//===- Schedule.cpp - Calculate an optimized schedule ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass the isl to calculate a schedule that is optimized for parallelism // and tileablility. The algorithm used in isl is an optimized version of the // algorithm described in following paper: // // U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. // A Practical Automatic Polyhedral Parallelizer and Locality Optimizer. // In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language // Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008. //===----------------------------------------------------------------------===// #include "polly/ScheduleOptimizer.h" #include "isl/aff.h" #include "isl/band.h" #include "isl/constraint.h" #include "isl/map.h" #include "isl/options.h" #include "isl/schedule.h" #include "isl/space.h" #include "polly/CodeGen/CodeGeneration.h" #include "polly/DependenceInfo.h" #include "polly/LinkAllPasses.h" #include "polly/Options.h" #include "polly/ScopInfo.h" #include "polly/Support/GICHelper.h" #include "llvm/Support/Debug.h" using namespace llvm; using namespace polly; #define DEBUG_TYPE "polly-opt-isl" namespace polly { bool DisablePollyTiling; } static cl::opt DisableTiling("polly-no-tiling", cl::desc("Disable tiling in the scheduler"), cl::location(polly::DisablePollyTiling), cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt OptimizeDeps("polly-opt-optimize-only", cl::desc("Only a certain kind of dependences (all/raw)"), cl::Hidden, cl::init("all"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt SimplifyDeps("polly-opt-simplify-deps", cl::desc("Dependences should be simplified (yes/no)"), cl::Hidden, cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt MaxConstantTerm( "polly-opt-max-constant-term", cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden, cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt MaxCoefficient( "polly-opt-max-coefficient", cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden, cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt FusionStrategy( "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"), cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt MaximizeBandDepth("polly-opt-maximize-bands", cl::desc("Maximize the band depth (yes/no)"), cl::Hidden, cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt DefaultTileSize( "polly-default-tile-size", cl::desc("The default tile size (if not enough were provided by" " --polly-tile-sizes)"), cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::list TileSizes("polly-tile-sizes", cl::desc("A tile size" " for each loop dimension, filled with" " --polly-default-tile-size"), cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory)); namespace { class IslScheduleOptimizer : public ScopPass { public: static char ID; explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; } ~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); } bool runOnScop(Scop &S) override; void printScop(raw_ostream &OS, Scop &S) const override; void getAnalysisUsage(AnalysisUsage &AU) const override; private: isl_schedule *LastSchedule; /// @brief Decide if the @p NewSchedule is profitable for @p S. /// /// @param S The SCoP we optimize. /// @param NewSchedule The new schedule we computed. /// /// @return True, if we believe @p NewSchedule is an improvement for @p S. bool isProfitableSchedule(Scop &S, __isl_keep isl_union_map *NewSchedule); static void extendScattering(Scop &S, unsigned NewDimensions); /// @brief Create a map that describes a n-dimensonal tiling. /// /// getTileMap creates a map from a n-dimensional scattering space into an /// 2*n-dimensional scattering space. The map describes a rectangular /// tiling. /// /// Example: /// scheduleDimensions = 2, parameterDimensions = 1, TileSizes = <32, 64> /// /// tileMap := [p0] -> {[s0, s1] -> [t0, t1, s0, s1]: /// t0 % 32 = 0 and t0 <= s0 < t0 + 32 and /// t1 % 64 = 0 and t1 <= s1 < t1 + 64} /// /// Before tiling: /// /// for (i = 0; i < N; i++) /// for (j = 0; j < M; j++) /// S(i,j) /// /// After tiling: /// /// for (t_i = 0; t_i < N; i+=32) /// for (t_j = 0; t_j < M; j+=64) /// for (i = t_i; i < min(t_i + 32, N); i++) | Unknown that N % 32 = 0 /// for (j = t_j; j < t_j + 64; j++) | Known that M % 64 = 0 /// S(i,j) /// static isl_basic_map *getTileMap(isl_ctx *ctx, int scheduleDimensions); /// @brief Get the schedule for this band. /// /// Polly applies transformations like tiling on top of the isl calculated /// value. This can influence the number of scheduling dimension. The /// number of schedule dimensions is returned in the parameter 'Dimension'. static isl_union_map *getScheduleForBand(isl_band *Band, int *Dimensions); /// @brief Create a map that pre-vectorizes one scheduling dimension. /// /// getPrevectorMap creates a map that maps each input dimension to the same /// output dimension, except for the dimension DimToVectorize. /// DimToVectorize is strip mined by 'VectorWidth' and the newly created /// point loop of DimToVectorize is moved to the innermost level. /// /// Example (DimToVectorize=0, ScheduleDimensions=2, VectorWidth=4): /// /// | Before transformation /// | /// | A[i,j] -> [i,j] /// | /// | for (i = 0; i < 128; i++) /// | for (j = 0; j < 128; j++) /// | A(i,j); /// /// Prevector map: /// [i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip /// /// | After transformation: /// | /// | A[i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip /// | /// | for (it = 0; it < 128; it+=4) /// | for (j = 0; j < 128; j++) /// | for (ip = max(0,it); ip < min(128, it + 3); ip++) /// | A(ip,j); /// /// The goal of this transformation is to create a trivially vectorizable /// loop. This means a parallel loop at the innermost level that has a /// constant number of iterations corresponding to the target vector width. /// /// This transformation creates a loop at the innermost level. The loop has /// a constant number of iterations, if the number of loop iterations at /// DimToVectorize can be divided by VectorWidth. The default VectorWidth is /// currently constant and not yet target specific. This function does not /// reason about parallelism. static isl_map *getPrevectorMap(isl_ctx *ctx, int DimToVectorize, int ScheduleDimensions, int VectorWidth = 4); /// @brief Get the scheduling map for a list of bands. /// /// Walk recursively the forest of bands to combine the schedules of the /// individual bands to the overall schedule. In case tiling is requested, /// the individual bands are tiled. static isl_union_map *getScheduleForBandList(isl_band_list *BandList); static isl_union_map *getScheduleMap(isl_schedule *Schedule); using llvm::Pass::doFinalization; virtual bool doFinalization() override { isl_schedule_free(LastSchedule); LastSchedule = nullptr; return true; } }; } char IslScheduleOptimizer::ID = 0; void IslScheduleOptimizer::extendScattering(Scop &S, unsigned NewDimensions) { for (ScopStmt *Stmt : S) { unsigned OldDimensions = Stmt->getNumScattering(); isl_space *Space; isl_map *Map, *New; Space = isl_space_alloc(Stmt->getIslCtx(), 0, OldDimensions, NewDimensions); Map = isl_map_universe(Space); for (unsigned i = 0; i < OldDimensions; i++) Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i); for (unsigned i = OldDimensions; i < NewDimensions; i++) Map = isl_map_fix_si(Map, isl_dim_out, i, 0); Map = isl_map_align_params(Map, S.getParamSpace()); New = isl_map_apply_range(Stmt->getScattering(), Map); Stmt->setScattering(New); } } isl_basic_map *IslScheduleOptimizer::getTileMap(isl_ctx *ctx, int scheduleDimensions) { // We construct // // tileMap := [p0] -> {[s0, s1] -> [t0, t1, p0, p1, a0, a1]: // s0 = a0 * 32 and s0 = p0 and t0 <= p0 < t0 + 64 and // s1 = a1 * 64 and s1 = p1 and t1 <= p1 < t1 + 64} // // and project out the auxilary dimensions a0 and a1. isl_space *Space = isl_space_alloc(ctx, 0, scheduleDimensions, scheduleDimensions * 3); isl_basic_map *tileMap = isl_basic_map_universe(isl_space_copy(Space)); isl_local_space *LocalSpace = isl_local_space_from_space(Space); for (int x = 0; x < scheduleDimensions; x++) { int sX = x; int tX = x; int pX = scheduleDimensions + x; int aX = 2 * scheduleDimensions + x; int tileSize = (int)TileSizes.size() > x ? TileSizes[x] : DefaultTileSize; assert(tileSize > 0 && "Invalid tile size"); isl_constraint *c; // sX = aX * tileSize; c = isl_equality_alloc(isl_local_space_copy(LocalSpace)); isl_constraint_set_coefficient_si(c, isl_dim_out, sX, 1); isl_constraint_set_coefficient_si(c, isl_dim_out, aX, -tileSize); tileMap = isl_basic_map_add_constraint(tileMap, c); // pX = sX; c = isl_equality_alloc(isl_local_space_copy(LocalSpace)); isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1); isl_constraint_set_coefficient_si(c, isl_dim_in, sX, -1); tileMap = isl_basic_map_add_constraint(tileMap, c); // tX <= pX c = isl_inequality_alloc(isl_local_space_copy(LocalSpace)); isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1); isl_constraint_set_coefficient_si(c, isl_dim_out, tX, -1); tileMap = isl_basic_map_add_constraint(tileMap, c); // pX <= tX + (tileSize - 1) c = isl_inequality_alloc(isl_local_space_copy(LocalSpace)); isl_constraint_set_coefficient_si(c, isl_dim_out, tX, 1); isl_constraint_set_coefficient_si(c, isl_dim_out, pX, -1); isl_constraint_set_constant_si(c, tileSize - 1); tileMap = isl_basic_map_add_constraint(tileMap, c); } // Project out auxilary dimensions. // // The auxilary dimensions are transformed into existentially quantified ones. // This reduces the number of visible scattering dimensions and allows Cloog // to produces better code. tileMap = isl_basic_map_project_out( tileMap, isl_dim_out, 2 * scheduleDimensions, scheduleDimensions); isl_local_space_free(LocalSpace); return tileMap; } isl_union_map *IslScheduleOptimizer::getScheduleForBand(isl_band *Band, int *Dimensions) { isl_union_map *PartialSchedule; isl_ctx *ctx; isl_space *Space; isl_basic_map *TileMap; isl_union_map *TileUMap; PartialSchedule = isl_band_get_partial_schedule(Band); *Dimensions = isl_band_n_member(Band); if (DisableTiling) return PartialSchedule; // It does not make any sense to tile a band with just one dimension. if (*Dimensions == 1) return PartialSchedule; ctx = isl_union_map_get_ctx(PartialSchedule); Space = isl_union_map_get_space(PartialSchedule); TileMap = getTileMap(ctx, *Dimensions); TileUMap = isl_union_map_from_map(isl_map_from_basic_map(TileMap)); TileUMap = isl_union_map_align_params(TileUMap, Space); *Dimensions = 2 * *Dimensions; return isl_union_map_apply_range(PartialSchedule, TileUMap); } isl_map *IslScheduleOptimizer::getPrevectorMap(isl_ctx *ctx, int DimToVectorize, int ScheduleDimensions, int VectorWidth) { isl_space *Space; isl_local_space *LocalSpace, *LocalSpaceRange; isl_set *Modulo; isl_map *TilingMap; isl_constraint *c; isl_aff *Aff; int PointDimension; /* ip */ int TileDimension; /* it */ isl_val *VectorWidthMP; assert(0 <= DimToVectorize && DimToVectorize < ScheduleDimensions); Space = isl_space_alloc(ctx, 0, ScheduleDimensions, ScheduleDimensions + 1); TilingMap = isl_map_universe(isl_space_copy(Space)); LocalSpace = isl_local_space_from_space(Space); PointDimension = ScheduleDimensions; TileDimension = DimToVectorize; // Create an identity map for everything except DimToVectorize and map // DimToVectorize to the point loop at the innermost dimension. for (int i = 0; i < ScheduleDimensions; i++) { c = isl_equality_alloc(isl_local_space_copy(LocalSpace)); c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1); if (i == DimToVectorize) c = isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, 1); else c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, 1); TilingMap = isl_map_add_constraint(TilingMap, c); } // it % 'VectorWidth' = 0 LocalSpaceRange = isl_local_space_range(isl_local_space_copy(LocalSpace)); Aff = isl_aff_zero_on_domain(LocalSpaceRange); Aff = isl_aff_set_constant_si(Aff, VectorWidth); Aff = isl_aff_set_coefficient_si(Aff, isl_dim_in, TileDimension, 1); VectorWidthMP = isl_val_int_from_si(ctx, VectorWidth); Aff = isl_aff_mod_val(Aff, VectorWidthMP); Modulo = isl_pw_aff_zero_set(isl_pw_aff_from_aff(Aff)); TilingMap = isl_map_intersect_range(TilingMap, Modulo); // it <= ip c = isl_inequality_alloc(isl_local_space_copy(LocalSpace)); isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, -1); isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, 1); TilingMap = isl_map_add_constraint(TilingMap, c); // ip <= it + ('VectorWidth' - 1) c = isl_inequality_alloc(LocalSpace); isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, 1); isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, -1); isl_constraint_set_constant_si(c, VectorWidth - 1); TilingMap = isl_map_add_constraint(TilingMap, c); return TilingMap; } isl_union_map * IslScheduleOptimizer::getScheduleForBandList(isl_band_list *BandList) { int NumBands; isl_union_map *Schedule; isl_ctx *ctx; ctx = isl_band_list_get_ctx(BandList); NumBands = isl_band_list_n_band(BandList); Schedule = isl_union_map_empty(isl_space_params_alloc(ctx, 0)); for (int i = 0; i < NumBands; i++) { isl_band *Band; isl_union_map *PartialSchedule; int ScheduleDimensions; isl_space *Space; Band = isl_band_list_get_band(BandList, i); PartialSchedule = getScheduleForBand(Band, &ScheduleDimensions); Space = isl_union_map_get_space(PartialSchedule); if (isl_band_has_children(Band)) { isl_band_list *Children; isl_union_map *SuffixSchedule; Children = isl_band_get_children(Band); SuffixSchedule = getScheduleForBandList(Children); PartialSchedule = isl_union_map_flat_range_product(PartialSchedule, SuffixSchedule); isl_band_list_free(Children); } else if (PollyVectorizerChoice != VECTORIZER_NONE) { // In case we are at the innermost band, we try to prepare for // vectorization. This means, we look for the innermost parallel loop // and strip mine this loop to the innermost level using a strip-mine // factor corresponding to the number of vector iterations. int NumDims = isl_band_n_member(Band); for (int j = NumDims - 1; j >= 0; j--) { if (isl_band_member_is_coincident(Band, j)) { isl_map *TileMap; isl_union_map *TileUMap; TileMap = getPrevectorMap(ctx, ScheduleDimensions - NumDims + j, ScheduleDimensions); TileUMap = isl_union_map_from_map(TileMap); TileUMap = isl_union_map_align_params(TileUMap, isl_space_copy(Space)); PartialSchedule = isl_union_map_apply_range(PartialSchedule, TileUMap); break; } } } Schedule = isl_union_map_union(Schedule, PartialSchedule); isl_band_free(Band); isl_space_free(Space); } return Schedule; } isl_union_map *IslScheduleOptimizer::getScheduleMap(isl_schedule *Schedule) { isl_band_list *BandList = isl_schedule_get_band_forest(Schedule); isl_union_map *ScheduleMap = getScheduleForBandList(BandList); isl_band_list_free(BandList); return ScheduleMap; } bool IslScheduleOptimizer::isProfitableSchedule( Scop &S, __isl_keep isl_union_map *NewSchedule) { // To understand if the schedule has been optimized we check if the schedule // has changed at all. // TODO: We can improve this by tracking if any necessarily beneficial // transformations have been performed. This can e.g. be tiling, loop // interchange, or ...) We can track this either at the place where the // transformation has been performed or, in case of automatic ILP based // optimizations, by comparing (yet to be defined) performance metrics // before/after the scheduling optimizer // (e.g., #stride-one accesses) isl_union_map *OldSchedule = S.getSchedule(); bool changed = !isl_union_map_is_equal(OldSchedule, NewSchedule); isl_union_map_free(OldSchedule); return changed; } bool IslScheduleOptimizer::runOnScop(Scop &S) { // Skip empty SCoPs but still allow code generation as it will delete the // loops present but not needed. if (S.getSize() == 0) { S.markAsOptimized(); return false; } DependenceInfo *D = &getAnalysis(); if (!D->hasValidDependences()) return false; isl_schedule_free(LastSchedule); LastSchedule = nullptr; // Build input data. int ValidityKinds = DependenceInfo::TYPE_RAW | DependenceInfo::TYPE_WAR | DependenceInfo::TYPE_WAW; int ProximityKinds; if (OptimizeDeps == "all") ProximityKinds = DependenceInfo::TYPE_RAW | DependenceInfo::TYPE_WAR | DependenceInfo::TYPE_WAW; else if (OptimizeDeps == "raw") ProximityKinds = DependenceInfo::TYPE_RAW; else { errs() << "Do not know how to optimize for '" << OptimizeDeps << "'" << " Falling back to optimizing all dependences.\n"; ProximityKinds = DependenceInfo::TYPE_RAW | DependenceInfo::TYPE_WAR | DependenceInfo::TYPE_WAW; } isl_union_set *Domain = S.getDomains(); if (!Domain) return false; isl_union_map *Validity = D->getDependences(ValidityKinds); isl_union_map *Proximity = D->getDependences(ProximityKinds); // Simplify the dependences by removing the constraints introduced by the // domains. This can speed up the scheduling time significantly, as large // constant coefficients will be removed from the dependences. The // introduction of some additional dependences reduces the possible // transformations, but in most cases, such transformation do not seem to be // interesting anyway. In some cases this option may stop the scheduler to // find any schedule. if (SimplifyDeps == "yes") { Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain)); Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain)); Proximity = isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain)); Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain)); } else if (SimplifyDeps != "no") { errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' " "or 'no'. Falling back to default: 'yes'\n"; } DEBUG(dbgs() << "\n\nCompute schedule from: "); DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n"); DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n"); DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n"); int IslFusionStrategy; if (FusionStrategy == "max") { IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX; } else if (FusionStrategy == "min") { IslFusionStrategy = ISL_SCHEDULE_FUSE_MIN; } else { errs() << "warning: Unknown fusion strategy. Falling back to maximal " "fusion.\n"; IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX; } int IslMaximizeBands; if (MaximizeBandDepth == "yes") { IslMaximizeBands = 1; } else if (MaximizeBandDepth == "no") { IslMaximizeBands = 0; } else { errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'" " or 'no'. Falling back to default: 'yes'\n"; IslMaximizeBands = 1; } isl_options_set_schedule_fuse(S.getIslCtx(), IslFusionStrategy); isl_options_set_schedule_maximize_band_depth(S.getIslCtx(), IslMaximizeBands); isl_options_set_schedule_max_constant_term(S.getIslCtx(), MaxConstantTerm); isl_options_set_schedule_max_coefficient(S.getIslCtx(), MaxCoefficient); isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_CONTINUE); isl_schedule_constraints *ScheduleConstraints; ScheduleConstraints = isl_schedule_constraints_on_domain(Domain); ScheduleConstraints = isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity); ScheduleConstraints = isl_schedule_constraints_set_validity( ScheduleConstraints, isl_union_map_copy(Validity)); ScheduleConstraints = isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity); isl_schedule *Schedule; Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints); isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_ABORT); // In cases the scheduler is not able to optimize the code, we just do not // touch the schedule. if (!Schedule) return false; DEBUG(dbgs() << "Schedule := " << stringFromIslObj(Schedule) << ";\n"); isl_union_map *NewSchedule = getScheduleMap(Schedule); // Check if the optimizations performed were profitable, otherwise exit early. if (!isProfitableSchedule(S, NewSchedule)) { isl_schedule_free(Schedule); isl_union_map_free(NewSchedule); return false; } S.markAsOptimized(); for (ScopStmt *Stmt : S) { isl_map *StmtSchedule; isl_set *Domain = Stmt->getDomain(); isl_union_map *StmtBand; StmtBand = isl_union_map_intersect_domain(isl_union_map_copy(NewSchedule), isl_union_set_from_set(Domain)); if (isl_union_map_is_empty(StmtBand)) { StmtSchedule = isl_map_from_domain(isl_set_empty(Stmt->getDomainSpace())); isl_union_map_free(StmtBand); } else { assert(isl_union_map_n_map(StmtBand) == 1); StmtSchedule = isl_map_from_union_map(StmtBand); } Stmt->setScattering(StmtSchedule); } isl_union_map_free(NewSchedule); LastSchedule = Schedule; unsigned MaxScatDims = 0; for (ScopStmt *Stmt : S) MaxScatDims = std::max(Stmt->getNumScattering(), MaxScatDims); extendScattering(S, MaxScatDims); return false; } void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const { isl_printer *p; char *ScheduleStr; OS << "Calculated schedule:\n"; if (!LastSchedule) { OS << "n/a\n"; return; } p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule)); p = isl_printer_print_schedule(p, LastSchedule); ScheduleStr = isl_printer_get_str(p); isl_printer_free(p); OS << ScheduleStr << "\n"; } void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const { ScopPass::getAnalysisUsage(AU); AU.addRequired(); } Pass *polly::createIslScheduleOptimizerPass() { return new IslScheduleOptimizer(); } INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl", "Polly - Optimize schedule of SCoP", false, false); INITIALIZE_PASS_DEPENDENCY(DependenceInfo); INITIALIZE_PASS_DEPENDENCY(ScopInfo); INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl", "Polly - Optimize schedule of SCoP", false, false)