThunk = false;

  /// In ARC, whether we should autorelease the return value.
  bool AutoreleaseResult = false;

  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
  /// potentially set the return value.
  bool SawAsmBlock = false;

  const NamedDecl *CurSEHParent = nullptr;

  /// True if the current function is an outlined SEH helper. This can be a
  /// finally block or filter expression.
  bool IsOutlinedSEHHelper = false;

  const CodeGen::CGBlockInfo *BlockInfo = nullptr;
  llvm::Value *BlockPointer = nullptr;

  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
  FieldDecl *LambdaThisCaptureField = nullptr;

  /// A mapping from NRVO variables to the flags used to indicate
  /// when the NRVO has been applied to this variable.
  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;

  EHScopeStack EHStack;
  llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
  llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;

  llvm::Instruction *CurrentFuncletPad = nullptr;

  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
    llvm::Value *Addr;
    llvm::Value *Size;

  public:
    CallLifetimeEnd(Address addr, llvm::Value *size)
        : Addr(addr.getPointer()), Size(size) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      CGF.EmitLifetimeEnd(Size, Addr);
    }
  };

  /// Header for data within LifetimeExtendedCleanupStack.
  struct LifetimeExtendedCleanupHeader {
    /// The size of the following cleanup object.
    unsigned Size;
    /// The kind of cleanup to push: a value from the CleanupKind enumeration.
    unsigned Kind : 31;
    /// Whether this is a conditional cleanup.
    unsigned IsConditional : 1;

    size_t getSize() const { return Size; }
    CleanupKind getKind() const { return (CleanupKind)Kind; }
    bool isConditional() const { return IsConditional; }
  };

  /// i32s containing the indexes of the cleanup destinations.
  Address NormalCleanupDest = Address::invalid();

  unsigned NextCleanupDestIndex = 1;

  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
  CGBlockInfo *FirstBlockInfo = nullptr;

  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
  llvm::BasicBlock *EHResumeBlock = nullptr;

  /// The exception slot.  All landing pads write the current exception pointer
  /// into this alloca.
  llvm::Value *ExceptionSlot = nullptr;

  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
  /// write the current selector value into this alloca.
  llvm::AllocaInst *EHSelectorSlot = nullptr;

  /// A stack of exception code slots. Entering an __except block pushes a slot
  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
  /// a value from the top of the stack.
  SmallVector<Address, 1> SEHCodeSlotStack;

  /// Value returned by __exception_info intrinsic.
  llvm::Value *SEHInfo = nullptr;

  /// Emits a landing pad for the current EH stack.
  llvm::BasicBlock *EmitLandingPad();

  llvm::BasicBlock *getInvokeDestImpl();

  template <class T>
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
    return DominatingValue<T>::save(*this, value);
  }

public:
  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
  /// rethrows.
  SmallVector<llvm::Value*, 8> ObjCEHValueStack;

  /// A class controlling the emission of a finally block.
  class FinallyInfo {
    /// Where the catchall's edge through the cleanup should go.
    JumpDest RethrowDest;

    /// A function to call to enter the catch.
    llvm::Constant *BeginCatchFn;

    /// An i1 variable indicating whether or not the @finally is
    /// running for an exception.
    llvm::AllocaInst *ForEHVar;

    /// An i8* variable into which the exception pointer to rethrow
    /// has been saved.
    llvm::AllocaInst *SavedExnVar;

  public:
    void enter(CodeGenFunction &CGF, const Stmt *Finally,
               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
               llvm::Constant *rethrowFn);
    void exit(CodeGenFunction &CGF);
  };

  /// Returns true inside SEH __try blocks.
  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }

  /// Returns true while emitting a cleanuppad.
  bool isCleanupPadScope() const {
    return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
  }

  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
  /// current full-expression.  Safe against the possibility that
  /// we're currently inside a conditionally-evaluated expression.
  template <class T, class... As>
  void pushFullExprCleanup(CleanupKind kind, As... A) {
    // If we're not in a conditional branch, or if none of the
    // arguments requires saving, then use the unconditional cleanup.
    if (!isInConditionalBranch())
      return EHStack.pushCleanup<T>(kind, A...);

    // Stash values in a tuple so we can guarantee the order of saves.
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
    SavedTuple Saved{saveValueInCond(A)...};

    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
    initFullExprCleanup();
  }

  /// Queue a cleanup to be pushed after finishing the current
  /// full-expression.
  template <class T, class... As>
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
    if (!isInConditionalBranch())
      return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);

    Address ActiveFlag = createCleanupActiveFlag();
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
           "cleanup active flag should never need saving");

    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
    SavedTuple Saved{saveValueInCond(A)...};

    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
    pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
  }

  template <class T, class... As>
  void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag,
                                    As... A) {
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
                                            ActiveFlag.isValid()};

    size_t OldSize = LifetimeExtendedCleanupStack.size();
    LifetimeExtendedCleanupStack.resize(
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
        (Header.IsConditional ? sizeof(ActiveFlag) : 0));

    static_assert(sizeof(Header) % alignof(T) == 0,
                  "Cleanup will be allocated on misaligned address");
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
    new (Buffer + sizeof(Header)) T(A...);
    if (Header.IsConditional)
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
  }

  /// Set up the last cleanup that was pushed as a conditional
  /// full-expression cleanup.
  void initFullExprCleanup() {
    initFullExprCleanupWithFlag(createCleanupActiveFlag());
  }

  void initFullExprCleanupWithFlag(Address ActiveFlag);
  Address createCleanupActiveFlag();

  /// PushDestructorCleanup - Push a cleanup to call the
  /// complete-object destructor of an object of the given type at the
  /// given address.  Does nothing if T is not a C++ class type with a
  /// non-trivial destructor.
  void PushDestructorCleanup(QualType T, Address Addr);

  /// PushDestructorCleanup - Push a cleanup to call the
  /// complete-object variant of the given destructor on the object at
  /// the given address.
  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);

  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
  /// process all branch fixups.
  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);

  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
  /// The block cannot be reactivated.  Pops it if it's the top of the
  /// stack.
  ///
  /// \param DominatingIP - An instruction which is known to
  ///   dominate the current IP (if set) and which lies along
  ///   all paths of execution between the current IP and the
  ///   the point at which the cleanup comes into scope.
  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
                              llvm::Instruction *DominatingIP);

  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
  /// Cannot be used to resurrect a deactivated cleanup.
  ///
  /// \param DominatingIP - An instruction which is known to
  ///   dominate the current IP (if set) and which lies along
  ///   all paths of execution between the current IP and the
  ///   the point at which the cleanup comes into scope.
  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
                            llvm::Instruction *DominatingIP);

  /// Enters a new scope for capturing cleanups, all of which
  /// will be executed once the scope is exited.
  class RunCleanupsScope {
    EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
    size_t LifetimeExtendedCleanupStackSize;
    bool OldDidCallStackSave;
  protected:
    bool PerformCleanup;
  private:

    RunCleanupsScope(const RunCleanupsScope &) = delete;
    void operator=(const RunCleanupsScope &) = delete;

  protected:
    CodeGenFunction& CGF;

  public:
    /// Enter a new cleanup scope.
    explicit RunCleanupsScope(CodeGenFunction &CGF)
      : PerformCleanup(true), CGF(CGF)
    {
      CleanupStackDepth = CGF.EHStack.stable_begin();
      LifetimeExtendedCleanupStackSize =
          CGF.LifetimeExtendedCleanupStack.size();
      OldDidCallStackSave = CGF.DidCallStackSave;
      CGF.DidCallStackSave = false;
      OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
      CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
    }

    /// Exit this cleanup scope, emitting any accumulated cleanups.
    ~RunCleanupsScope() {
      if (PerformCleanup)
        ForceCleanup();
    }

    /// Determine whether this scope requires any cleanups.
    bool requiresCleanups() const {
      return CGF.EHStack.stable_begin() != CleanupStackDepth;
    }

    /// Force the emission of cleanups now, instead of waiting
    /// until this object is destroyed.
    /// \param ValuesToReload - A list of values that need to be available at
    /// the insertion point after cleanup emission. If cleanup emission created
    /// a shared cleanup block, these value pointers will be rewritten.
    /// Otherwise, they not will be modified.
    void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
      assert(PerformCleanup && "Already forced cleanup");
      CGF.DidCallStackSave = OldDidCallStackSave;
      CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
                           ValuesToReload);
      PerformCleanup = false;
      CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
    }
  };

  // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
  EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
      EHScopeStack::stable_end();

  class LexicalScope : public RunCleanupsScope {
    SourceRange Range;
    SmallVector<const LabelDecl*, 4> Labels;
    LexicalScope *ParentScope;

    LexicalScope(const LexicalScope &) = delete;
    void operator=(const LexicalScope &) = delete;

  public:
    /// Enter a new cleanup scope.
    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
      CGF.CurLexicalScope = this;
      if (CGDebugInfo *DI = CGF.getDebugInfo())
        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
    }

    void addLabel(const LabelDecl *label) {
      assert(PerformCleanup && "adding label to dead scope?");
      Labels.push_back(label);
    }

    /// Exit this cleanup scope, emitting any accumulated
    /// cleanups.
    ~LexicalScope() {
      if (CGDebugInfo *DI = CGF.getDebugInfo())
        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());

      // If we should perform a cleanup, force them now.  Note that
      // this ends the cleanup scope before rescoping any labels.
      if (PerformCleanup) {
        ApplyDebugLocation DL(CGF, Range.getEnd());
        ForceCleanup();
      }
    }

    /// Force the emission of cleanups now, instead of waiting
    /// until this object is destroyed.
    void ForceCleanup() {
      CGF.CurLexicalScope = ParentScope;
      RunCleanupsScope::ForceCleanup();

      if (!Labels.empty())
        rescopeLabels();
    }

    bool hasLabels() const {
      return !Labels.empty();
    }

    void rescopeLabels();
  };

  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;

  /// The class used to assign some variables some temporarily addresses.
  class OMPMapVars {
    DeclMapTy SavedLocals;
    DeclMapTy SavedTempAddresses;
    OMPMapVars(const OMPMapVars &) = delete;
    void operator=(const OMPMapVars &) = delete;

  public:
    explicit OMPMapVars() = default;
    ~OMPMapVars() {
      assert(SavedLocals.empty() && "Did not restored original addresses.");
    };

    /// Sets the address of the variable \p LocalVD to be \p TempAddr in
    /// function \p CGF.
    /// \return true if at least one variable was set already, false otherwise.
    bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
                    Address TempAddr) {
      LocalVD = LocalVD->getCanonicalDecl();
      // Only save it once.
      if (SavedLocals.count(LocalVD)) return false;

      // Copy the existing local entry to SavedLocals.
      auto it = CGF.LocalDeclMap.find(LocalVD);
      if (it != CGF.LocalDeclMap.end())
        SavedLocals.try_emplace(LocalVD, it->second);
      else
        SavedLocals.try_emplace(LocalVD, Address::invalid());

      // Generate the private entry.
      QualType VarTy = LocalVD->getType();
      if (VarTy->isReferenceType()) {
        Address Temp = CGF.CreateMemTemp(VarTy);
        CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
        TempAddr = Temp;
      }
      SavedTempAddresses.try_emplace(LocalVD, TempAddr);

      return true;
    }

    /// Applies new addresses to the list of the variables.
    /// \return true if at least one variable is using new address, false
    /// otherwise.
    bool apply(CodeGenFunction &CGF) {
      copyInto(SavedTempAddresses, CGF.LocalDeclMap);
      SavedTempAddresses.clear();
      return !SavedLocals.empty();
    }

    /// Restores original addresses of the variables.
    void restore(CodeGenFunction &CGF) {
      if (!SavedLocals.empty()) {
        copyInto(SavedLocals, CGF.LocalDeclMap);
        SavedLocals.clear();
      }
    }

  private:
    /// Copy all the entries in the source map over the corresponding
    /// entries in the destination, which must exist.
    static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
      for (auto &Pair : Src) {
        if (!Pair.second.isValid()) {
          Dest.erase(Pair.first);
          continue;
        }

        auto I = Dest.find(Pair.first);
        if (I != Dest.end())
          I->second = Pair.second;
        else
          Dest.insert(Pair);
      }
    }
  };

  /// The scope used to remap some variables as private in the OpenMP loop body
  /// (or other captured region emitted without outlining), and to restore old
  /// vars back on exit.
  class OMPPrivateScope : public RunCleanupsScope {
    OMPMapVars MappedVars;
    OMPPrivateScope(const OMPPrivateScope &) = delete;
    void operator=(const OMPPrivateScope &) = delete;

  public:
    /// Enter a new OpenMP private scope.
    explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}

    /// Registers \p LocalVD variable as a private and apply \p PrivateGen
    /// function for it to generate corresponding private variable. \p
    /// PrivateGen returns an address of the generated private variable.
    /// \return true if the variable is registered as private, false if it has
    /// been privatized already.
    bool addPrivate(const VarDecl *LocalVD,
                    const llvm::function_ref<Address()> PrivateGen) {
      assert(PerformCleanup && "adding private to dead scope");
      return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
    }

    /// Privatizes local variables previously registered as private.
    /// Registration is separate from the actual privatization to allow
    /// initializers use values of the original variables, not the private one.
    /// This is important, for example, if the private variable is a class
    /// variable initialized by a constructor that references other private
    /// variables. But at initialization original variables must be used, not
    /// private copies.
    /// \return true if at least one variable was privatized, false otherwise.
    bool Privatize() { return MappedVars.apply(CGF); }

    void ForceCleanup() {
      RunCleanupsScope::ForceCleanup();
      MappedVars.restore(CGF);
    }

    /// Exit scope - all the mapped variables are restored.
    ~OMPPrivateScope() {
      if (PerformCleanup)
        ForceCleanup();
    }

    /// Checks if the global variable is captured in current function.
    bool isGlobalVarCaptured(const VarDecl *VD) const {
      VD = VD->getCanonicalDecl();
      return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
    }
  };

  /// Takes the old cleanup stack size and emits the cleanup blocks
  /// that have been added.
  void
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
                   std::initializer_list<llvm::Value **> ValuesToReload = {});

  /// Takes the old cleanup stack size and emits the cleanup blocks
  /// that have been added, then adds all lifetime-extended cleanups from
  /// the given position to the stack.
  void
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
                   size_t OldLifetimeExtendedStackSize,
                   std::initializer_list<llvm::Value **> ValuesToReload = {});

  void ResolveBranchFixups(llvm::BasicBlock *Target);

  /// The given basic block lies in the current EH scope, but may be a
  /// target of a potentially scope-crossing jump; get a stable handle
  /// to which we can perform this jump later.
  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
    return JumpDest(Target,
                    EHStack.getInnermostNormalCleanup(),
                    NextCleanupDestIndex++);
  }

  /// The given basic block lies in the current EH scope, but may be a
  /// target of a potentially scope-crossing jump; get a stable handle
  /// to which we can perform this jump later.
  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
    return getJumpDestInCurrentScope(createBasicBlock(Name));
  }

  /// EmitBranchThroughCleanup - Emit a branch from the current insert
  /// block through the normal cleanup handling code (if any) and then
  /// on to \arg Dest.
  void EmitBranchThroughCleanup(JumpDest Dest);

  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
  /// specified destination obviously has no cleanups to run.  'false' is always
  /// a conservatively correct answer for this method.
  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;

  /// popCatchScope - Pops the catch scope at the top of the EHScope
  /// stack, emitting any required code (other than the catch handlers
  /// themselves).
  void popCatchScope();

  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
  llvm::BasicBlock *
  getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);

  /// An object to manage conditionally-evaluated expressions.
  class ConditionalEvaluation {
    llvm::BasicBlock *StartBB;

  public:
    ConditionalEvaluation(CodeGenFunction &CGF)
      : StartBB(CGF.Builder.GetInsertBlock()) {}

    void begin(CodeGenFunction &CGF) {
      assert(CGF.OutermostConditional != this);
      if (!CGF.OutermostConditional)
        CGF.OutermostConditional = this;
    }

    void end(CodeGenFunction &CGF) {
      assert(CGF.OutermostConditional != nullptr);
      if (CGF.OutermostConditional == this)
        CGF.OutermostConditional = nullptr;
    }

    /// Returns a block which will be executed prior to each
    /// evaluation of the conditional code.
    llvm::BasicBlock *getStartingBlock() const {
      return StartBB;
    }
  };

  /// isInConditionalBranch - Return true if we're currently emitting
  /// one branch or the other of a conditional expression.
  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }

  void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
    assert(isInConditionalBranch());
    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
    auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
    store->setAlignment(addr.getAlignment().getQuantity());
  }

  /// An RAII object to record that we're evaluating a statement
  /// expression.
  class StmtExprEvaluation {
    CodeGenFunction &CGF;

    /// We have to save the outermost conditional: cleanups in a
    /// statement expression aren't conditional just because the
    /// StmtExpr is.
    ConditionalEvaluation *SavedOutermostConditional;

  public:
    StmtExprEvaluation(CodeGenFunction &CGF)
      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
      CGF.OutermostConditional = nullptr;
    }

    ~StmtExprEvaluation() {
      CGF.OutermostConditional = SavedOutermostConditional;
      CGF.EnsureInsertPoint();
    }
  };

  /// An object which temporarily prevents a value from being
  /// destroyed by aggressive peephole optimizations that assume that
  /// all uses of a value have been realized in the IR.
  class PeepholeProtection {
    llvm::Instruction *Inst;
    friend class CodeGenFunction;

  public:
    PeepholeProtection() : Inst(nullptr) {}
  };

  /// A non-RAII class containing all the information about a bound
  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
  /// this which makes individual mappings very simple; using this
  /// class directly is useful when you have a variable number of
  /// opaque values or don't want the RAII functionality for some
  /// reason.
  class OpaqueValueMappingData {
    const OpaqueValueExpr *OpaqueValue;
    bool BoundLValue;
    CodeGenFunction::PeepholeProtection Protection;

    OpaqueValueMappingData(const OpaqueValueExpr *ov,
                           bool boundLValue)
      : OpaqueValue(ov), BoundLValue(boundLValue) {}
  public:
    OpaqueValueMappingData() : OpaqueValue(nullptr) {}

    static bool shouldBindAsLValue(const Expr *expr) {
      // gl-values should be bound as l-values for obvious reasons.
      // Records should be bound as l-values because IR generation
      // always keeps them in memory.  Expressions of function type
      // act exactly like l-values but are formally required to be
      // r-values in C.
      return expr->isGLValue() ||
             expr->getType()->isFunctionType() ||
             hasAggregateEvaluationKind(expr->getType());
    }

    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
                                       const OpaqueValueExpr *ov,
                                       const Expr *e) {
      if (shouldBindAsLValue(ov))
        return bind(CGF, ov, CGF.EmitLValue(e));
      return bind(CGF, ov, CGF.EmitAnyExpr(e));
    }

    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
                                       const OpaqueValueExpr *ov,
                                       const LValue &lv) {
      assert(shouldBindAsLValue(ov));
      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
      return OpaqueValueMappingData(ov, true);
    }

    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
                                       const OpaqueValueExpr *ov,
                                       const RValue &rv) {
      assert(!shouldBindAsLValue(ov));
      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));

      OpaqueValueMappingData data(ov, false);

      // Work around an extremely aggressive peephole optimization in
      // EmitScalarConversion which assumes that all other uses of a
      // value are extant.
      data.Protection = CGF.protectFromPeepholes(rv);

      return data;
    }

    bool isValid() const { return OpaqueValue != nullptr; }
    void clear() { OpaqueValue = nullptr; }

    void unbind(CodeGenFunction &CGF) {
      assert(OpaqueValue && "no data to unbind!");

      if (BoundLValue) {
        CGF.OpaqueLValues.erase(OpaqueValue);
      } else {
        CGF.OpaqueRValues.erase(OpaqueValue);
        CGF.unprotectFromPeepholes(Protection);
      }
    }
  };

  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
  class OpaqueValueMapping {
    CodeGenFunction &CGF;
    OpaqueValueMappingData Data;

  public:
    static bool shouldBindAsLValue(const Expr *expr) {
      return OpaqueValueMappingData::shouldBindAsLValue(expr);
    }

    /// Build the opaque value mapping for the given conditional
    /// operator if it's the GNU ?: extension.  This is a common
    /// enough pattern that the convenience operator is really
    /// helpful.
    ///
    OpaqueValueMapping(CodeGenFunction &CGF,
                       const AbstractConditionalOperator *op) : CGF(CGF) {
      if (isa<ConditionalOperator>(op))
        // Leave Data empty.
        return;

      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
                                          e->getCommon());
    }

    /// Build the opaque value mapping for an OpaqueValueExpr whose source
    /// expression is set to the expression the OVE represents.
    OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
        : CGF(CGF) {
      if (OV) {
        assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
                                      "for OVE with no source expression");
        Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
      }
    }

    OpaqueValueMapping(CodeGenFunction &CGF,
                       const OpaqueValueExpr *opaqueValue,
                       LValue lvalue)
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
    }

    OpaqueValueMapping(CodeGenFunction &CGF,
                       const OpaqueValueExpr *opaqueValue,
                       RValue rvalue)
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
    }

    void pop() {
      Data.unbind(CGF);
      Data.clear();
    }

    ~OpaqueValueMapping() {
      if (Data.isValid()) Data.unbind(CGF);
    }
  };

private:
  CGDebugInfo *DebugInfo;
  bool DisableDebugInfo = false;

  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
  /// calling llvm.stacksave for multiple VLAs in the same scope.
  bool DidCallStackSave = false;

  /// IndirectBranch - The first time an indirect goto is seen we create a block
  /// with an indirect branch.  Every time we see the address of a label taken,
  /// we add the label to the indirect goto.  Every subsequent indirect goto is
  /// codegen'd as a jump to the IndirectBranch's basic block.
  llvm::IndirectBrInst *IndirectBranch = nullptr;

  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
  /// decls.
  DeclMapTy LocalDeclMap;

  // Keep track of the cleanups for callee-destructed parameters pushed to the
  // cleanup stack so that they can be deactivated later.
  llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
      CalleeDestructedParamCleanups;

  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
  /// parameter.
  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
      SizeArguments;

  /// Track escaped local variables with auto storage. Used during SEH
  /// outlining to produce a call to llvm.localescape.
  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;

  /// LabelMap - This keeps track of the LLVM basic block for each C label.
  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;

  // BreakContinueStack - This keeps track of where break and continue
  // statements should jump to.
  struct BreakContinue {
    BreakContinue(JumpDest Break, JumpDest Continue)
      : BreakBlock(Break), ContinueBlock(Continue) {}

    JumpDest BreakBlock;
    JumpDest ContinueBlock;
  };
  SmallVector<BreakContinue, 8> BreakContinueStack;

  /// Handles cancellation exit points in OpenMP-related constructs.
  class OpenMPCancelExitStack {
    /// Tracks cancellation exit point and join point for cancel-related exit
    /// and normal exit.
    struct CancelExit {
      CancelExit() = default;
      CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
                 JumpDest ContBlock)
          : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
      OpenMPDirectiveKind Kind = OMPD_unknown;
      /// true if the exit block has been emitted already by the special
      /// emitExit() call, false if the default codegen is used.
      bool HasBeenEmitted = false;
      JumpDest ExitBlock;
      JumpDest ContBlock;
    };

    SmallVector<CancelExit, 8> Stack;

  public:
    OpenMPCancelExitStack() : Stack(1) {}
    ~OpenMPCancelExitStack() = default;
    /// Fetches the exit block for the current OpenMP construct.
    JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
    /// Emits exit block with special codegen procedure specific for the related
    /// OpenMP construct + emits code for normal construct cleanup.
    void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
                  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
      if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
        assert(CGF.getOMPCancelDestination(Kind).isValid());
        assert(CGF.HaveInsertPoint());
        assert(!Stack.back().HasBeenEmitted);
        auto IP = CGF.Builder.saveAndClearIP();
        CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
        CodeGen(CGF);
        CGF.EmitBranch(Stack.back().ContBlock.getBlock());
        CGF.Builder.restoreIP(IP);
        Stack.back().HasBeenEmitted = true;
      }
      CodeGen(CGF);
    }
    /// Enter the cancel supporting \a Kind construct.
    /// \param Kind OpenMP directive that supports cancel constructs.
    /// \param HasCancel true, if the construct has inner cancel directive,
    /// false otherwise.
    void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
      Stack.push_back({Kind,
                       HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
                                 : JumpDest(),
                       HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
                                 : JumpDest()});
    }
    /// Emits default exit point for the cancel construct (if the special one
    /// has not be used) + join point for cancel/normal exits.
    void exit(CodeGenFunction &CGF) {
      if (getExitBlock().isValid()) {
        assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
        bool HaveIP = CGF.HaveInsertPoint();
        if (!Stack.back().HasBeenEmitted) {
          if (HaveIP)
            CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
          CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
          CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
        }
        CGF.EmitBlock(Stack.back().ContBlock.getBlock());
        if (!HaveIP) {
          CGF.Builder.CreateUnreachable();
          CGF.Builder.ClearInsertionPoint();
        }
      }
      Stack.pop_back();
    }
  };
  OpenMPCancelExitStack OMPCancelStack;

  CodeGenPGO PGO;

  /// Calculate branch weights appropriate for PGO data
  llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
                                            uint64_t LoopCount);

public:
  /// Increment the profiler's counter for the given statement by \p StepV.
  /// If \p StepV is null, the default increment is 1.
  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
    if (CGM.getCodeGenOpts().hasProfileClangInstr())
      PGO.emitCounterIncrement(Builder, S, StepV);
    PGO.setCurrentStmt(S);
  }

  /// Get the profiler's count for the given statement.
  uint64_t getProfileCount(const Stmt *S) {
    Optional<uint64_t> Count = PGO.getStmtCount(S);
    if (!Count.hasValue())
      return 0;
    return *Count;
  }

  /// Set the profiler's current count.
  void setCurrentProfileCount(uint64_t Count) {
    PGO.setCurrentRegionCount(Count);
  }

  /// Get the profiler's current count. This is generally the count for the most
  /// recently incremented counter.
  uint64_t getCurrentProfileCount() {
    return PGO.getCurrentRegionCount();
  }

private:

  /// SwitchInsn - This is nearest current switch instruction. It is null if
  /// current context is not in a switch.
  llvm::SwitchInst *SwitchInsn = nullptr;
  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
  SmallVector<uint64_t, 16> *SwitchWeights = nullptr;

  /// CaseRangeBlock - This block holds if condition check for last case
  /// statement range in current switch instruction.
  llvm::BasicBlock *CaseRangeBlock = nullptr;

  /// OpaqueLValues - Keeps track of the current set of opaque value
  /// expressions.
  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;

  // VLASizeMap - This keeps track of the associated size for each VLA type.
  // We track this by the size expression rather than the type itself because
  // in certain situations, like a const qualifier applied to an VLA typedef,
  // multiple VLA types can share the same size expression.
  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
  // enter/leave scopes.
  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;

  /// A block containing a single 'unreachable' instruction.  Created
  /// lazily by getUnreachableBlock().
  llvm::BasicBlock *UnreachableBlock = nullptr;

  /// Counts of the number return expressions in the function.
  unsigned NumReturnExprs = 0;

  /// Count the number of simple (constant) return expressions in the function.
  unsigned NumSimpleReturnExprs = 0;

  /// The last regular (non-return) debug location (breakpoint) in the function.
  SourceLocation LastStopPoint;

public:
  /// A scope within which we are constructing the fields of an object which
  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
  class FieldConstructionScope {
  public:
    FieldConstructionScope(CodeGenFunction &CGF, Address This)
        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
      CGF.CXXDefaultInitExprThis = This;
    }
    ~FieldConstructionScope() {
      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
    }

  private:
    CodeGenFunction &CGF;
    Address OldCXXDefaultInitExprThis;
  };

  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
  /// is overridden to be the object under construction.
  class CXXDefaultInitExprScope {
  public:
    CXXDefaultInitExprScope(CodeGenFunction &CGF)
      : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
        OldCXXThisAlignment(CGF.CXXThisAlignment) {
      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
      CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
    }
    ~CXXDefaultInitExprScope() {
      CGF.CXXThisValue = OldCXXThisValue;
      CGF.CXXThisAlignment = OldCXXThisAlignment;
    }

  public:
    CodeGenFunction &CGF;
    llvm::Value *OldCXXThisValue;
    CharUnits OldCXXThisAlignment;
  };

  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
  /// current loop index is overridden.
  class ArrayInitLoopExprScope {
  public:
    ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
      : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
      CGF.ArrayInitIndex = Index;
    }
    ~ArrayInitLoopExprScope() {
      CGF.ArrayInitIndex = OldArrayInitIndex;
    }

  private:
    CodeGenFunction &CGF;
    llvm::Value *OldArrayInitIndex;
  };

  class InlinedInheritingConstructorScope {
  public:
    InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
        : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
          OldCurCodeDecl(CGF.CurCodeDecl),
          OldCXXABIThisDecl(CGF.CXXABIThisDecl),
          OldCXXABIThisValue(CGF.CXXABIThisValue),
          OldCXXThisValue(CGF.CXXThisValue),
          OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
          OldCXXThisAlignment(CGF.CXXThisAlignment),
          OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
          OldCXXInheritedCtorInitExprArgs(
              std::move(CGF.CXXInheritedCtorInitExprArgs)) {
      CGF.CurGD = GD;
      CGF.CurFuncDecl = CGF.CurCodeDecl =
          cast<CXXConstructorDecl>(GD.getDecl());
      CGF.CXXABIThisDecl = nullptr;
      CGF.CXXABIThisValue = nullptr;
      CGF.CXXThisValue = nullptr;
      CGF.CXXABIThisAlignment = CharUnits();
      CGF.CXXThisAlignment = CharUnits();
      CGF.ReturnValue = Address::invalid();
      CGF.FnRetTy = QualType();
      CGF.CXXInheritedCtorInitExprArgs.clear();
    }
    ~InlinedInheritingConstructorScope() {
      CGF.CurGD = OldCurGD;
      CGF.CurFuncDecl = OldCurFuncDecl;
      CGF.CurCodeDecl = OldCurCodeDecl;
      CGF.CXXABIThisDecl = OldCXXABIThisDecl;
      CGF.CXXABIThisValue = OldCXXABIThisValue;
      CGF.CXXThisValue = OldCXXThisValue;
      CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
      CGF.CXXThisAlignment = OldCXXThisAlignment;
      CGF.ReturnValue = OldReturnValue;
      CGF.FnRetTy = OldFnRetTy;
      CGF.CXXInheritedCtorInitExprArgs =
          std::move(OldCXXInheritedCtorInitExprArgs);
    }

  private:
    CodeGenFunction &CGF;
    GlobalDecl OldCurGD;
    const Decl *OldCurFuncDecl;
    const Decl *OldCurCodeDecl;
    ImplicitParamDecl *OldCXXABIThisDecl;
    llvm::Value *OldCXXABIThisValue;
    llvm::Value *OldCXXThisValue;
    CharUnits OldCXXABIThisAlignment;
    CharUnits OldCXXThisAlignment;
    Address OldReturnValue;
    QualType OldFnRetTy;
    CallArgList OldCXXInheritedCtorInitExprArgs;
  };

private:
  /// CXXThisDecl - When generating code for a C++ member function,
  /// this will hold the implicit 'this' declaration.
  ImplicitParamDecl *CXXABIThisDecl = nullptr;
  llvm::Value *CXXABIThisValue = nullptr;
  llvm::Value *CXXThisValue = nullptr;
  CharUnits CXXABIThisAlignment;
  CharUnits CXXThisAlignment;

  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
  /// this expression.
  Address CXXDefaultInitExprThis = Address::invalid();

  /// The current array initialization index when evaluating an
  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
  llvm::Value *ArrayInitIndex = nullptr;

  /// The values of function arguments to use when evaluating
  /// CXXInheritedCtorInitExprs within this context.
  CallArgList CXXInheritedCtorInitExprArgs;

  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
  /// destructor, this will hold the implicit argument (e.g. VTT).
  ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
  llvm::Value *CXXStructorImplicitParamValue = nullptr;

  /// OutermostConditional - Points to the outermost active
  /// conditional control.  This is used so that we know if a
  /// temporary should be destroyed conditionally.
  ConditionalEvaluation *OutermostConditional = nullptr;

  /// The current lexical scope.
  LexicalScope *CurLexicalScope = nullptr;

  /// The current source location that should be used for exception
  /// handling code.
  SourceLocation CurEHLocation;

  /// BlockByrefInfos - For each __block variable, contains
  /// information about the layout of the variable.
  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;

  /// Used by -fsanitize=nullability-return to determine whether the return
  /// value can be checked.
  llvm::Value *RetValNullabilityPrecondition = nullptr;

  /// Check if -fsanitize=nullability-return instrumentation is required for
  /// this function.
  bool requiresReturnValueNullabilityCheck() const {
    return RetValNullabilityPrecondition;
  }

  /// Used to store precise source locations for return statements by the
  /// runtime return value checks.
  Address ReturnLocation = Address::invalid();

  /// Check if the return value of this function requires sanitization.
  bool requiresReturnValueCheck() const {
    return requiresReturnValueNullabilityCheck() ||
           (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
            CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
  }

  llvm::BasicBlock *TerminateLandingPad = nullptr;
  llvm::BasicBlock *TerminateHandler = nullptr;
  llvm::BasicBlock *TrapBB = nullptr;

  /// Terminate funclets keyed by parent funclet pad.
  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;

  /// Largest vector width used in ths function. Will be used to create a
  /// function attribute.
  unsigned LargestVectorWidth = 0;

  /// True if we need emit the life-time markers.
  const bool ShouldEmitLifetimeMarkers;

  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
  /// the function metadata.
  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
                                llvm::Function *Fn);

public:
  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
  ~CodeGenFunction();

  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
  ASTContext &getContext() const { return CGM.getContext(); }
  CGDebugInfo *getDebugInfo() {
    if (DisableDebugInfo)
      return nullptr;
    return DebugInfo;
  }
  void disableDebugInfo() { DisableDebugInfo = true; }
  void enableDebugInfo() { DisableDebugInfo = false; }

  bool shouldUseFusedARCCalls() {
    return CGM.getCodeGenOpts().OptimizationLevel == 0;
  }

  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }

  /// Returns a pointer to the function's exception object and selector slot,
  /// which is assigned in every landing pad.
  Address getExceptionSlot();
  Address getEHSelectorSlot();

  /// Returns the contents of the function's exception object and selector
  /// slots.
  llvm::Value *getExceptionFromSlot();
  llvm::Value *getSelectorFromSlot();

  Address getNormalCleanupDestSlot();

  llvm::BasicBlock *getUnreachableBlock() {
    if (!UnreachableBlock) {
      UnreachableBlock = createBasicBlock("unreachable");
      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
    }
    return UnreachableBlock;
  }

  llvm::BasicBlock *getInvokeDest() {
    if (!EHStack.requiresLandingPad()) return nullptr;
    return getInvokeDestImpl();
  }

  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }

  const TargetInfo &getTarget() const { return Target; }
  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
  const TargetCodeGenInfo &getTargetHooks() const {
    return CGM.getTargetCodeGenInfo();
  }

  //===--------------------------------------------------------------------===//
  //                                  Cleanups
  //===--------------------------------------------------------------------===//

  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);

  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
                                        Address arrayEndPointer,
                                        QualType elementType,
                                        CharUnits elementAlignment,
                                        Destroyer *destroyer);
  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
                                      llvm::Value *arrayEnd,
                                      QualType elementType,
                                      CharUnits elementAlignment,
                                      Destroyer *destroyer);

  void pushDestroy(QualType::DestructionKind dtorKind,
                   Address addr, QualType type);
  void pushEHDestroy(QualType::DestructionKind dtorKind,
                     Address addr, QualType type);
  void pushDestroy(CleanupKind kind, Address addr, QualType type,
                   Destroyer *destroyer, bool useEHCleanupForArray);
  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
                                   QualType type, Destroyer *destroyer,
                                   bool useEHCleanupForArray);
  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
                                   llvm::Value *CompletePtr,
                                   QualType ElementType);
  void pushStackRestore(CleanupKind kind, Address SPMem);
  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
                   bool useEHCleanupForArray);
  llvm::Function *generateDestroyHelper(Address addr, QualType type,
                                        Destroyer *destroyer,
                                        bool useEHCleanupForArray,
                                        const VarDecl *VD);
  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
                        QualType elementType, CharUnits elementAlign,
                        Destroyer *destroyer,
                        bool checkZeroLength, bool useEHCleanup);

  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);

  /// Determines whether an EH cleanup is required to destroy a type
  /// with the given destruction kind.
  bool needsEHCleanup(QualType::DestructionKind kind) {
    switch (kind) {
    case QualType::DK_none:
      return false;
    case QualType::DK_cxx_destructor:
    case QualType::DK_objc_weak_lifetime:
    case QualType::DK_nontrivial_c_struct:
      return getLangOpts().Exceptions;
    case QualType::DK_objc_strong_lifetime:
      return getLangOpts().Exceptions &&
             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
    }
    llvm_unreachable("bad destruction kind");
  }

  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
  }

  //===--------------------------------------------------------------------===//
  //                                  Objective-C
  //===--------------------------------------------------------------------===//

  void GenerateObjCMethod(const ObjCMethodDecl *OMD);

  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);

  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
                          const ObjCPropertyImplDecl *PID);
  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
                              const ObjCPropertyImplDecl *propImpl,
                              const ObjCMethodDecl *GetterMothodDecl,
                              llvm::Constant *AtomicHelperFn);

  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
                                  ObjCMethodDecl *MD, bool ctor);

  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
  /// for the given property.
  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
                          const ObjCPropertyImplDecl *PID);
  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
                              const ObjCPropertyImplDecl *propImpl,
                              llvm::Constant *AtomicHelperFn);

  //===--------------------------------------------------------------------===//
  //                                  Block Bits
  //===--------------------------------------------------------------------===//

  /// Emit block literal.
  /// \return an LLVM value which is a pointer to a struct which contains
  /// information about the block, including the block invoke function, the
  /// captured variables, etc.
  llvm::Value *EmitBlockLiteral(const BlockExpr *);
  static void destroyBlockInfos(CGBlockInfo *info);

  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
                                        const CGBlockInfo &Info,
                                        const DeclMapTy &ldm,
                                        bool IsLambdaConversionToBlock,
                                        bool BuildGlobalBlock);

  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
                                             const ObjCPropertyImplDecl *PID);
  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
                                             const ObjCPropertyImplDecl *PID);
  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);

  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);

  class AutoVarEmission;

  void emitByrefStructureInit(const AutoVarEmission &emission);

  /// Enter a cleanup to destroy a __block variable.  Note that this
  /// cleanup should be a no-op if the variable hasn't left the stack
  /// yet; if a cleanup is required for the variable itself, that needs
  /// to be done externally.
  ///
  /// \param Kind Cleanup kind.
  ///
  /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
  /// structure that will be passed to _Block_object_dispose. When
  /// \p LoadBlockVarAddr is true, the address of the field of the block
  /// structure that holds the address of the __block structure.
  ///
  /// \param Flags The flag that will be passed to _Block_object_dispose.
  ///
  /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
  /// \p Addr to get the address of the __block structure.
  void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
                         bool LoadBlockVarAddr);

  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
                                llvm::Value *ptr);

  Address LoadBlockStruct();
  Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);

  /// BuildBlockByrefAddress - Computes the location of the
  /// data in a variable which is declared as __block.
  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
                                bool followForward = true);
  Address emitBlockByrefAddress(Address baseAddr,
                                const BlockByrefInfo &info,
                                bool followForward,
                                const llvm::Twine &name);

  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);

  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);

  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
                    const CGFunctionInfo &FnInfo);
  /// Emit code for the start of a function.
  /// \param Loc       The location to be associated with the function.
  /// \param StartLoc  The location of the function body.
  void StartFunction(GlobalDecl GD,
                     QualType RetTy,
                     llvm::Function *Fn,
                     const CGFunctionInfo &FnInfo,
                     const FunctionArgList &Args,
                     SourceLocation Loc = SourceLocation(),
                     SourceLocation StartLoc = SourceLocation());

  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);

  void EmitConstructorBody(FunctionArgList &Args);
  void EmitDestructorBody(FunctionArgList &Args);
  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
  void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);

  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
                                  CallArgList &CallArgs);
  void EmitLambdaBlockInvokeBody();
  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
  void EmitAsanPrologueOrEpilogue(bool Prologue);

  /// Emit the unified return block, trying to avoid its emission when
  /// possible.
  /// \return The debug location of the user written return statement if the
  /// return block is is avoided.
  llvm::DebugLoc EmitReturnBlock();

  /// FinishFunction - Complete IR generation of the current function. It is
  /// legal to call this function even if there is no current insertion point.
  void FinishFunction(SourceLocation EndLoc=SourceLocation());

  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
                  const CGFunctionInfo &FnInfo, bool IsUnprototyped);

  void EmitCallAndReturnForThunk(llvm::Constant *Callee, const ThunkInfo *Thunk,
                                 bool IsUnprototyped);

  void FinishThunk();

  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
  void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
                         llvm::Value *Callee);

  /// Generate a thunk for the given method.
  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
                     GlobalDecl GD, const ThunkInfo &Thunk,
                     bool IsUnprototyped);

  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
                                       const CGFunctionInfo &FnInfo,
                                       GlobalDecl GD, const ThunkInfo &Thunk);

  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
                        FunctionArgList &Args);

  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);

  /// Struct with all information about dynamic [sub]class needed to set vptr.
  struct VPtr {
    BaseSubobject Base;
    const CXXRecordDecl *NearestVBase;
    CharUnits OffsetFromNearestVBase;
    const CXXRecordDecl *VTableClass;
  };

  /// Initialize the vtable pointer of the given subobject.
  void InitializeVTablePointer(const VPtr &vptr);

  typedef llvm::SmallVector<VPtr, 4> VPtrsVector;

  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);

  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
                         CharUnits OffsetFromNearestVBase,
                         bool BaseIsNonVirtualPrimaryBase,
                         const CXXRecordDecl *VTableClass,
                         VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);

  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);

  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
  /// to by This.
  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
                            const CXXRecordDecl *VTableClass);

  enum CFITypeCheckKind {
    CFITCK_VCall,
    CFITCK_NVCall,
    CFITCK_DerivedCast,
    CFITCK_UnrelatedCast,
    CFITCK_ICall,
    CFITCK_NVMFCall,
    CFITCK_VMFCall,
  };

  /// Derived is the presumed address of an object of type T after a
  /// cast. If T is a polymorphic class type, emit a check that the virtual
  /// table for Derived belongs to a class derived from T.
  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
                                 bool MayBeNull, CFITypeCheckKind TCK,
                                 SourceLocation Loc);

  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
  /// If vptr CFI is enabled, emit a check that VTable is valid.
  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
                                 CFITypeCheckKind TCK, SourceLocation Loc);

  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
  /// RD using llvm.type.test.
  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
                          CFITypeCheckKind TCK, SourceLocation Loc);

  /// If whole-program virtual table optimization is enabled, emit an assumption
  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
  /// enabled, emit a check that VTable is a member of RD's type identifier.
  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
                                    llvm::Value *VTable, SourceLocation Loc);

  /// Returns whether we should perform a type checked load when loading a
  /// virtual function for virtual calls to members of RD. This is generally
  /// true when both vcall CFI and whole-program-vtables are enabled.
  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);

  /// Emit a type checked load from the given vtable.
  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
                                         uint64_t VTableByteOffset);

  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
  /// given phase of destruction for a destructor.  The end result
  /// should call destructors on members and base classes in reverse
  /// order of their construction.
  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);

  /// ShouldInstrumentFunction - Return true if the current function should be
  /// instrumented with __cyg_profile_func_* calls
  bool ShouldInstrumentFunction();

  /// ShouldXRayInstrument - Return true if the current function should be
  /// instrumented with XRay nop sleds.
  bool ShouldXRayInstrumentFunction() const;

  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
  /// XRay custom event handling calls.
  bool AlwaysEmitXRayCustomEvents() const;

  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
  /// XRay typed event handling calls.
  bool AlwaysEmitXRayTypedEvents() const;

  /// Encode an address into a form suitable for use in a function prologue.
  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
                                             llvm::Constant *Addr);

  /// Decode an address used in a function prologue, encoded by \c
  /// EncodeAddrForUseInPrologue.
  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
                                        llvm::Value *EncodedAddr);

  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
  /// arguments for the given function. This is also responsible for naming the
  /// LLVM function arguments.
  void EmitFunctionProlog(const CGFunctionInfo &FI,
                          llvm::Function *Fn,
                          const FunctionArgList &Args);

  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
  /// given temporary.
  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
                          SourceLocation EndLoc);

  /// Emit a test that checks if the return value \p RV is nonnull.
  void EmitReturnValueCheck(llvm::Value *RV);

  /// EmitStartEHSpec - Emit the start of the exception spec.
  void EmitStartEHSpec(const Decl *D);

  /// EmitEndEHSpec - Emit the end of the exception spec.
  void EmitEndEHSpec(const Decl *D);

  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
  llvm::BasicBlock *getTerminateLandingPad();

  /// getTerminateLandingPad - Return a cleanup funclet that just calls
  /// terminate.
  llvm::BasicBlock *getTerminateFunclet();

  /// getTerminateHandler - Return a handler (not a landing pad, just
  /// a catch handler) that just calls terminate.  This is used when
  /// a terminate scope encloses a try.
  llvm::BasicBlock *getTerminateHandler();

  llvm::Type *ConvertTypeForMem(QualType T);
  llvm::Type *ConvertType(QualType T);
  llvm::Type *ConvertType(const TypeDecl *T) {
    return ConvertType(getContext().getTypeDeclType(T));
  }

  /// LoadObjCSelf - Load the value of self. This function is only valid while
  /// generating code for an Objective-C method.
  llvm::Value *LoadObjCSelf();

  /// TypeOfSelfObject - Return type of object that this self represents.
  QualType TypeOfSelfObject();

  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
  static TypeEvaluationKind getEvaluationKind(QualType T);

  static bool hasScalarEvaluationKind(QualType T) {
    return getEvaluationKind(T) == TEK_Scalar;
  }

  static bool hasAggregateEvaluationKind(QualType T) {
    return getEvaluationKind(T) == TEK_Aggregate;
  }

  /// createBasicBlock - Create an LLVM basic block.
  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
                                     llvm::Function *parent = nullptr,
                                     llvm::BasicBlock *before = nullptr) {
    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
  }

  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
  /// label maps to.
  JumpDest getJumpDestForLabel(const LabelDecl *S);

  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
  /// another basic block, simplify it. This assumes that no other code could
  /// potentially reference the basic block.
  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);

  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
  /// adding a fall-through branch from the current insert block if
  /// necessary. It is legal to call this function even if there is no current
  /// insertion point.
  ///
  /// IsFinished - If true, indicates that the caller has finished emitting
  /// branches to the given block and does not expect to emit code into it. This
  /// means the block can be ignored if it is unreachable.
  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);

  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
  /// near its uses, and leave the insertion point in it.
  void EmitBlockAfterUses(llvm::BasicBlock *BB);

  /// EmitBranch - Emit a branch to the specified basic block from the current
  /// insert block, taking care to avoid creation of branches from dummy
  /// blocks. It is legal to call this function even if there is no current
  /// insertion point.
  ///
  /// This function clears the current insertion point. The caller should follow
  /// calls to this function with calls to Emit*Block prior to generation new
  /// code.
  void EmitBranch(llvm::BasicBlock *Block);

  /// HaveInsertPoint - True if an insertion point is defined. If not, this
  /// indicates that the current code being emitted is unreachable.
  bool HaveInsertPoint() const {
    return Builder.GetInsertBlock() != nullptr;
  }

  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
  /// emitted IR has a place to go. Note that by definition, if this function
  /// creates a block then that block is unreachable; callers may do better to
  /// detect when no insertion point is defined and simply skip IR generation.
  void EnsureInsertPoint() {
    if (!HaveInsertPoint())
      EmitBlock(createBasicBlock());
  }

  /// ErrorUnsupported - Print out an error that codegen doesn't support the
  /// specified stmt yet.
  void ErrorUnsupported(const Stmt *S, const char *Type);

  //===--------------------------------------------------------------------===//
  //                                  Helpers
  //===--------------------------------------------------------------------===//

  LValue MakeAddrLValue(Address Addr, QualType T,
                        AlignmentSource Source = AlignmentSource::Type) {
    return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
                            CGM.getTBAAAccessInfo(T));
  }

  LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
                        TBAAAccessInfo TBAAInfo) {
    return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
  }

  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
                        AlignmentSource Source = AlignmentSource::Type) {
    return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
                            LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
  }

  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
                        LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
    return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
                            BaseInfo, TBAAInfo);
  }

  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
  CharUnits getNaturalTypeAlignment(QualType T,
                                    LValueBaseInfo *BaseInfo = nullptr,
                                    TBAAAccessInfo *TBAAInfo = nullptr,
                                    bool forPointeeType = false);
  CharUnits getNaturalPointeeTypeAlignment(QualType T,
                                           LValueBaseInfo *BaseInfo = nullptr,
                                           TBAAAccessInfo *TBAAInfo = nullptr);

  Address EmitLoadOfReference(LValue RefLVal,
                              LValueBaseInfo *PointeeBaseInfo = nullptr,
                              TBAAAccessInfo *PointeeTBAAInfo = nullptr);
  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
  LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
                                   AlignmentSource Source =
                                       AlignmentSource::Type) {
    LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
                                    CGM.getTBAAAccessInfo(RefTy));
    return EmitLoadOfReferenceLValue(RefLVal);
  }

  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
                            LValueBaseInfo *BaseInfo = nullptr,
                            TBAAAccessInfo *TBAAInfo = nullptr);
  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);

  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
  /// insertion point of the builder. The caller is responsible for setting an
  /// appropriate alignment on
  /// the alloca.
  ///
  /// \p ArraySize is the number of array elements to be allocated if it
  ///    is not nullptr.
  ///
  /// LangAS::Default is the address space of pointers to local variables and
  /// temporaries, as exposed in the source language. In certain
  /// configurations, this is not the same as the alloca address space, and a
  /// cast is needed to lift the pointer from the alloca AS into
  /// LangAS::Default. This can happen when the target uses a restricted
  /// address space for the stack but the source language requires
  /// LangAS::Default to be a generic address space. The latter condition is
  /// common for most programming languages; OpenCL is an exception in that
  /// LangAS::Default is the private address space, which naturally maps
  /// to the stack.
  ///
  /// Because the address of a temporary is often exposed to the program in
  /// various ways, this function will perform the cast. The original alloca
  /// instruction is returned through \p Alloca if it is not nullptr.
  ///
  /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
  /// more efficient if the caller knows that the address will not be exposed.
  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
                                     llvm::Value *ArraySize = nullptr);
  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
                           const Twine &Name = "tmp",
                           llvm::Value *ArraySize = nullptr,
                           Address *Alloca = nullptr);
  Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
                                      const Twine &Name = "tmp",
                                      llvm::Value *ArraySize = nullptr);

  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
  /// default ABI alignment of the given LLVM type.
  ///
  /// IMPORTANT NOTE: This is *not* generally the right alignment for
  /// any given AST type that happens to have been lowered to the
  /// given IR type.  This should only ever be used for function-local,
  /// IR-driven manipulations like saving and restoring a value.  Do
  /// not hand this address off to arbitrary IRGen routines, and especially
  /// do not pass it as an argument to a function that might expect a
  /// properly ABI-aligned value.
  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
                                       const Twine &Name = "tmp");

  /// InitTempAlloca - Provide an initial value for the given alloca which
  /// will be observable at all locations in the function.
  ///
  /// The address should be something that was returned from one of
  /// the CreateTempAlloca or CreateMemTemp routines, and the
  /// initializer must be valid in the entry block (i.e. it must
  /// either be a constant or an argument value).
  void InitTempAlloca(Address Alloca, llvm::Value *Value);

  /// CreateIRTemp - Create a temporary IR object of the given type, with
  /// appropriate alignment. This routine should only be used when an temporary
  /// value needs to be stored into an alloca (for example, to avoid explicit
  /// PHI construction), but the type is the IR type, not the type appropriate
  /// for storing in memory.
  ///
  /// That is, this is exactly equivalent to CreateMemTemp, but calling
  /// ConvertType instead of ConvertTypeForMem.
  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");

  /// CreateMemTemp - Create a temporary memory object of the given type, with
  /// appropriate alignmen and cast it to the default address space. Returns
  /// the original alloca instruction by \p Alloca if it is not nullptr.
  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
                        Address *Alloca = nullptr);
  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
                        Address *Alloca = nullptr);

  /// CreateMemTemp - Create a temporary memory object of the given type, with
  /// appropriate alignmen without casting it to the default address space.
  Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
  Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
                                   const Twine &Name = "tmp");

  /// CreateAggTemp - Create a temporary memory object for the given
  /// aggregate type.
  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
    return AggValueSlot::forAddr(CreateMemTemp(T, Name),
                                 T.getQualifiers(),
                                 AggValueSlot::IsNotDestructed,
                                 AggValueSlot::DoesNotNeedGCBarriers,
                                 AggValueSlot::IsNotAliased,
                                 AggValueSlot::DoesNotOverlap);
  }

  /// Emit a cast to void* in the appropriate address space.
  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);

  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
  /// expression and compare the result against zero, returning an Int1Ty value.
  llvm::Value *EvaluateExprAsBool(const Expr *E);

  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
  void EmitIgnoredExpr(const Expr *E);

  /// EmitAnyExpr - Emit code to compute the specified expression which can have
  /// any type.  The result is returned as an RValue struct.  If this is an
  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
  /// the result should be returned.
  ///
  /// \param ignoreResult True if the resulting value isn't used.
  RValue EmitAnyExpr(const Expr *E,
                     AggValueSlot aggSlot = AggValueSlot::ignored(),
                     bool ignoreResult = false);

  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
  // or the value of the expression, depending on how va_list is defined.
  Address EmitVAListRef(const Expr *E);

  /// Emit a "reference" to a __builtin_ms_va_list; this is
  /// always the value of the expression, because a __builtin_ms_va_list is a
  /// pointer to a char.
  Address EmitMSVAListRef(const Expr *E);

  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
  /// always be accessible even if no aggregate location is provided.
  RValue EmitAnyExprToTemp(const Expr *E);

  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
  /// arbitrary expression into the given memory location.
  void EmitAnyExprToMem(const Expr *E, Address Location,
                        Qualifiers Quals, bool IsInitializer);

  void EmitAnyExprToExn(const Expr *E, Address Addr);

  /// EmitExprAsInit - Emits the code necessary to initialize a
  /// location in memory with the given initializer.
  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
                      bool capturedByInit);

  /// hasVolatileMember - returns true if aggregate type has a volatile
  /// member.
  bool hasVolatileMember(QualType T) {
    if (const RecordType *RT = T->getAs<RecordType>()) {
      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
      return RD->hasVolatileMember();
    }
    return false;
  }

  /// Determine whether a return value slot may overlap some other object.
  AggValueSlot::Overlap_t overlapForReturnValue() {
    // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
    // class subobjects. These cases may need to be revisited depending on the
    // resolution of the relevant core issue.
    return AggValueSlot::DoesNotOverlap;
  }

  /// Determine whether a field initialization may overlap some other object.
  AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) {
    // FIXME: These cases can result in overlap as a result of P0840R0's
    // [[no_unique_address]] attribute. We can still infer NoOverlap in the
    // presence of that attribute if the field is within the nvsize of its
    // containing class, because non-virtual subobjects are initialized in
    // address order.
    return AggValueSlot::DoesNotOverlap;
  }

  /// Determine whether a base class initialization may overlap some other
  /// object.
  AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD,
                                             const CXXRecordDecl *BaseRD,
                                             bool IsVirtual);

  /// Emit an aggregate assignment.
  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
    bool IsVolatile = hasVolatileMember(EltTy);
    EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
  }

  void EmitAggregateCopyCtor(LValue Dest, LValue Src,
                             AggValueSlot::Overlap_t MayOverlap) {
    EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
  }

  /// EmitAggregateCopy - Emit an aggregate copy.
  ///
  /// \param isVolatile \c true iff either the source or the destination is
  ///        volatile.
  /// \param MayOverlap Whether the tail padding of the destination might be
  ///        occupied by some other object. More efficient code can often be
  ///        generated if not.
  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
                         AggValueSlot::Overlap_t MayOverlap,
                         bool isVolatile = false);

  /// GetAddrOfLocalVar - Return the address of a local variable.
  Address GetAddrOfLocalVar(const VarDecl *VD) {
    auto it = LocalDeclMap.find(VD);
    assert(it != LocalDeclMap.end() &&
           "Invalid argument to GetAddrOfLocalVar(), no decl!");
    return it->second;
  }

  /// Given an opaque value expression, return its LValue mapping if it exists,
  /// otherwise create one.
  LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);

  /// Given an opaque value expression, return its RValue mapping if it exists,
  /// otherwise create one.
  RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);

  /// Get the index of the current ArrayInitLoopExpr, if any.
  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }

  /// getAccessedFieldNo - Given an encoded value and a result number, return
  /// the input field number being accessed.
  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);

  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
  llvm::BasicBlock *GetIndirectGotoBlock();

  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
  static bool IsWrappedCXXThis(const Expr *E);

  /// EmitNullInitialization - Generate code to set a value of the given type to
  /// null, If the type contains data member pointers, they will be initialized
  /// to -1 in accordance with the Itanium C++ ABI.
  void EmitNullInitialization(Address DestPtr, QualType Ty);

  /// Emits a call to an LLVM variable-argument intrinsic, either
  /// \c llvm.va_start or \c llvm.va_end.
  /// \param ArgValue A reference to the \c va_list as emitted by either
  /// \c EmitVAListRef or \c EmitMSVAListRef.
  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
  /// calls \c llvm.va_end.
  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);

  /// Generate code to get an argument from the passed in pointer
  /// and update it accordingly.
  /// \param VE The \c VAArgExpr for which to generate code.
  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
  /// either \c EmitVAListRef or \c EmitMSVAListRef.
  /// \returns A pointer to the argument.
  // FIXME: We should be able to get rid of this method and use the va_arg
  // instruction in LLVM instead once it works well enough.
  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);

  /// emitArrayLength - Compute the length of an array, even if it's a
  /// VLA, and drill down to the base element type.
  llvm::Value *emitArrayLength(const ArrayType *arrayType,
                               QualType &baseType,
                               Address &addr);

  /// EmitVLASize - Capture all the sizes for the VLA expressions in
  /// the given variably-modified type and store them in the VLASizeMap.
  ///
  /// This function can be called with a null (unreachable) insert point.
  void EmitVariablyModifiedType(QualType Ty);

  struct VlaSizePair {
    llvm::Value *NumElts;
    QualType Type;

    VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
  };

  /// Return the number of elements for a single dimension
  /// for the given array type.
  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
  VlaSizePair getVLAElements1D(QualType vla);

  /// Returns an LLVM value that corresponds to the size,
  /// in non-variably-sized elements, of a variable length array type,
  /// plus that largest non-variably-sized element type.  Assumes that
  /// the type has already been emitted with EmitVariablyModifiedType.
  VlaSizePair getVLASize(const VariableArrayType *vla);
  VlaSizePair getVLASize(QualType vla);

  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
  /// generating code for an C++ member function.
  llvm::Value *LoadCXXThis() {
    assert(CXXThisValue && "no 'this' value for this function");
    return CXXThisValue;
  }
  Address LoadCXXThisAddress();

  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
  /// virtual bases.
  // FIXME: Every place that calls LoadCXXVTT is something
  // that needs to be abstracted properly.
  llvm::Value *LoadCXXVTT() {
    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
    return CXXStructorImplicitParamValue;
  }

  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
  /// complete class to the given direct base.
  Address
  GetAddressOfDirectBaseInCompleteClass(Address Value,
                                        const CXXRecordDecl *Derived,
                                        const CXXRecordDecl *Base,
                                        bool BaseIsVirtual);

  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);

  /// GetAddressOfBaseClass - This function will add the necessary delta to the
  /// load of 'this' and returns address of the base class.
  Address GetAddressOfBaseClass(Address Value,
                                const CXXRecordDecl *Derived,
                                CastExpr::path_const_iterator PathBegin,
                                CastExpr::path_const_iterator PathEnd,
                                bool NullCheckValue, SourceLocation Loc);

  Address GetAddressOfDerivedClass(Address Value,
                                   const CXXRecordDecl *Derived,
                                   CastExpr::path_const_iterator PathBegin,
                                   CastExpr::path_const_iterator PathEnd,
                                   bool NullCheckValue);

  /// GetVTTParameter - Return the VTT parameter that should be passed to a
  /// base constructor/destructor with virtual bases.
  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
  /// to ItaniumCXXABI.cpp together with all the references to VTT.
  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
                               bool Delegating);

  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
                                      CXXCtorType CtorType,
                                      const FunctionArgList &Args,
                                      SourceLocation Loc);
  // It's important not to confuse this and the previous function. Delegating
  // constructors are the C++0x feature. The constructor delegate optimization
  // is used to reduce duplication in the base and complete consturctors where
  // they are substantially the same.
  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
                                        const FunctionArgList &Args);

  /// Emit a call to an inheriting constructor (that is, one that invokes a
  /// constructor inherited from a base class) by inlining its definition. This
  /// is necessary if the ABI does not support forwarding the arguments to the
  /// base class constructor (because they're variadic or similar).
  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
                                               CXXCtorType CtorType,
                                               bool ForVirtualBase,
                                               bool Delegating,
                                               CallArgList &Args);

  /// Emit a call to a constructor inherited from a base class, passing the
  /// current constructor's arguments along unmodified (without even making
  /// a copy).
  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
                                       bool ForVirtualBase, Address This,
                                       bool InheritedFromVBase,
                                       const CXXInheritedCtorInitExpr *E);

  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
                              bool ForVirtualBase, bool Delegating,
                              Address This, const CXXConstructExpr *E,
                              AggValueSlot::Overlap_t Overlap,
                              bool NewPointerIsChecked);

  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
                              bool ForVirtualBase, bool Delegating,
                              Address This, CallArgList &Args,
                              AggValueSlot::Overlap_t Overlap,
                              SourceLocation Loc,
                              bool NewPointerIsChecked);

  /// Emit assumption load for all bases. Requires to be be called only on
  /// most-derived class and not under construction of the object.
  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);

  /// Emit assumption that vptr load == global vtable.
  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);

  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
                                      Address This, Address Src,
                                      const CXXConstructExpr *E);

  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
                                  const ArrayType *ArrayTy,
                                  Address ArrayPtr,
                                  const CXXConstructExpr *E,
                                  bool NewPointerIsChecked,
                                  bool ZeroInitialization = false);

  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
                                  llvm::Value *NumElements,
                                  Address ArrayPtr,
                                  const CXXConstructExpr *E,
                                  bool NewPointerIsChecked,
                                  bool ZeroInitialization = false);

  static Destroyer destroyCXXObject;

  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
                             bool ForVirtualBase, bool Delegating,
                             Address This);

  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
                               llvm::Type *ElementTy, Address NewPtr,
                               llvm::Value *NumElements,
                               llvm::Value *AllocSizeWithoutCookie);

  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
                        Address Ptr);

  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);

  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);

  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
                      QualType DeleteTy, llvm::Value *NumElements = nullptr,
                      CharUnits CookieSize = CharUnits());

  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
                                  const CallExpr *TheCallExpr, bool IsDelete);

  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);

  /// Situations in which we might emit a check for the suitability of a
  ///        pointer or glvalue.
  enum TypeCheckKind {
    /// Checking the operand of a load. Must be suitably sized and aligned.
    TCK_Load,
    /// Checking the destination of a store. Must be suitably sized and aligned.
    TCK_Store,
    /// Checking the bound value in a reference binding. Must be suitably sized
    /// and aligned, but is not required to refer to an object (until the
    /// reference is used), per core issue 453.
    TCK_ReferenceBinding,
    /// Checking the object expression in a non-static data member access. Must
    /// be an object within its lifetime.
    TCK_MemberAccess,
    /// Checking the 'this' pointer for a call to a non-static member function.
    /// Must be an object within its lifetime.
    TCK_MemberCall,
    /// Checking the 'this' pointer for a constructor call.
    TCK_ConstructorCall,
    /// Checking the operand of a static_cast to a derived pointer type. Must be
    /// null or an object within its lifetime.
    TCK_DowncastPointer,
    /// Checking the operand of a static_cast to a derived reference type. Must
    /// be an object within its lifetime.
    TCK_DowncastReference,
    /// Checking the operand of a cast to a base object. Must be suitably sized
    /// and aligned.
    TCK_Upcast,
    /// Checking the operand of a cast to a virtual base object. Must be an
    /// object within its lifetime.
    TCK_UpcastToVirtualBase,
    /// Checking the value assigned to a _Nonnull pointer. Must not be null.
    TCK_NonnullAssign,
    /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
    /// null or an object within its lifetime.
    TCK_DynamicOperation
  };

  /// Determine whether the pointer type check \p TCK permits null pointers.
  static bool isNullPointerAllowed(TypeCheckKind TCK);

  /// Determine whether the pointer type check \p TCK requires a vptr check.
  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);

  /// Whether any type-checking sanitizers are enabled. If \c false,
  /// calls to EmitTypeCheck can be skipped.
  bool sanitizePerformTypeCheck() const;

  /// Emit a check that \p V is the address of storage of the
  /// appropriate size and alignment for an object of type \p Type.
  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
                     QualType Type, CharUnits Alignment = CharUnits::Zero(),
                     SanitizerSet SkippedChecks = SanitizerSet());

  /// Emit a check that \p Base points into an array object, which
  /// we can access at index \p Index. \p Accessed should be \c false if we
  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
                       QualType IndexType, bool Accessed);

  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
                                       bool isInc, bool isPre);
  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
                                         bool isInc, bool isPre);

  void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
                               llvm::Value *OffsetValue = nullptr) {
    Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
                                      OffsetValue);
  }

  /// Converts Location to a DebugLoc, if debug information is enabled.
  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);


  //===--------------------------------------------------------------------===//
  //                            Declaration Emission
  //===--------------------------------------------------------------------===//

  /// EmitDecl - Emit a declaration.
  ///
  /// This function can be called with a null (unreachable) insert point.
  void EmitDecl(const Decl &D);

  /// EmitVarDecl - Emit a local variable declaration.
  ///
  /// This function can be called with a null (unreachable) insert point.
  void EmitVarDecl(const VarDecl &D);

  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
                      bool capturedByInit);

  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
                             llvm::Value *Address);

  /// Determine whether the given initializer is trivial in the sense
  /// that it requires no code to be generated.
  bool isTrivialInitializer(const Expr *Init);

  /// EmitAutoVarDecl - Emit an auto variable declaration.
  ///
  /// This function can be called with a null (unreachable) insert point.
  void EmitAutoVarDecl(const VarDecl &D);

  class AutoVarEmission {
    friend class CodeGenFunction;

    const VarDecl *Variable;

    /// The address of the alloca for languages with explicit address space
    /// (e.g. OpenCL) or alloca casted to generic pointer for address space
    /// agnostic languages (e.g. C++). Invalid if the variable was emitted
    /// as a global constant.
    Address Addr;

    llvm::Value *NRVOFlag;

    /// True if the variable is a __block variable.
    bool IsByRef;

    /// True if the variable is of aggregate type and has a constant
    /// initializer.
    bool IsConstantAggregate;

    /// Non-null if we should use lifetime annotations.
    llvm::Value *SizeForLifetimeMarkers;

    /// Address with original alloca instruction. Invalid if the variable was
    /// emitted as a global constant.
    Address AllocaAddr;

    struct Invalid {};
    AutoVarEmission(Invalid)
        : Variable(nullptr), Addr(Address::invalid()),
          AllocaAddr(Address::invalid()) {}

    AutoVarEmission(const VarDecl &variable)
        : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
          IsByRef(false), IsConstantAggregate(false),
          SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}

    bool wasEmittedAsGlobal() const { return !Addr.isValid(); }

  public:
    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }

    bool useLifetimeMarkers() const {
      return SizeForLifetimeMarkers != nullptr;
    }
    llvm::Value *getSizeForLifetimeMarkers() const {
      assert(useLifetimeMarkers());
      return SizeForLifetimeMarkers;
    }

    /// Returns the raw, allocated address, which is not necessarily
    /// the address of the object itself. It is casted to default
    /// address space for address space agnostic languages.
    Address getAllocatedAddress() const {
      return Addr;
    }

    /// Returns the address for the original alloca instruction.
    Address getOriginalAllocatedAddress() const { return AllocaAddr; }

    /// Returns the address of the object within this declaration.
    /// Note that this does not chase the forwarding pointer for
    /// __block decls.
    Address getObjectAddress(CodeGenFunction &CGF) const {
      if (!IsByRef) return Addr;

      return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
    }
  };
  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
  void EmitAutoVarInit(const AutoVarEmission &emission);
  void EmitAutoVarCleanups(const AutoVarEmission &emission);
  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
                              QualType::DestructionKind dtorKind);

  /// Emits the alloca and debug information for the size expressions for each
  /// dimension of an array. It registers the association of its (1-dimensional)
  /// QualTypes and size expression's debug node, so that CGDebugInfo can
  /// reference this node when creating the DISubrange object to describe the
  /// array types.
  void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
                                              const VarDecl &D,
                                              bool EmitDebugInfo);

  void EmitStaticVarDecl(const VarDecl &D,
                         llvm::GlobalValue::LinkageTypes Linkage);

  class ParamValue {
    llvm::Value *Value;
    unsigned Alignment;
    ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
  public:
    static ParamValue forDirect(llvm::Value *value) {
      return ParamValue(value, 0);
    }
    static ParamValue forIndirect(Address addr) {
      assert(!addr.getAlignment().isZero());
      return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
    }

    bool isIndirect() const { return Alignment != 0; }
    llvm::Value *getAnyValue() const { return Value; }

    llvm::Value *getDirectValue() const {
      assert(!isIndirect());
      return Value;
    }

    Address getIndirectAddress() const {
      assert(isIndirect());
      return Address(Value, CharUnits::fromQuantity(Alignment));
    }
  };

  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);

  /// protectFromPeepholes - Protect a value that we're intending to
  /// store to the side, but which will probably be used later, from
  /// aggressive peepholing optimizations that might delete it.
  ///
  /// Pass the result to unprotectFromPeepholes to declare that
  /// protection is no longer required.
  ///
  /// There's no particular reason why this shouldn't apply to
  /// l-values, it's just that no existing peepholes work on pointers.
  PeepholeProtection protectFromPeepholes(RValue rvalue);
  void unprotectFromPeepholes(PeepholeProtection protection);

  void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment,
                               llvm::Value *OffsetValue = nullptr) {
    Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
                                      OffsetValue);
  }

  //===--------------------------------------------------------------------===//
  //                             Statement Emission
  //===--------------------------------------------------------------------===//

  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
  void EmitStopPoint(const Stmt *S);

  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
  /// this function even if there is no current insertion point.
  ///
  /// This function may clear the current insertion point; callers should use
  /// EnsureInsertPoint if they wish to subsequently generate code without first
  /// calling EmitBlock, EmitBranch, or EmitStmt.
  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);

  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
  /// necessarily require an insertion point or debug information; typically
  /// because the statement amounts to a jump or a container of other
  /// statements.
  ///
  /// \return True if the statement was handled.
  bool EmitSimpleStmt(const Stmt *S);

  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
                           AggValueSlot AVS = AggValueSlot::ignored());
  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
                                       bool GetLast = false,
                                       AggValueSlot AVS =
                                                AggValueSlot::ignored());

  /// EmitLabel - Emit the block for the given label. It is legal to call this
  /// function even if there is no current insertion point.
  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.

  void EmitLabelStmt(const LabelStmt &S);
  void EmitAttributedStmt(const AttributedStmt &S);
  void EmitGotoStmt(const GotoStmt &S);
  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
  void EmitIfStmt(const IfStmt &S);

  void EmitWhileStmt(const WhileStmt &S,
                     ArrayRef<const Attr *> Attrs = None);
  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
  void EmitForStmt(const ForStmt &S,
                   ArrayRef<const Attr *> Attrs = None);
  void EmitReturnStmt(const ReturnStmt &S);
  void EmitDeclStmt(const DeclStmt &S);
  void EmitBreakStmt(const BreakStmt &S);
  void EmitContinueStmt(const ContinueStmt &S);
  void EmitSwitchStmt(const SwitchStmt &S);
  void EmitDefaultStmt(const DefaultStmt &S);
  void EmitCaseStmt(const CaseStmt &S);
  void EmitCaseStmtRange(const CaseStmt &S);
  void EmitAsmStmt(const AsmStmt &S);

  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);

  void EmitCoroutineBody(const CoroutineBodyStmt &S);
  void EmitCoreturnStmt(const CoreturnStmt &S);
  RValue EmitCoawaitExpr(const CoawaitExpr &E,
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
                         bool ignoreResult = false);
  LValue EmitCoawaitLValue(const CoawaitExpr *E);
  RValue EmitCoyieldExpr(const CoyieldExpr &E,
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
                         bool ignoreResult = false);
  LValue EmitCoyieldLValue(const CoyieldExpr *E);
  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);

  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);

  void EmitCXXTryStmt(const CXXTryStmt &S);
  void EmitSEHTryStmt(const SEHTryStmt &S);
  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
  void EnterSEHTryStmt(const SEHTryStmt &S);
  void ExitSEHTryStmt(const SEHTryStmt &S);

  void pushSEHCleanup(CleanupKind kind,
                      llvm::Function *FinallyFunc);
  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
                              const Stmt *OutlinedStmt);

  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
                                            const SEHExceptStmt &Except);

  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
                                             const SEHFinallyStmt &Finally);

  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
                                llvm::Value *ParentFP,
                                llvm::Value *EntryEBP);
  llvm::Value *EmitSEHExceptionCode();
  llvm::Value *EmitSEHExceptionInfo();
  llvm::Value *EmitSEHAbnormalTermination();

  /// Emit simple code for OpenMP directives in Simd-only mode.
  void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);

  /// Scan the outlined statement for captures from the parent function. For
  /// each capture, mark the capture as escaped and emit a call to
  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
                          bool IsFilter);

  /// Recovers the address of a local in a parent function. ParentVar is the
  /// address of the variable used in the immediate parent function. It can
  /// either be an alloca or a call to llvm.localrecover if there are nested
  /// outlined functions. ParentFP is the frame pointer of the outermost parent
  /// frame.
  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
                                    Address ParentVar,
                                    llvm::Value *ParentFP);

  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
                           ArrayRef<const Attr *> Attrs = None);

  /// Controls insertion of cancellation exit blocks in worksharing constructs.
  class OMPCancelStackRAII {
    CodeGenFunction &CGF;

  public:
    OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
                       bool HasCancel)
        : CGF(CGF) {
      CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
    }
    ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
  };

  /// Returns calculated size of the specified type.
  llvm::Value *getTypeSize(QualType Ty);
  LValue InitCapturedStruct(const CapturedStmt &S);
  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
                                  SmallVectorImpl<llvm::Value *> &CapturedVars);
  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
                          SourceLocation Loc);
  /// Perform element by element copying of arrays with type \a
  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
  /// generated by \a CopyGen.
  ///
  /// \param DestAddr Address of the destination array.
  /// \param SrcAddr Address of the source array.
  /// \param OriginalType Type of destination and source arrays.
  /// \param CopyGen Copying procedure that copies value of single array element
  /// to another single array element.
  void EmitOMPAggregateAssign(
      Address DestAddr, Address SrcAddr, QualType OriginalType,
      const llvm::function_ref<void(Address, Address)> CopyGen);
  /// Emit proper copying of data from one variable to another.
  ///
  /// \param OriginalType Original type of the copied variables.
  /// \param DestAddr Destination address.
  /// \param SrcAddr Source address.
  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
  /// type of the base array element).
  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
  /// the base array element).
  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
  /// DestVD.
  void EmitOMPCopy(QualType OriginalType,
                   Address DestAddr, Address SrcAddr,
                   const VarDecl *DestVD, const VarDecl *SrcVD,
                   const Expr *Copy);
  /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
  /// \a X = \a E \a BO \a E.
  ///
  /// \param X Value to be updated.
  /// \param E Update value.
  /// \param BO Binary operation for update operation.
  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
  /// expression, false otherwise.
  /// \param AO Atomic ordering of the generated atomic instructions.
  /// \param CommonGen Code generator for complex expressions that cannot be
  /// expressed through atomicrmw instruction.
  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
  /// generated, <false, RValue::get(nullptr)> otherwise.
  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
      LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
      llvm::AtomicOrdering AO, SourceLocation Loc,
      const llvm::function_ref<RValue(RValue)> CommonGen);
  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
                                 OMPPrivateScope &PrivateScope);
  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
                            OMPPrivateScope &PrivateScope);
  void EmitOMPUseDevicePtrClause(
      const OMPClause &C, OMPPrivateScope &PrivateScope,
      const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
  /// Emit code for copyin clause in \a D directive. The next code is
  /// generated at the start of outlined functions for directives:
  /// \code
  /// threadprivate_var1 = master_threadprivate_var1;
  /// operator=(threadprivate_var2, master_threadprivate_var2);
  /// ...
  /// __kmpc_barrier(&loc, global_tid);
  /// \endcode
  ///
  /// \param D OpenMP directive possibly with 'copyin' clause(s).
  /// \returns true if at least one copyin variable is found, false otherwise.
  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
  /// Emit initial code for lastprivate variables. If some variable is
  /// not also firstprivate, then the default initialization is used. Otherwise
  /// initialization of this variable is performed by EmitOMPFirstprivateClause
  /// method.
  ///
  /// \param D Directive that may have 'lastprivate' directives.
  /// \param PrivateScope Private scope for capturing lastprivate variables for
  /// proper codegen in internal captured statement.
  ///
  /// \returns true if there is at least one lastprivate variable, false
  /// otherwise.
  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
                                    OMPPrivateScope &PrivateScope);
  /// Emit final copying of lastprivate values to original variables at
  /// the end of the worksharing or simd directive.
  ///
  /// \param D Directive that has at least one 'lastprivate' directives.
  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
  /// it is the last iteration of the loop code in associated directive, or to
  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
                                     bool NoFinals,
                                     llvm::Value *IsLastIterCond = nullptr);
  /// Emit initial code for linear clauses.
  void EmitOMPLinearClause(const OMPLoopDirective &D,
                           CodeGenFunction::OMPPrivateScope &PrivateScope);
  /// Emit final code for linear clauses.
  /// \param CondGen Optional conditional code for final part of codegen for
  /// linear clause.
  void EmitOMPLinearClauseFinal(
      const OMPLoopDirective &D,
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
  /// Emit initial code for reduction variables. Creates reduction copies
  /// and initializes them with the values according to OpenMP standard.
  ///
  /// \param D Directive (possibly) with the 'reduction' clause.
  /// \param PrivateScope Private scope for capturing reduction variables for
  /// proper codegen in internal captured statement.
  ///
  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
                                  OMPPrivateScope &PrivateScope);
  /// Emit final update of reduction values to original variables at
  /// the end of the directive.
  ///
  /// \param D Directive that has at least one 'reduction' directives.
  /// \param ReductionKind The kind of reduction to perform.
  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
                                   const OpenMPDirectiveKind ReductionKind);
  /// Emit initial code for linear variables. Creates private copies
  /// and initializes them with the values according to OpenMP standard.
  ///
  /// \param D Directive (possibly) with the 'linear' clause.
  /// \return true if at least one linear variable is found that should be
  /// initialized with the value of the original variable, false otherwise.
  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);

  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
                                        llvm::Value * /*OutlinedFn*/,
                                        const OMPTaskDataTy & /*Data*/)>
      TaskGenTy;
  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
                                 const OpenMPDirectiveKind CapturedRegion,
                                 const RegionCodeGenTy &BodyGen,
                                 const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
  struct OMPTargetDataInfo {
    Address BasePointersArray = Address::invalid();
    Address PointersArray = Address::invalid();
    Address SizesArray = Address::invalid();
    unsigned NumberOfTargetItems = 0;
    explicit OMPTargetDataInfo() = default;
    OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
                      Address SizesArray, unsigned NumberOfTargetItems)
        : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
          SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
  };
  void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
                                       const RegionCodeGenTy &BodyGen,
                                       OMPTargetDataInfo &InputInfo);

  void EmitOMPParallelDirective(const OMPParallelDirective &S);
  void EmitOMPSimdDirective(const OMPSimdDirective &S);
  void EmitOMPForDirective(const OMPForDirective &S);
  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
  void EmitOMPSectionDirective(const OMPSectionDirective &S);
  void EmitOMPSingleDirective(const OMPSingleDirective &S);
  void EmitOMPMasterDirective(const OMPMasterDirective &S);
  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
  void EmitOMPTaskDirective(const OMPTaskDirective &S);
  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
  void EmitOMPFlushDirective(const OMPFlushDirective &S);
  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
  void EmitOMPTargetDirective(const OMPTargetDirective &S);
  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
  void
  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
  void
  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
  void EmitOMPCancelDirective(const OMPCancelDirective &S);
  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
  void EmitOMPDistributeParallelForDirective(
      const OMPDistributeParallelForDirective &S);
  void EmitOMPDistributeParallelForSimdDirective(
      const OMPDistributeParallelForSimdDirective &S);
  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
  void EmitOMPTargetParallelForSimdDirective(
      const OMPTargetParallelForSimdDirective &S);
  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
  void
  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
  void EmitOMPTeamsDistributeParallelForSimdDirective(
      const OMPTeamsDistributeParallelForSimdDirective &S);
  void EmitOMPTeamsDistributeParallelForDirective(
      const OMPTeamsDistributeParallelForDirective &S);
  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
  void EmitOMPTargetTeamsDistributeDirective(
      const OMPTargetTeamsDistributeDirective &S);
  void EmitOMPTargetTeamsDistributeParallelForDirective(
      const OMPTargetTeamsDistributeParallelForDirective &S);
  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
  void EmitOMPTargetTeamsDistributeSimdDirective(
      const OMPTargetTeamsDistributeSimdDirective &S);

  /// Emit device code for the target directive.
  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
                                          StringRef ParentName,
                                          const OMPTargetDirective &S);
  static void
  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
                                      const OMPTargetParallelDirective &S);
  /// Emit device code for the target parallel for directive.
  static void EmitOMPTargetParallelForDeviceFunction(
      CodeGenModule &CGM, StringRef ParentName,
      const OMPTargetParallelForDirective &S);
  /// Emit device code for the target parallel for simd directive.
  static void EmitOMPTargetParallelForSimdDeviceFunction(
      CodeGenModule &CGM, StringRef ParentName,
      const OMPTargetParallelForSimdDirective &S);
  /// Emit device code for the target teams directive.
  static void
  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
                                   const OMPTargetTeamsDirective &S);
  /// Emit device code for the target teams distribute directive.
  static void EmitOMPTargetTeamsDistributeDeviceFunction(
      CodeGenModule &CGM, StringRef ParentName,
      const OMPTargetTeamsDistributeDirective &S);
  /// Emit device code for the target teams distribute simd directive.
  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
      CodeGenModule &CGM, StringRef ParentName,
      const OMPTargetTeamsDistributeSimdDirective &S);
  /// Emit device code for the target simd directive.
  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
                                              StringRef ParentName,
                                              const OMPTargetSimdDirective &S);
  /// Emit device code for the target teams distribute parallel for simd
  /// directive.
  static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
      CodeGenModule &CGM, StringRef ParentName,
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);

  static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
      CodeGenModule &CGM, StringRef ParentName,
      const OMPTargetTeamsDistributeParallelForDirective &S);
  /// Emit inner loop of the worksharing/simd construct.
  ///
  /// \param S Directive, for which the inner loop must be emitted.
  /// \param RequiresCleanup true, if directive has some associated private
  /// variables.
  /// \param LoopCond Bollean condition for loop continuation.
  /// \param IncExpr Increment expression for loop control variable.
  /// \param BodyGen Generator for the inner body of the inner loop.
  /// \param PostIncGen Genrator for post-increment code (required for ordered
  /// loop directvies).
  void EmitOMPInnerLoop(
      const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
      const Expr *IncExpr,
      const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
      const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);

  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
  /// Emit initial code for loop counters of loop-based directives.
  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
                                  OMPPrivateScope &LoopScope);

  /// Helper for the OpenMP loop directives.
  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);

  /// Emit code for the worksharing loop-based directive.
  /// \return true, if this construct has any lastprivate clause, false -
  /// otherwise.
  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
                              const CodeGenLoopBoundsTy &CodeGenLoopBounds,
                              const CodeGenDispatchBoundsTy &CGDispatchBounds);

  /// Emit code for the distribute loop-based directive.
  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
                             const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);

  /// Helpers for the OpenMP loop directives.
  void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
  void EmitOMPSimdFinal(
      const OMPLoopDirective &D,
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);

  /// Emits the lvalue for the expression with possibly captured variable.
  LValue EmitOMPSharedLValue(const Expr *E);

private:
  /// Helpers for blocks.
  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);

  /// struct with the values to be passed to the OpenMP loop-related functions
  struct OMPLoopArguments {
    /// loop lower bound
    Address LB = Address::invalid();
    /// loop upper bound
    Address UB = Address::invalid();
    /// loop stride
    Address ST = Address::invalid();
    /// isLastIteration argument for runtime functions
    Address IL = Address::invalid();
    /// Chunk value generated by sema
    llvm::Value *Chunk = nullptr;
    /// EnsureUpperBound
    Expr *EUB = nullptr;
    /// IncrementExpression
    Expr *IncExpr = nullptr;
    /// Loop initialization
    Expr *Init = nullptr;
    /// Loop exit condition
    Expr *Cond = nullptr;
    /// Update of LB after a whole chunk has been executed
    Expr *NextLB = nullptr;
    /// Update of UB after a whole chunk has been executed
    Expr *NextUB = nullptr;
    OMPLoopArguments() = default;
    OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
                     llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
                     Expr *IncExpr = nullptr, Expr *Init = nullptr,
                     Expr *Cond = nullptr, Expr *NextLB = nullptr,
                     Expr *NextUB = nullptr)
        : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
          IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
          NextUB(NextUB) {}
  };
  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
                        const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
                        const OMPLoopArguments &LoopArgs,
                        const CodeGenLoopTy &CodeGenLoop,
                        const CodeGenOrderedTy &CodeGenOrdered);
  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
                           bool IsMonotonic, const OMPLoopDirective &S,
                           OMPPrivateScope &LoopScope, bool Ordered,
                           const OMPLoopArguments &LoopArgs,
                           const CodeGenDispatchBoundsTy &CGDispatchBounds);
  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
                                  const OMPLoopDirective &S,
                                  OMPPrivateScope &LoopScope,
                                  const OMPLoopArguments &LoopArgs,
                                  const CodeGenLoopTy &CodeGenLoopContent);
  /// Emit code for sections directive.
  void EmitSections(const OMPExecutableDirective &S);

public:

  //===--------------------------------------------------------------------===//
  //                         LValue Expression Emission
  //===--------------------------------------------------------------------===//

  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
  RValue GetUndefRValue(QualType Ty);

  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
  /// and issue an ErrorUnsupported style diagnostic (using the
  /// provided Name).
  RValue EmitUnsupportedRValue(const Expr *E,
                               const char *Name);

  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
  /// an ErrorUnsupported style diagnostic (using the provided Name).
  LValue EmitUnsupportedLValue(const Expr *E,
                               const char *Name);

  /// EmitLValue - Emit code to compute a designator that specifies the location
  /// of the expression.
  ///
  /// This can return one of two things: a simple address or a bitfield
  /// reference.  In either case, the LLVM Value* in the LValue structure is
  /// guaranteed to be an LLVM pointer type.
  ///
  /// If this returns a bitfield reference, nothing about the pointee type of
  /// the LLVM value is known: For example, it may not be a pointer to an
  /// integer.
  ///
  /// If this returns a normal address, and if the lvalue's C type is fixed
  /// size, this method guarantees that the returned pointer type will point to
  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
  /// variable length type, this is not possible.
  ///
  LValue EmitLValue(const Expr *E);

  /// Same as EmitLValue but additionally we generate checking code to
  /// guard against undefined behavior.  This is only suitable when we know
  /// that the address will be used to access the object.
  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);

  RValue convertTempToRValue(Address addr, QualType type,
                             SourceLocation Loc);

  void EmitAtomicInit(Expr *E, LValue lvalue);

  bool LValueIsSuitableForInlineAtomic(LValue Src);

  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
                        AggValueSlot Slot = AggValueSlot::ignored());

  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
                        llvm::AtomicOrdering AO, bool IsVolatile = false,
                        AggValueSlot slot = AggValueSlot::ignored());

  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);

  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
                       bool IsVolatile, bool isInit);

  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
      LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
      llvm::AtomicOrdering Success =
          llvm::AtomicOrdering::SequentiallyConsistent,
      llvm::AtomicOrdering Failure =
          llvm::AtomicOrdering::SequentiallyConsistent,
      bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());

  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
                        const llvm::function_ref<RValue(RValue)> &UpdateOp,
                        bool IsVolatile);

  /// EmitToMemory - Change a scalar value from its value
  /// representation to its in-memory representation.
  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);

  /// EmitFromMemory - Change a scalar value from its memory
  /// representation to its value representation.
  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);

  /// Check if the scalar \p Value is within the valid range for the given
  /// type \p Ty.
  ///
  /// Returns true if a check is needed (even if the range is unknown).
  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
                            SourceLocation Loc);

  /// EmitLoadOfScalar - Load a scalar value from an address, taking
  /// care to appropriately convert from the memory representation to
  /// the LLVM value representation.
  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
                                SourceLocation Loc,
                                AlignmentSource Source = AlignmentSource::Type,
                                bool isNontemporal = false) {
    return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
                            CGM.getTBAAAccessInfo(Ty), isNontemporal);
  }

  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
                                SourceLocation Loc, LValueBaseInfo BaseInfo,
                                TBAAAccessInfo TBAAInfo,
                                bool isNontemporal = false);

  /// EmitLoadOfScalar - Load a scalar value from an address, taking
  /// care to appropriately convert from the memory representation to
  /// the LLVM value representation.  The l-value must be a simple
  /// l-value.
  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);

  /// EmitStoreOfScalar - Store a scalar value to an address, taking
  /// care to appropriately convert from the memory representation to
  /// the LLVM value representation.
  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
                         bool Volatile, QualType Ty,
                         AlignmentSource Source = AlignmentSource::Type,
                         bool isInit = false, bool isNontemporal = false) {
    EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
                      CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
  }

  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
                         bool Volatile, QualType Ty,
                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
                         bool isInit = false, bool isNontemporal = false);

  /// EmitStoreOfScalar - Store a scalar value to an address, taking
  /// care to appropriately convert from the memory representation to
  /// the LLVM value representation.  The l-value must be a simple
  /// l-value.  The isInit flag indicates whether this is an initialization.
  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);

  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
  /// this method emits the address of the lvalue, then loads the result as an
  /// rvalue, returning the rvalue.
  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
  RValue EmitLoadOfExtVectorElementLValue(LValue V);
  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
  RValue EmitLoadOfGlobalRegLValue(LValue LV);

  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
  /// lvalue, where both are guaranteed to the have the same type, and that type
  /// is 'Ty'.
  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);

  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
  /// as EmitStoreThroughLValue.
  ///
  /// \param Result [out] - If non-null, this will be set to a Value* for the
  /// bit-field contents after the store, appropriate for use as the result of
  /// an assignment to the bit-field.
  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
                                      llvm::Value **Result=nullptr);

  /// Emit an l-value for an assignment (simple or compound) of complex type.
  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
                                             llvm::Value *&Result);

  // Note: only available for agg return types
  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
  // Note: only available for agg return types
  LValue EmitCallExprLValue(const CallExpr *E);
  // Note: only available for agg return types
  LValue EmitVAArgExprLValue(const VAArgExpr *E);
  LValue EmitDeclRefLValue(const DeclRefExpr *E);
  LValue EmitStringLiteralLValue(const StringLiteral *E);
  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
  LValue EmitPredefinedLValue(const PredefinedExpr *E);
  LValue EmitUnaryOpLValue(const UnaryOperator *E);
  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
                                bool Accessed = false);
  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
                                 bool IsLowerBound = true);
  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
  LValue EmitMemberExpr(const MemberExpr *E);
  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
  LValue EmitInitListLValue(const InitListExpr *E);
  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
  LValue EmitCastLValue(const CastExpr *E);
  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);

  Address EmitExtVectorElementLValue(LValue V);

  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);

  Address EmitArrayToPointerDecay(const Expr *Array,
                                  LValueBaseInfo *BaseInfo = nullptr,
                                  TBAAAccessInfo *TBAAInfo = nullptr);

  class ConstantEmission {
    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
    ConstantEmission(llvm::Constant *C, bool isReference)
      : ValueAndIsReference(C, isReference) {}
  public:
    ConstantEmission() {}
    static ConstantEmission forReference(llvm::Constant *C) {
      return ConstantEmission(C, true);
    }
    static ConstantEmission forValue(llvm::Constant *C) {
      return ConstantEmission(C, false);
    }

    explicit operator bool() const {
      return ValueAndIsReference.getOpaqueValue() != nullptr;
    }

    bool isReference() const { return ValueAndIsReference.getInt(); }
    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
      assert(isReference());
      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
                                            refExpr->getType());
    }

    llvm::Constant *getValue() const {
      assert(!isReference());
      return ValueAndIsReference.getPointer();
    }
  };

  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);

  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
                                AggValueSlot slot = AggValueSlot::ignored());
  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);

  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
                              const ObjCIvarDecl *Ivar);
  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
  LValue EmitLValueForLambdaField(const FieldDecl *Field);

  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
  /// if the Field is a reference, this will return the address of the reference
  /// and not the address of the value stored in the reference.
  LValue EmitLValueForFieldInitialization(LValue Base,
                                          const FieldDecl* Field);

  LValue EmitLValueForIvar(QualType ObjectTy,
                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
                           unsigned CVRQualifiers);

  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
  LValue EmitLambdaLValue(const LambdaExpr *E);
  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);

  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
  LValue EmitStmtExprLValue(const StmtExpr *E);
  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);

  //===--------------------------------------------------------------------===//
  //                         Scalar Expression Emission
  //===--------------------------------------------------------------------===//

  /// EmitCall - Generate a call of the given function, expecting the given
  /// result type, and using the given argument list which specifies both the
  /// LLVM arguments and the types they were derived from.
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
                  llvm::Instruction **callOrInvoke, SourceLocation Loc);
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
                  llvm::Instruction **callOrInvoke = nullptr) {
    return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
                    SourceLocation());
  }
  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
                  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
  RValue EmitCallExpr(const CallExpr *E,
                      ReturnValueSlot ReturnValue = ReturnValueSlot());
  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
  CGCallee EmitCallee(const Expr *E);

  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);

  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
                                  const Twine &name = "");
  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
                                  ArrayRef<llvm::Value*> args,
                                  const Twine &name = "");
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
                                          const Twine &name = "");
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
                                          ArrayRef<llvm::Value*> args,
                                          const Twine &name = "");

  SmallVector<llvm::OperandBundleDef, 1>
  getBundlesForFunclet(llvm::Value *Callee);

  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
                                  ArrayRef<llvm::Value *> Args,
                                  const Twine &Name = "");
  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
                                         ArrayRef<llvm::Value*> args,
                                         const Twine &name = "");
  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
                                         const Twine &name = "");
  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
                                       ArrayRef<llvm::Value*> args);

  CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
                                     NestedNameSpecifier *Qual,
                                     llvm::Type *Ty);

  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
                                               CXXDtorType Type,
                                               const CXXRecordDecl *RD);

  // These functions emit calls to the special functions of non-trivial C
  // structs.
  void defaultInitNonTrivialCStructVar(LValue Dst);
  void callCStructDefaultConstructor(LValue Dst);
  void callCStructDestructor(LValue Dst);
  void callCStructCopyConstructor(LValue Dst, LValue Src);
  void callCStructMoveConstructor(LValue Dst, LValue Src);
  void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
  void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);

  RValue
  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
                              const CGCallee &Callee,
                              ReturnValueSlot ReturnValue, llvm::Value *This,
                              llvm::Value *ImplicitParam,
                              QualType ImplicitParamTy, const CallExpr *E,
                              CallArgList *RtlArgs);
  RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
                               const CGCallee &Callee,
                               llvm::Value *This, llvm::Value *ImplicitParam,
                               QualType ImplicitParamTy, const CallExpr *E,
                               StructorType Type);
  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
                               ReturnValueSlot ReturnValue);
  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
                                               const CXXMethodDecl *MD,
                                               ReturnValueSlot ReturnValue,
                                               bool HasQualifier,
                                               NestedNameSpecifier *Qualifier,
                                               bool IsArrow, const Expr *Base);
  // Compute the object pointer.
  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
                                          llvm::Value *memberPtr,
                                          const MemberPointerType *memberPtrType,
                                          LValueBaseInfo *BaseInfo = nullptr,
                                          TBAAAccessInfo *TBAAInfo = nullptr);
  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
                                      ReturnValueSlot ReturnValue);

  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
                                       const CXXMethodDecl *MD,
                                       ReturnValueSlot ReturnValue);
  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);

  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
                                ReturnValueSlot ReturnValue);

  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
                                       ReturnValueSlot ReturnValue);

  RValue EmitBuiltinExpr(const FunctionDecl *FD,
                         unsigned BuiltinID, const CallExpr *E,
                         ReturnValueSlot ReturnValue);

  /// Emit IR for __builtin_os_log_format.
  RValue emitBuiltinOSLogFormat(const CallExpr &E);

  llvm::Function *generateBuiltinOSLogHelperFunction(
      const analyze_os_log::OSLogBufferLayout &Layout,
      CharUnits BufferAlignment);

  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);

  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
  /// is unhandled by the current target.
  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);

  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
                                             const llvm::CmpInst::Predicate Fp,
                                             const llvm::CmpInst::Predicate Ip,
                                             const llvm::Twine &Name = "");
  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
                                  llvm::Triple::ArchType Arch);

  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
                                         unsigned LLVMIntrinsic,
                                         unsigned AltLLVMIntrinsic,
                                         const char *NameHint,
                                         unsigned Modifier,
                                         const CallExpr *E,
                                         SmallVectorImpl<llvm::Value *> &Ops,
                                         Address PtrOp0, Address PtrOp1,
                                         llvm::Triple::ArchType Arch);

  llvm::Value *EmitISOVolatileLoad(const CallExpr *E);
  llvm::Value *EmitISOVolatileStore(const CallExpr *E);

  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
                                          unsigned Modifier, llvm::Type *ArgTy,
                                          const CallExpr *E);
  llvm::Value *EmitNeonCall(llvm::Function *F,
                            SmallVectorImpl<llvm::Value*> &O,
                            const char *name,
                            unsigned shift = 0, bool rightshift = false);
  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
                                   bool negateForRightShift);
  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
                                 llvm::Type *Ty, bool usgn, const char *name);
  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
                                      llvm::Triple::ArchType Arch);

  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
                                          const CallExpr *E);
  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);

private:
  enum class MSVCIntrin;

public:
  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);

  llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);

  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
                                const ObjCMethodDecl *MethodWithObjects);
  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
                             ReturnValueSlot Return = ReturnValueSlot());

  /// Retrieves the default cleanup kind for an ARC cleanup.
  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
  CleanupKind getARCCleanupKind() {
    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
             ? NormalAndEHCleanup : NormalCleanup;
  }

  // ARC primitives.
  void EmitARCInitWeak(Address addr, llvm::Value *value);
  void EmitARCDestroyWeak(Address addr);
  llvm::Value *EmitARCLoadWeak(Address addr);
  llvm::Value *EmitARCLoadWeakRetained(Address addr);
  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
  void EmitARCCopyWeak(Address dst, Address src);
  void EmitARCMoveWeak(Address dst, Address src);
  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
                                  bool resultIgnored);
  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
                                      bool resultIgnored);
  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
  llvm::Value *EmitARCAutorelease(llvm::Value *value);
  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);

  std::pair<LValue,llvm::Value*>
  EmitARCStoreAutoreleasing(const BinaryOperator *e);
  std::pair<LValue,llvm::Value*>
  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
  std::pair<LValue,llvm::Value*>
  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);

  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);

  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
                                            bool allowUnsafeClaim);
  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);

  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);

  static Destroyer destroyARCStrongImprecise;
  static Destroyer destroyARCStrongPrecise;
  static Destroyer destroyARCWeak;
  static Destroyer emitARCIntrinsicUse;
  static Destroyer destroyNonTrivialCStruct;

  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
  llvm::Value *EmitObjCAutoreleasePoolPush();
  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);

  /// Emits a reference binding to the passed in expression.
  RValue EmitReferenceBindingToExpr(const Expr *E);

  //===--------------------------------------------------------------------===//
  //                           Expression Emission
  //===--------------------------------------------------------------------===//

  // Expressions are broken into three classes: scalar, complex, aggregate.

  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
  /// scalar type, returning the result.
  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);

  /// Emit a conversion from the specified type to the specified destination
  /// type, both of which are LLVM scalar types.
  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
                                    QualType DstTy, SourceLocation Loc);

  /// Emit a conversion from the specified complex type to the specified
  /// destination type, where the destination type is an LLVM scalar type.
  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
                                             QualType DstTy,
                                             SourceLocation Loc);

  /// EmitAggExpr - Emit the computation of the specified expression
  /// of aggregate type.  The result is computed into the given slot,
  /// which may be null to indicate that the value is not needed.
  void EmitAggExpr(const Expr *E, AggValueSlot AS);

  /// EmitAggExprToLValue - Emit the computation of the specified expression of
  /// aggregate type into a temporary LValue.
  LValue EmitAggExprToLValue(const Expr *E);

  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
  /// make sure it survives garbage collection until this point.
  void EmitExtendGCLifetime(llvm::Value *object);

  /// EmitComplexExpr - Emit the computation of the specified expression of
  /// complex type, returning the result.
  ComplexPairTy EmitComplexExpr(const Expr *E,
                                bool IgnoreReal = false,
                                bool IgnoreImag = false);

  /// EmitComplexExprIntoLValue - Emit the given expression of complex
  /// type and place its result into the specified l-value.
  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);

  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);

  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);

  Address emitAddrOfRealComponent(Address complex, QualType complexType);
  Address emitAddrOfImagComponent(Address complex, QualType complexType);

  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
  /// global variable that has already been created for it.  If the initializer
  /// has a different type than GV does, this may free GV and return a different
  /// one.  Otherwise it just returns GV.
  llvm::GlobalVariable *
  AddInitializerToStaticVarDecl(const VarDecl &D,
                                llvm::GlobalVariable *GV);


  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
  /// variable with global storage.
  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
                                bool PerformInit);

  llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
                                   llvm::Constant *Addr);

  /// Call atexit() with a function that passes the given argument to
  /// the given function.
  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
                                    llvm::Constant *addr);

  /// Call atexit() with function dtorStub.
  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);

  /// Emit code in this function to perform a guarded variable
  /// initialization.  Guarded initializations are used when it's not
  /// possible to prove that an initialization will be done exactly
  /// once, e.g. with a static local variable or a static data member
  /// of a class template.
  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
                          bool PerformInit);

  enum class GuardKind { VariableGuard, TlsGuard };

  /// Emit a branch to select whether or not to perform guarded initialization.
  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
                                llvm::BasicBlock *InitBlock,
                                llvm::BasicBlock *NoInitBlock,
                                GuardKind Kind, const VarDecl *D);

  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
  /// variables.
  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
                                 ArrayRef<llvm::Function *> CXXThreadLocals,
                                 Address Guard = Address::invalid());

  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
  /// variables.
  void GenerateCXXGlobalDtorsFunc(
      llvm::Function *Fn,
      const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
          &DtorsAndObjects);

  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
                                        const VarDecl *D,
                                        llvm::GlobalVariable *Addr,
                                        bool PerformInit);

  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);

  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);

  void enterFullExpression(const ExprWithCleanups *E) {
    if (E->getNumObjects() == 0) return;
    enterNonTrivialFullExpression(E);
  }
  void enterNonTrivialFullExpression(const ExprWithCleanups *E);

  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);

  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);

  RValue EmitAtomicExpr(AtomicExpr *E);

  //===--------------------------------------------------------------------===//
  //                         Annotations Emission
  //===--------------------------------------------------------------------===//

  /// Emit an annotation call (intrinsic or builtin).
  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
                                  llvm::Value *AnnotatedVal,
                                  StringRef AnnotationStr,
                                  SourceLocation Location);

  /// Emit local annotations for the local variable V, declared by D.
  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);

  /// Emit field annotations for the given field & value. Returns the
  /// annotation result.
  Address EmitFieldAnnotations(const FieldDecl *D, Address V);

  //===--------------------------------------------------------------------===//
  //                             Internal Helpers
  //===--------------------------------------------------------------------===//

  /// ContainsLabel - Return true if the statement contains a label in it.  If
  /// this statement is not executed normally, it not containing a label means
  /// that we can just remove the code.
  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);

  /// containsBreak - Return true if the statement contains a break out of it.
  /// If the statement (recursively) contains a switch or loop with a break
  /// inside of it, this is fine.
  static bool containsBreak(const Stmt *S);

  /// Determine if the given statement might introduce a declaration into the
  /// current scope, by being a (possibly-labelled) DeclStmt.
  static bool mightAddDeclToScope(const Stmt *S);

  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
  /// to a constant, or if it does but contains a label, return false.  If it
  /// constant folds return true and set the boolean result in Result.
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
                                    bool AllowLabels = false);

  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
  /// to a constant, or if it does but contains a label, return false.  If it
  /// constant folds return true and set the folded value.
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
                                    bool AllowLabels = false);

  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
  /// if statement) to the specified blocks.  Based on the condition, this might
  /// try to simplify the codegen of the conditional based on the branch.
  /// TrueCount should be the number of times we expect the condition to
  /// evaluate to true based on PGO data.
  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
                            llvm::BasicBlock *FalseBlock, uint64_t TrueCount);

  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
  /// nonnull, if \p LHS is marked _Nonnull.
  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);

  /// An enumeration which makes it easier to specify whether or not an
  /// operation is a subtraction.
  enum { NotSubtraction = false, IsSubtraction = true };

  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
  /// \p SignedIndices indicates whether any of the GEP indices are signed.
  /// \p IsSubtraction indicates whether the expression used to form the GEP
  /// is a subtraction.
  llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
                                      ArrayRef<llvm::Value *> IdxList,
                                      bool SignedIndices,
                                      bool IsSubtraction,
                                      SourceLocation Loc,
                                      const Twine &Name = "");

  /// Specifies which type of sanitizer check to apply when handling a
  /// particular builtin.
  enum BuiltinCheckKind {
    BCK_CTZPassedZero,
    BCK_CLZPassedZero,
  };

  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
  /// enabled, a runtime check specified by \p Kind is also emitted.
  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);

  /// Emit a description of a type in a format suitable for passing to
  /// a runtime sanitizer handler.
  llvm::Constant *EmitCheckTypeDescriptor(QualType T);

  /// Convert a value into a format suitable for passing to a runtime
  /// sanitizer handler.
  llvm::Value *EmitCheckValue(llvm::Value *V);

  /// Emit a description of a source location in a format suitable for
  /// passing to a runtime sanitizer handler.
  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);

  /// Create a basic block that will call a handler function in a
  /// sanitizer runtime with the provided arguments, and create a conditional
  /// branch to it.
  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
                 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
                 ArrayRef<llvm::Value *> DynamicArgs);

  /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
  /// if Cond if false.
  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
                            llvm::ConstantInt *TypeId, llvm::Value *Ptr,
                            ArrayRef<llvm::Constant *> StaticArgs);

  /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
  /// checking is enabled. Otherwise, just emit an unreachable instruction.
  void EmitUnreachable(SourceLocation Loc);

  /// Create a basic block that will call the trap intrinsic, and emit a
  /// conditional branch to it, for the -ftrapv checks.
  void EmitTrapCheck(llvm::Value *Checked);

  /// Emit a call to trap or debugtrap and attach function attribute
  /// "trap-func-name" if specified.
  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);

  /// Emit a stub for the cross-DSO CFI check function.
  void EmitCfiCheckStub();

  /// Emit a cross-DSO CFI failure handling function.
  void EmitCfiCheckFail();

  /// Create a check for a function parameter that may potentially be
  /// declared as non-null.
  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
                           AbstractCallee AC, unsigned ParmNum);

  /// EmitCallArg - Emit a single call argument.
  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);

  /// EmitDelegateCallArg - We are performing a delegate call; that
  /// is, the current function is delegating to another one.  Produce
  /// a r-value suitable for passing the given parameter.
  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
                           SourceLocation loc);

  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
  /// point operation, expressed as the maximum relative error in ulp.
  void SetFPAccuracy(llvm::Value *Val, float Accuracy);

private:
  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
  void EmitReturnOfRValue(RValue RV, QualType Ty);

  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);

  llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
  DeferredReplacements;

  /// Set the address of a local variable.
  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
    assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
    LocalDeclMap.insert({VD, Addr});
  }

  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
  ///
  /// \param AI - The first function argument of the expansion.
  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
                          SmallVectorImpl<llvm::Value *>::iterator &AI);

  /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
  void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
                        SmallVectorImpl<llvm::Value *> &IRCallArgs,
                        unsigned &IRCallArgPos);

  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
                            const Expr *InputExpr, std::string &ConstraintStr);

  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
                                  LValue InputValue, QualType InputType,
                                  std::string &ConstraintStr,
                                  SourceLocation Loc);

  /// Attempts to statically evaluate the object size of E. If that
  /// fails, emits code to figure the size of E out for us. This is
  /// pass_object_size aware.
  ///
  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
                                               llvm::IntegerType *ResType,
                                               llvm::Value *EmittedE);

  /// Emits the size of E, as required by __builtin_object_size. This
  /// function is aware of pass_object_size parameters, and will act accordingly
  /// if E is a parameter with the pass_object_size attribute.
  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
                                     llvm::IntegerType *ResType,
                                     llvm::Value *EmittedE);

public:
#ifndef NDEBUG
  // Determine whether the given argument is an Objective-C method
  // that may have type parameters in its signature.
  static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
    const DeclContext *dc = method->getDeclContext();
    if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
      return classDecl->getTypeParamListAsWritten();
    }

    if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
      return catDecl->getTypeParamList();
    }

    return false;
  }

  template<typename T>
  static bool isObjCMethodWithTypeParams(const T *) { return false; }
#endif

  enum class EvaluationOrder {
    ///! No language constraints on evaluation order.
    Default,
    ///! Language semantics require left-to-right evaluation.
    ForceLeftToRight,
    ///! Language semantics require right-to-left evaluation.
    ForceRightToLeft
  };

  /// EmitCallArgs - Emit call arguments for a function.
  template <typename T>
  void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
                    AbstractCallee AC = AbstractCallee(),
                    unsigned ParamsToSkip = 0,
                    EvaluationOrder Order = EvaluationOrder::Default) {
    SmallVector<QualType, 16> ArgTypes;
    CallExpr::const_arg_iterator Arg = ArgRange.begin();

    assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
           "Can't skip parameters if type info is not provided");
    if (CallArgTypeInfo) {
#ifndef NDEBUG
      bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
#endif

      // First, use the argument types that the type info knows about
      for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
                E = CallArgTypeInfo->param_type_end();
           I != E; ++I, ++Arg) {
        assert(Arg != ArgRange.end() && "Running over edge of argument list!");
        assert((isGenericMethod ||
                ((*I)->isVariablyModifiedType() ||
                 (*I).getNonReferenceType()->isObjCRetainableType() ||
                 getContext()
                         .getCanonicalType((*I).getNonReferenceType())
                         .getTypePtr() ==
                     getContext()
                         .getCanonicalType((*Arg)->getType())
                         .getTypePtr())) &&
               "type mismatch in call argument!");
        ArgTypes.push_back(*I);
      }
    }

    // Either we've emitted all the call args, or we have a call to variadic
    // function.
    assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
            CallArgTypeInfo->isVariadic()) &&
           "Extra arguments in non-variadic function!");

    // If we still have any arguments, emit them using the type of the argument.
    for (auto *A : llvm::make_range(Arg, ArgRange.end()))
      ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());

    EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
  }

  void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
                    AbstractCallee AC = AbstractCallee(),
                    unsigned ParamsToSkip = 0,
                    EvaluationOrder Order = EvaluationOrder::Default);

  /// EmitPointerWithAlignment - Given an expression with a pointer type,
  /// emit the value and compute our best estimate of the alignment of the
  /// pointee.
  ///
  /// \param BaseInfo - If non-null, this will be initialized with
  /// information about the source of the alignment and the may-alias
  /// attribute.  Note that this function will conservatively fall back on
  /// the type when it doesn't recognize the expression and may-alias will
  /// be set to false.
  ///
  /// One reasonable way to use this information is when there's a language
  /// guarantee that the pointer must be aligned to some stricter value, and
  /// we're simply trying to ensure that sufficiently obvious uses of under-
  /// aligned objects don't get miscompiled; for example, a placement new
  /// into the address of a local variable.  In such a case, it's quite
  /// reasonable to just ignore the returned alignment when it isn't from an
  /// explicit source.
  Address EmitPointerWithAlignment(const Expr *Addr,
                                   LValueBaseInfo *BaseInfo = nullptr,
                                   TBAAAccessInfo *TBAAInfo = nullptr);

  /// If \p E references a parameter with pass_object_size info or a constant
  /// array size modifier, emit the object size divided by the size of \p EltTy.
  /// Otherwise return null.
  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);

  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);

  struct MultiVersionResolverOption {
    llvm::Function *Function;
    struct Conds {
      StringRef Architecture;
      llvm::SmallVector<StringRef, 8> Features;

      Conds(StringRef Arch, ArrayRef<StringRef> Feats)
          : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
    } Conditions;

    MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
                               ArrayRef<StringRef> Feats)
        : Function(F), Conditions(Arch, Feats) {}
  };

  // Emits the body of a multiversion function's resolver. Assumes that the
  // options are already sorted in the proper order, with the 'default' option
  // last (if it exists).
  void EmitMultiVersionResolver(llvm::Function *Resolver,
                                ArrayRef<MultiVersionResolverOption> Options);

  struct CPUDispatchMultiVersionResolverOption {
    llvm::Function *Function;
    // Note: EmitX86CPUSupports only has 32 bits available, so we store the mask
    // as 32 bits here.  When 64-bit support is added to __builtin_cpu_supports,
    // this can be extended to 64 bits.
    uint32_t FeatureMask;
    CPUDispatchMultiVersionResolverOption(llvm::Function *F, uint64_t Mask)
        : Function(F), FeatureMask(static_cast<uint32_t>(Mask)) {}
    bool operator>(const CPUDispatchMultiVersionResolverOption &Other) const {
      return FeatureMask > Other.FeatureMask;
    }
  };
  void EmitCPUDispatchMultiVersionResolver(
      llvm::Function *Resolver,
      ArrayRef<CPUDispatchMultiVersionResolverOption> Options);
  static uint32_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);

private:
  QualType getVarArgType(const Expr *Arg);

  void EmitDeclMetadata();

  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
                                  const AutoVarEmission &emission);

  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);

  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
  llvm::Value *EmitX86CpuIs(const CallExpr *E);
  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
  llvm::Value *EmitX86CpuSupports(uint32_t Mask);
  llvm::Value *EmitX86CpuInit();
  llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
};

inline DominatingLLVMValue::saved_type
DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
  if (!needsSaving(value)) return saved_type(value, false);

  // Otherwise, we need an alloca.
  auto align = CharUnits::fromQuantity(
            CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
  Address alloca =
    CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
  CGF.Builder.CreateStore(value, alloca);

  return saved_type(alloca.getPointer(), true);
}

inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
                                                 saved_type value) {
  // If the value says it wasn't saved, trust that it's still dominating.
  if (!value.getInt()) return value.getPointer();

  // Otherwise, it should be an alloca instruction, as set up in save().
  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
  return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
}

}  // end namespace CodeGen
}  // end namespace clang

#endif
OpenPOWER on IntegriCloud