//===- DeadCodeElimination.cpp - Eliminate dead iteration ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The polyhedral dead code elimination pass analyses a SCoP to eliminate // statement instances that can be proven dead. // As a consequence, the code generated for this SCoP may execute a statement // less often. This means, a statement may be executed only in certain loop // iterations or it may not even be part of the generated code at all. // // This code: // // for (i = 0; i < N; i++) // arr[i] = 0; // for (i = 0; i < N; i++) // arr[i] = 10; // for (i = 0; i < N; i++) // arr[i] = i; // // is e.g. simplified to: // // for (i = 0; i < N; i++) // arr[i] = i; // // The idea and the algorithm used was first implemented by Sven Verdoolaege in // the 'ppcg' tool. // //===----------------------------------------------------------------------===// #include "polly/DependenceInfo.h" #include "polly/LinkAllPasses.h" #include "polly/ScopInfo.h" #include "llvm/Support/CommandLine.h" #include "isl/flow.h" #include "isl/map.h" #include "isl/set.h" #include "isl/union_map.h" #include "isl/union_set.h" using namespace llvm; using namespace polly; namespace { cl::opt DCEPreciseSteps( "polly-dce-precise-steps", cl::desc("The number of precise steps between two approximating " "iterations. (A value of -1 schedules another approximation stage " "before the actual dead code elimination."), cl::ZeroOrMore, cl::init(-1)); class DeadCodeElim : public ScopPass { public: static char ID; explicit DeadCodeElim() : ScopPass(ID) {} /// Remove dead iterations from the schedule of @p S. bool runOnScop(Scop &S) override; /// Register all analyses and transformation required. void getAnalysisUsage(AnalysisUsage &AU) const override; private: /// Return the set of live iterations. /// /// The set of live iterations are all iterations that write to memory and for /// which we can not prove that there will be a later write that _must_ /// overwrite the same memory location and is consequently the only one that /// is visible after the execution of the SCoP. /// isl_union_set *getLiveOut(Scop &S); bool eliminateDeadCode(Scop &S, int PreciseSteps); }; } // namespace char DeadCodeElim::ID = 0; // To compute the live outs, we compute for the data-locations that are // must-written to the last statement that touches these locations. On top of // this we add all statements that perform may-write accesses. // // We could be more precise by removing may-write accesses for which we know // that they are overwritten by a must-write after. However, at the moment the // only may-writes we introduce access the full (unbounded) array, such that // bounded write accesses can not overwrite all of the data-locations. As // this means may-writes are in the current situation always live, there is // no point in trying to remove them from the live-out set. __isl_give isl_union_set *DeadCodeElim::getLiveOut(Scop &S) { isl_union_map *Schedule = S.getSchedule(); assert(Schedule && "Schedules that contain extension nodes require special handling."); isl_union_map *WriteIterations = isl_union_map_reverse(S.getMustWrites()); isl_union_map *WriteTimes = isl_union_map_apply_range(WriteIterations, isl_union_map_copy(Schedule)); isl_union_map *LastWriteTimes = isl_union_map_lexmax(WriteTimes); isl_union_map *LastWriteIterations = isl_union_map_apply_range( LastWriteTimes, isl_union_map_reverse(Schedule)); isl_union_set *Live = isl_union_map_range(LastWriteIterations); Live = isl_union_set_union(Live, isl_union_map_domain(S.getMayWrites())); return isl_union_set_coalesce(Live); } /// Performs polyhedral dead iteration elimination by: /// o Assuming that the last write to each location is live. /// o Following each RAW dependency from a live iteration backwards and adding /// that iteration to the live set. /// /// To ensure the set of live iterations does not get too complex we always /// combine a certain number of precise steps with one approximating step that /// simplifies the life set with an affine hull. bool DeadCodeElim::eliminateDeadCode(Scop &S, int PreciseSteps) { DependenceInfo &DI = getAnalysis(); const Dependences &D = DI.getDependences(Dependences::AL_Statement); if (!D.hasValidDependences()) return false; isl_union_set *Live = getLiveOut(S); isl_union_map *Dep = D.getDependences(Dependences::TYPE_RAW | Dependences::TYPE_RED); Dep = isl_union_map_reverse(Dep); if (PreciseSteps == -1) Live = isl_union_set_affine_hull(Live); isl_union_set *OriginalDomain = S.getDomains(); int Steps = 0; while (true) { isl_union_set *Extra; Steps++; Extra = isl_union_set_apply(isl_union_set_copy(Live), isl_union_map_copy(Dep)); if (isl_union_set_is_subset(Extra, Live)) { isl_union_set_free(Extra); break; } Live = isl_union_set_union(Live, Extra); if (Steps > PreciseSteps) { Steps = 0; Live = isl_union_set_affine_hull(Live); } Live = isl_union_set_intersect(Live, isl_union_set_copy(OriginalDomain)); } isl_union_map_free(Dep); isl_union_set_free(OriginalDomain); bool Changed = S.restrictDomains(isl_union_set_coalesce(Live)); // FIXME: We can probably avoid the recomputation of all dependences by // updating them explicitly. if (Changed) DI.recomputeDependences(Dependences::AL_Statement); return Changed; } bool DeadCodeElim::runOnScop(Scop &S) { return eliminateDeadCode(S, DCEPreciseSteps); } void DeadCodeElim::getAnalysisUsage(AnalysisUsage &AU) const { ScopPass::getAnalysisUsage(AU); AU.addRequired(); } Pass *polly::createDeadCodeElimPass() { return new DeadCodeElim(); } INITIALIZE_PASS_BEGIN(DeadCodeElim, "polly-dce", "Polly - Remove dead iterations", false, false) INITIALIZE_PASS_DEPENDENCY(DependenceInfo) INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass) INITIALIZE_PASS_END(DeadCodeElim, "polly-dce", "Polly - Remove dead iterations", false, false)