//===------ FlattenAlgo.cpp ------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Main algorithm of the FlattenSchedulePass. This is a separate file to avoid // the unittest for this requiring linking against LLVM. // //===----------------------------------------------------------------------===// #include "polly/FlattenAlgo.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "polly-flatten-algo" using namespace polly; using namespace llvm; namespace { /// Whether a dimension of a set is bounded (lower and upper) by a constant, /// i.e. there are two constants Min and Max, such that every value x of the /// chosen dimensions is Min <= x <= Max. bool isDimBoundedByConstant(IslPtr Set, unsigned dim) { auto ParamDims = isl_set_dim(Set.keep(), isl_dim_param); Set = give(isl_set_project_out(Set.take(), isl_dim_param, 0, ParamDims)); Set = give(isl_set_project_out(Set.take(), isl_dim_set, 0, dim)); auto SetDims = isl_set_dim(Set.keep(), isl_dim_set); Set = give(isl_set_project_out(Set.take(), isl_dim_set, 1, SetDims - 1)); return isl_set_is_bounded(Set.keep()); } /// Whether a dimension of a set is (lower and upper) bounded by a constant or /// parameters, i.e. there are two expressions Min_p and Max_p of the parameters /// p, such that every value x of the chosen dimensions is /// Min_p <= x <= Max_p. bool isDimBoundedByParameter(IslPtr Set, unsigned dim) { Set = give(isl_set_project_out(Set.take(), isl_dim_set, 0, dim)); auto SetDims = isl_set_dim(Set.keep(), isl_dim_set); Set = give(isl_set_project_out(Set.take(), isl_dim_set, 1, SetDims - 1)); return isl_set_is_bounded(Set.keep()); } /// Whether BMap's first out-dimension is not a constant. bool isVariableDim(NonowningIslPtr BMap) { auto FixedVal = give(isl_basic_map_plain_get_val_if_fixed(BMap.keep(), isl_dim_out, 0)); return !FixedVal || isl_val_is_nan(FixedVal.keep()); } /// Whether Map's first out dimension is no constant nor piecewise constant. bool isVariableDim(NonowningIslPtr Map) { return foreachEltWithBreak(Map, [](IslPtr BMap) -> isl_stat { if (isVariableDim(BMap)) return isl_stat_error; return isl_stat_ok; }); } /// Whether UMap's first out dimension is no (piecewise) constant. bool isVariableDim(NonowningIslPtr UMap) { return foreachEltWithBreak(UMap, [](IslPtr Map) -> isl_stat { if (isVariableDim(Map)) return isl_stat_error; return isl_stat_ok; }); } /// If @p PwAff maps to a constant, return said constant. If @p Max/@p Min, it /// can also be a piecewise constant and it would return the minimum/maximum /// value. Otherwise, return NaN. IslPtr getConstant(IslPtr PwAff, bool Max, bool Min) { assert(!Max || !Min); IslPtr Result; foreachPieceWithBreak( PwAff, [=, &Result](IslPtr Set, IslPtr Aff) { if (Result && isl_val_is_nan(Result.keep())) return isl_stat_ok; // TODO: If Min/Max, we can also determine a minimum/maximum value if // Set is constant-bounded. if (!isl_aff_is_cst(Aff.keep())) { Result = give(isl_val_nan(Aff.getCtx())); return isl_stat_error; } auto ThisVal = give(isl_aff_get_constant_val(Aff.keep())); if (!Result) { Result = ThisVal; return isl_stat_ok; } if (isl_val_eq(Result.keep(), ThisVal.keep())) return isl_stat_ok; if (Max && isl_val_gt(ThisVal.keep(), Result.keep())) { Result = ThisVal; return isl_stat_ok; } if (Min && isl_val_lt(ThisVal.keep(), Result.keep())) { Result = ThisVal; return isl_stat_ok; } // Not compatible Result = give(isl_val_nan(Aff.getCtx())); return isl_stat_error; }); return Result; } /// Compute @p UPwAff - @p Val. IslPtr subtract(IslPtr UPwAff, IslPtr Val) { if (isl_val_is_zero(Val.keep())) return UPwAff; auto Result = give(isl_union_pw_aff_empty(isl_union_pw_aff_get_space(UPwAff.keep()))); foreachElt(UPwAff, [=, &Result](IslPtr PwAff) { auto ValAff = give(isl_pw_aff_val_on_domain( isl_set_universe(isl_space_domain(isl_pw_aff_get_space(PwAff.keep()))), Val.copy())); auto Subtracted = give(isl_pw_aff_sub(PwAff.copy(), ValAff.take())); Result = give(isl_union_pw_aff_union_add( Result.take(), isl_union_pw_aff_from_pw_aff(Subtracted.take()))); }); return Result; } /// Compute @UPwAff * @p Val. IslPtr multiply(IslPtr UPwAff, IslPtr Val) { if (isl_val_is_one(Val.keep())) return UPwAff; auto Result = give(isl_union_pw_aff_empty(isl_union_pw_aff_get_space(UPwAff.keep()))); foreachElt(UPwAff, [=, &Result](IslPtr PwAff) { auto ValAff = give(isl_pw_aff_val_on_domain( isl_set_universe(isl_space_domain(isl_pw_aff_get_space(PwAff.keep()))), Val.copy())); auto Multiplied = give(isl_pw_aff_mul(PwAff.copy(), ValAff.take())); Result = give(isl_union_pw_aff_union_add( Result.take(), isl_union_pw_aff_from_pw_aff(Multiplied.take()))); }); return Result; } /// Remove @p n dimensions from @p UMap's range, starting at @p first. /// /// It is assumed that all maps in the maps have at least the necessary number /// of out dimensions. IslPtr scheduleProjectOut(NonowningIslPtr UMap, unsigned first, unsigned n) { if (n == 0) return UMap; /* isl_map_project_out would also reset the tuple, which should have no effect on schedule ranges */ auto Result = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep()))); foreachElt(UMap, [=, &Result](IslPtr Map) { auto Outprojected = give(isl_map_project_out(Map.take(), isl_dim_out, first, n)); Result = give(isl_union_map_add_map(Result.take(), Outprojected.take())); }); return Result; } /// Return the number of dimensions in the input map's range. /// /// Because this function takes an isl_union_map, the out dimensions could be /// different. We return the maximum number in this case. However, a different /// number of dimensions is not supported by the other code in this file. size_t scheduleScatterDims(NonowningIslPtr Schedule) { unsigned Dims = 0; foreachElt(Schedule, [&Dims](IslPtr Map) { Dims = std::max(Dims, isl_map_dim(Map.keep(), isl_dim_out)); }); return Dims; } /// Return the @p pos' range dimension, converted to an isl_union_pw_aff. IslPtr scheduleExtractDimAff(IslPtr UMap, unsigned pos) { auto SingleUMap = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep()))); foreachElt(UMap, [=, &SingleUMap](IslPtr Map) { auto MapDims = isl_map_dim(Map.keep(), isl_dim_out); auto SingleMap = give(isl_map_project_out(Map.take(), isl_dim_out, 0, pos)); SingleMap = give(isl_map_project_out(SingleMap.take(), isl_dim_out, 1, MapDims - pos - 1)); SingleUMap = give(isl_union_map_add_map(SingleUMap.take(), SingleMap.take())); }); auto UAff = give(isl_union_pw_multi_aff_from_union_map(SingleUMap.take())); auto FirstMAff = give(isl_multi_union_pw_aff_from_union_pw_multi_aff(UAff.take())); return give(isl_multi_union_pw_aff_get_union_pw_aff(FirstMAff.keep(), 0)); } /// Flatten a sequence-like first dimension. /// /// A sequence-like scatter dimension is constant, or at least only small /// variation, typically the result of ordering a sequence of different /// statements. An example would be: /// { Stmt_A[] -> [0, X, ...]; Stmt_B[] -> [1, Y, ...] } /// to schedule all instances of Stmt_A before any instance of Stmt_B. /// /// To flatten, first begin with an offset of zero. Then determine the lowest /// possible value of the dimension, call it "i" [In the example we start at 0]. /// Considering only schedules with that value, consider only instances with /// that value and determine the extent of the next dimension. Let l_X(i) and /// u_X(i) its minimum (lower bound) and maximum (upper bound) value. Add them /// as "Offset + X - l_X(i)" to the new schedule, then add "u_X(i) - l_X(i) + 1" /// to Offset and remove all i-instances from the old schedule. Repeat with the /// remaining lowest value i' until there are no instances in the old schedule /// left. /// The example schedule would be transformed to: /// { Stmt_X[] -> [X - l_X, ...]; Stmt_B -> [l_X - u_X + 1 + Y - l_Y, ...] } IslPtr tryFlattenSequence(IslPtr Schedule) { auto IslCtx = Schedule.getCtx(); auto ScatterSet = give(isl_set_from_union_set(isl_union_map_range(Schedule.copy()))); auto ParamSpace = give(isl_space_params(isl_union_map_get_space(Schedule.keep()))); auto Dims = isl_set_dim(ScatterSet.keep(), isl_dim_set); assert(Dims >= 2); // Would cause an infinite loop. if (!isDimBoundedByConstant(ScatterSet, 0)) { DEBUG(dbgs() << "Abort; dimension is not of fixed size\n"); return nullptr; } auto AllDomains = give(isl_union_map_domain(Schedule.copy())); auto AllDomainsToNull = give(isl_union_pw_multi_aff_from_domain(AllDomains.take())); auto NewSchedule = give(isl_union_map_empty(ParamSpace.copy())); auto Counter = give(isl_pw_aff_zero_on_domain(isl_local_space_from_space( isl_space_set_from_params(ParamSpace.copy())))); while (!isl_set_is_empty(ScatterSet.keep())) { DEBUG(dbgs() << "Next counter:\n " << Counter << "\n"); DEBUG(dbgs() << "Remaining scatter set:\n " << ScatterSet << "\n"); auto ThisSet = give(isl_set_project_out(ScatterSet.copy(), isl_dim_set, 1, Dims - 1)); auto ThisFirst = give(isl_set_lexmin(ThisSet.take())); auto ScatterFirst = give(isl_set_add_dims(ThisFirst.take(), isl_dim_set, Dims - 1)); auto SubSchedule = give(isl_union_map_intersect_range( Schedule.copy(), isl_union_set_from_set(ScatterFirst.copy()))); SubSchedule = scheduleProjectOut(std::move(SubSchedule), 0, 1); SubSchedule = flattenSchedule(std::move(SubSchedule)); auto SubDims = scheduleScatterDims(SubSchedule); auto FirstSubSchedule = scheduleProjectOut(SubSchedule, 1, SubDims - 1); auto FirstScheduleAff = scheduleExtractDimAff(FirstSubSchedule, 0); auto RemainingSubSchedule = scheduleProjectOut(std::move(SubSchedule), 0, 1); auto FirstSubScatter = give( isl_set_from_union_set(isl_union_map_range(FirstSubSchedule.take()))); DEBUG(dbgs() << "Next step in sequence is:\n " << FirstSubScatter << "\n"); if (!isDimBoundedByParameter(FirstSubScatter, 0)) { DEBUG(dbgs() << "Abort; sequence step is not bounded\n"); return nullptr; } auto FirstSubScatterMap = give(isl_map_from_range(FirstSubScatter.take())); // isl_set_dim_max returns a strange isl_pw_aff with domain tuple_id of // 'none'. It doesn't match with any space including a 0-dimensional // anonymous tuple. // Interesting, one can create such a set using // isl_set_universe(ParamSpace). Bug? auto PartMin = give(isl_map_dim_min(FirstSubScatterMap.copy(), 0)); auto PartMax = give(isl_map_dim_max(FirstSubScatterMap.take(), 0)); auto One = give(isl_pw_aff_val_on_domain( isl_set_universe(isl_space_set_from_params(ParamSpace.copy())), isl_val_one(IslCtx))); auto PartLen = give(isl_pw_aff_add( isl_pw_aff_add(PartMax.take(), isl_pw_aff_neg(PartMin.copy())), One.take())); auto AllPartMin = give(isl_union_pw_aff_pullback_union_pw_multi_aff( isl_union_pw_aff_from_pw_aff(PartMin.take()), AllDomainsToNull.copy())); auto FirstScheduleAffNormalized = give(isl_union_pw_aff_sub(FirstScheduleAff.take(), AllPartMin.take())); auto AllCounter = give(isl_union_pw_aff_pullback_union_pw_multi_aff( isl_union_pw_aff_from_pw_aff(Counter.copy()), AllDomainsToNull.copy())); auto FirstScheduleAffWithOffset = give(isl_union_pw_aff_add( FirstScheduleAffNormalized.take(), AllCounter.take())); auto ScheduleWithOffset = give(isl_union_map_flat_range_product( isl_union_map_from_union_pw_aff(FirstScheduleAffWithOffset.take()), RemainingSubSchedule.take())); NewSchedule = give( isl_union_map_union(NewSchedule.take(), ScheduleWithOffset.take())); ScatterSet = give(isl_set_subtract(ScatterSet.take(), ScatterFirst.take())); Counter = give(isl_pw_aff_add(Counter.take(), PartLen.take())); } DEBUG(dbgs() << "Sequence-flatten result is:\n " << NewSchedule << "\n"); return NewSchedule; } /// Flatten a loop-like first dimension. /// /// A loop-like dimension is one that depends on a variable (usually a loop's /// induction variable). Let the input schedule look like this: /// { Stmt[i] -> [i, X, ...] } /// /// To flatten, we determine the largest extent of X which may not depend on the /// actual value of i. Let l_X() the smallest possible value of X and u_X() its /// largest value. Then, construct a new schedule /// { Stmt[i] -> [i * (u_X() - l_X() + 1), ...] } IslPtr tryFlattenLoop(IslPtr Schedule) { assert(scheduleScatterDims(Schedule) >= 2); auto Remaining = scheduleProjectOut(Schedule, 0, 1); auto SubSchedule = flattenSchedule(Remaining); auto SubDims = scheduleScatterDims(SubSchedule); auto SubExtent = give(isl_set_from_union_set(isl_union_map_range(SubSchedule.copy()))); auto SubExtentDims = isl_set_dim(SubExtent.keep(), isl_dim_param); SubExtent = give( isl_set_project_out(SubExtent.take(), isl_dim_param, 0, SubExtentDims)); SubExtent = give(isl_set_project_out(SubExtent.take(), isl_dim_set, 1, SubDims - 1)); if (!isDimBoundedByConstant(SubExtent, 0)) { DEBUG(dbgs() << "Abort; dimension not bounded by constant\n"); return nullptr; } auto Min = give(isl_set_dim_min(SubExtent.copy(), 0)); DEBUG(dbgs() << "Min bound:\n " << Min << "\n"); auto MinVal = getConstant(Min, false, true); auto Max = give(isl_set_dim_max(SubExtent.take(), 0)); DEBUG(dbgs() << "Max bound:\n " << Max << "\n"); auto MaxVal = getConstant(Max, true, false); if (!MinVal || !MaxVal || isl_val_is_nan(MinVal.keep()) || isl_val_is_nan(MaxVal.keep())) { DEBUG(dbgs() << "Abort; dimension bounds could not be determined\n"); return nullptr; } auto FirstSubScheduleAff = scheduleExtractDimAff(SubSchedule, 0); auto RemainingSubSchedule = scheduleProjectOut(std::move(SubSchedule), 0, 1); auto LenVal = give(isl_val_add_ui(isl_val_sub(MaxVal.take(), MinVal.copy()), 1)); auto FirstSubScheduleNormalized = subtract(FirstSubScheduleAff, MinVal); // TODO: Normalize FirstAff to zero (convert to isl_map, determine minimum, // subtract it) auto FirstAff = scheduleExtractDimAff(Schedule, 0); auto Offset = multiply(FirstAff, LenVal); auto Index = give( isl_union_pw_aff_add(FirstSubScheduleNormalized.take(), Offset.take())); auto IndexMap = give(isl_union_map_from_union_pw_aff(Index.take())); auto Result = give(isl_union_map_flat_range_product( IndexMap.take(), RemainingSubSchedule.take())); DEBUG(dbgs() << "Loop-flatten result is:\n " << Result << "\n"); return Result; } } // anonymous namespace IslPtr polly::flattenSchedule(IslPtr Schedule) { auto Dims = scheduleScatterDims(Schedule); DEBUG(dbgs() << "Recursive schedule to process:\n " << Schedule << "\n"); // Base case; no dimensions left if (Dims == 0) { // TODO: Add one dimension? return Schedule; } // Base case; already one-dimensional if (Dims == 1) return Schedule; // Fixed dimension; no need to preserve variabledness. if (!isVariableDim(Schedule)) { DEBUG(dbgs() << "Fixed dimension; try sequence flattening\n"); auto NewScheduleSequence = tryFlattenSequence(Schedule); if (NewScheduleSequence) return NewScheduleSequence; } // Constant stride DEBUG(dbgs() << "Try loop flattening\n"); auto NewScheduleLoop = tryFlattenLoop(Schedule); if (NewScheduleLoop) return NewScheduleLoop; // Try again without loop condition (may blow up the number of pieces!!) DEBUG(dbgs() << "Try sequence flattening again\n"); auto NewScheduleSequence = tryFlattenSequence(Schedule); if (NewScheduleSequence) return NewScheduleSequence; // Cannot flatten return Schedule; }