//===------ DeLICM.cpp -----------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Undo the effect of Loop Invariant Code Motion (LICM) and // GVN Partial Redundancy Elimination (PRE) on SCoP-level. // // Namely, remove register/scalar dependencies by mapping them back to array // elements. // // The algorithms here work on the scatter space - the image space of the // schedule returned by Scop::getSchedule(). We call an element in that space a // "timepoint". Timepoints are lexicographically ordered such that we can // defined ranges in the scatter space. We use two flavors of such ranges: // Timepoint sets and zones. A timepoint set is simply a subset of the scatter // space and is directly stored as isl_set. // // Zones are used to describe the space between timepoints as open sets, i.e. // they do not contain the extrema. Using isl rational sets to express these // would be overkill. We also cannot store them as the integer timepoints they // contain; the (nonempty) zone between 1 and 2 would be empty and // indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store // the integer set including the extrema; the set ]1,2[ + ]3,4[ could be // coalesced to ]1,3[, although we defined the range [2,3] to be not in the set. // Instead, we store the "half-open" integer extrema, including the lower bound, // but excluding the upper bound. Examples: // // * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the // integer points 1 and 2, but not 0 or 3) // // * { [1] } represents the zone ]0,1[ // // * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[ // // Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly // speaking the integer points never belong to the zone. However, depending an // the interpretation, one might want to include them. Part of the // interpretation may not be known when the zone is constructed. // // Reads are assumed to always take place before writes, hence we can think of // reads taking place at the beginning of a timepoint and writes at the end. // // Let's assume that the zone represents the lifetime of a variable. That is, // the zone begins with a write that defines the value during its lifetime and // ends with the last read of that value. In the following we consider whether a // read/write at the beginning/ending of the lifetime zone should be within the // zone or outside of it. // // * A read at the timepoint that starts the live-range loads the previous // value. Hence, exclude the timepoint starting the zone. // // * A write at the timepoint that starts the live-range is not defined whether // it occurs before or after the write that starts the lifetime. We do not // allow this situation to occur. Hence, we include the timepoint starting the // zone to determine whether they are conflicting. // // * A read at the timepoint that ends the live-range reads the same variable. // We include the timepoint at the end of the zone to include that read into // the live-range. Doing otherwise would mean that the two reads access // different values, which would mean that the value they read are both alive // at the same time but occupy the same variable. // // * A write at the timepoint that ends the live-range starts a new live-range. // It must not be included in the live-range of the previous definition. // // All combinations of reads and writes at the endpoints are possible, but most // of the time only the write->read (for instance, a live-range from definition // to last use) and read->write (for instance, an unused range from last use to // overwrite) and combinations are interesting (half-open ranges). write->write // zones might be useful as well in some context to represent // output-dependencies. // // @see convertZoneToTimepoints // // // The code makes use of maps and sets in many different spaces. To not loose // track in which space a set or map is expected to be in, variables holding an // isl reference are usually annotated in the comments. They roughly follow isl // syntax for spaces, but only the tuples, not the dimensions. The tuples have a // meaning as follows: // // * Space[] - An unspecified tuple. Used for function parameters such that the // function caller can use it for anything they like. // // * Domain[] - A statement instance as returned by ScopStmt::getDomain() // isl_id_get_name: Stmt_ // isl_id_get_user: Pointer to ScopStmt // // * Element[] - An array element as in the range part of // MemoryAccess::getAccessRelation() // isl_id_get_name: MemRef_ // isl_id_get_user: Pointer to ScopArrayInfo // // * Scatter[] - Scatter space or space of timepoints // Has no tuple id // // * Zone[] - Range between timepoints as described above // Has no tuple id // // * ValInst[] - An llvm::Value as defined at a specific timepoint. // // A ValInst[] itself can be structured as one of: // // * [] - An unknown value. // Always zero dimensions // Has no tuple id // // * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its // runtime content does not depend on the timepoint. // Always zero dimensions // isl_id_get_name: Val_ // isl_id_get_user: A pointer to an llvm::Value // // * SCEV[...] - A synthesizable llvm::SCEV Expression. // In contrast to a Value[] is has at least one dimension per // SCEVAddRecExpr in the SCEV. // // * [Domain[] -> Value[]] - An llvm::Value that may change during the // Scop's execution. // The tuple itself has no id, but it wraps a map space holding a // statement instance which defines the llvm::Value as the map's domain // and llvm::Value itself as range. // // @see makeValInst() // // An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a // statement instance to a timepoint, aka a schedule. There is only one scatter // space, but most of the time multiple statements are processed in one set. // This is why most of the time isl_union_map has to be used. // // The basic algorithm works as follows: // At first we verify that the SCoP is compatible with this technique. For // instance, two writes cannot write to the same location at the same statement // instance because we cannot determine within the polyhedral model which one // comes first. Once this was verified, we compute zones at which an array // element is unused. This computation can fail if it takes too long. Then the // main algorithm is executed. Because every store potentially trails an unused // zone, we start at stores. We search for a scalar (MemoryKind::Value or // MemoryKind::PHI) that we can map to the array element overwritten by the // store, preferably one that is used by the store or at least the ScopStmt. // When it does not conflict with the lifetime of the values in the array // element, the map is applied and the unused zone updated as it is now used. We // continue to try to map scalars to the array element until there are no more // candidates to map. The algorithm is greedy in the sense that the first scalar // not conflicting will be mapped. Other scalars processed later that could have // fit the same unused zone will be rejected. As such the result depends on the // processing order. // //===----------------------------------------------------------------------===// #include "polly/DeLICM.h" #include "polly/Options.h" #include "polly/ScopInfo.h" #include "polly/ScopPass.h" #include "polly/Support/ISLOStream.h" #include "polly/Support/ISLTools.h" #include "polly/Support/VirtualInstruction.h" #include "llvm/ADT/Statistic.h" #define DEBUG_TYPE "polly-delicm" using namespace polly; using namespace llvm; namespace { cl::opt DelicmMaxOps("polly-delicm-max-ops", cl::desc("Maximum number of isl operations to invest for " "lifetime analysis; 0=no limit"), cl::init(1000000), cl::cat(PollyCategory)); cl::opt DelicmOverapproximateWrites( "polly-delicm-overapproximate-writes", cl::desc( "Do more PHI writes than necessary in order to avoid partial accesses"), cl::init(false), cl::Hidden, cl::cat(PollyCategory)); cl::opt DelicmPartialWrites("polly-delicm-partial-writes", cl::desc("Allow partial writes"), cl::init(false), cl::Hidden, cl::cat(PollyCategory)); cl::opt DelicmComputeKnown("polly-delicm-compute-known", cl::desc("Compute known content of array elements"), cl::init(true), cl::Hidden, cl::cat(PollyCategory)); STATISTIC(DeLICMAnalyzed, "Number of successfully analyzed SCoPs"); STATISTIC(DeLICMOutOfQuota, "Analyses aborted because max_operations was reached"); STATISTIC(DeLICMIncompatible, "Number of SCoPs incompatible for analysis"); STATISTIC(MappedValueScalars, "Number of mapped Value scalars"); STATISTIC(MappedPHIScalars, "Number of mapped PHI scalars"); STATISTIC(TargetsMapped, "Number of stores used for at least one mapping"); STATISTIC(DeLICMScopsModified, "Number of SCoPs optimized"); isl::union_map computeReachingDefinition(isl::union_map Schedule, isl::union_map Writes, bool InclDef, bool InclRedef) { return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef); } isl::union_map computeReachingOverwrite(isl::union_map Schedule, isl::union_map Writes, bool InclPrevWrite, bool InclOverwrite) { return computeReachingWrite(Schedule, Writes, true, InclPrevWrite, InclOverwrite); } /// Compute the next overwrite for a scalar. /// /// @param Schedule { DomainWrite[] -> Scatter[] } /// Schedule of (at least) all writes. Instances not in @p /// Writes are ignored. /// @param Writes { DomainWrite[] } /// The element instances that write to the scalar. /// @param InclPrevWrite Whether to extend the timepoints to include /// the timepoint where the previous write happens. /// @param InclOverwrite Whether the reaching overwrite includes the timepoint /// of the overwrite itself. /// /// @return { Scatter[] -> DomainDef[] } isl::union_map computeScalarReachingOverwrite(isl::union_map Schedule, isl::union_set Writes, bool InclPrevWrite, bool InclOverwrite) { // { DomainWrite[] } auto WritesMap = give(isl_union_map_from_domain(Writes.take())); // { [Element[] -> Scatter[]] -> DomainWrite[] } auto Result = computeReachingOverwrite( std::move(Schedule), std::move(WritesMap), InclPrevWrite, InclOverwrite); return give(isl_union_map_domain_factor_range(Result.take())); } /// Overload of computeScalarReachingOverwrite, with only one writing statement. /// Consequently, the result consists of only one map space. /// /// @param Schedule { DomainWrite[] -> Scatter[] } /// @param Writes { DomainWrite[] } /// @param InclPrevWrite Include the previous write to result. /// @param InclOverwrite Include the overwrite to the result. /// /// @return { Scatter[] -> DomainWrite[] } isl::map computeScalarReachingOverwrite(isl::union_map Schedule, isl::set Writes, bool InclPrevWrite, bool InclOverwrite) { auto ScatterSpace = getScatterSpace(Schedule); auto DomSpace = give(isl_set_get_space(Writes.keep())); auto ReachOverwrite = computeScalarReachingOverwrite( Schedule, give(isl_union_set_from_set(Writes.take())), InclPrevWrite, InclOverwrite); auto ResultSpace = give(isl_space_map_from_domain_and_range( ScatterSpace.take(), DomSpace.take())); return singleton(std::move(ReachOverwrite), ResultSpace); } /// Compute the reaching definition of a scalar. /// /// Compared to computeReachingDefinition, there is just one element which is /// accessed and therefore only a set if instances that accesses that element is /// required. /// /// @param Schedule { DomainWrite[] -> Scatter[] } /// @param Writes { DomainWrite[] } /// @param InclDef Include the timepoint of the definition to the result. /// @param InclRedef Include the timepoint of the overwrite into the result. /// /// @return { Scatter[] -> DomainWrite[] } isl::union_map computeScalarReachingDefinition(isl::union_map Schedule, isl::union_set Writes, bool InclDef, bool InclRedef) { // { DomainWrite[] -> Element[] } auto Defs = give(isl_union_map_from_domain(Writes.take())); // { [Element[] -> Scatter[]] -> DomainWrite[] } auto ReachDefs = computeReachingDefinition(Schedule, Defs, InclDef, InclRedef); // { Scatter[] -> DomainWrite[] } return give(isl_union_set_unwrap( isl_union_map_range(isl_union_map_curry(ReachDefs.take())))); } /// Compute the reaching definition of a scalar. /// /// This overload accepts only a single writing statement as an isl_map, /// consequently the result also is only a single isl_map. /// /// @param Schedule { DomainWrite[] -> Scatter[] } /// @param Writes { DomainWrite[] } /// @param InclDef Include the timepoint of the definition to the result. /// @param InclRedef Include the timepoint of the overwrite into the result. /// /// @return { Scatter[] -> DomainWrite[] } isl::map computeScalarReachingDefinition( // { Domain[] -> Zone[] } isl::union_map Schedule, isl::set Writes, bool InclDef, bool InclRedef) { auto DomainSpace = give(isl_set_get_space(Writes.keep())); auto ScatterSpace = getScatterSpace(Schedule); // { Scatter[] -> DomainWrite[] } auto UMap = computeScalarReachingDefinition( Schedule, give(isl_union_set_from_set(Writes.take())), InclDef, InclRedef); auto ResultSpace = give(isl_space_map_from_domain_and_range( ScatterSpace.take(), DomainSpace.take())); return singleton(UMap, ResultSpace); } /// Create a domain-to-unknown value mapping. /// /// Value instances that do not represent a specific value are represented by an /// unnamed tuple of 0 dimensions. Its meaning depends on the context. It can /// either mean a specific but unknown value which cannot be represented by /// other means. It conflicts with itself because those two unknown ValInsts may /// have different concrete values at runtime. /// /// The other meaning is an arbitrary or wildcard value that can be chosen /// freely, like LLVM's undef. If matched with an unknown ValInst, there is no /// conflict. /// /// @param Domain { Domain[] } /// /// @return { Domain[] -> ValInst[] } isl::union_map makeUnknownForDomain(isl::union_set Domain) { return give(isl_union_map_from_domain(Domain.take())); } /// Create a domain-to-unknown value mapping. /// /// @see makeUnknownForDomain(isl::union_set) /// /// @param Domain { Domain[] } /// /// @return { Domain[] -> ValInst[] } isl::map makeUnknownForDomain(isl::set Domain) { return give(isl_map_from_domain(Domain.take())); } /// Return whether @p Map maps to an unknown value. /// /// @param { [] -> ValInst[] } bool isMapToUnknown(const isl::map &Map) { auto Space = give(isl_space_range(isl_map_get_space(Map.keep()))); return !isl_map_has_tuple_id(Map.keep(), isl_dim_set) && !isl_space_is_wrapping(Space.keep()) && isl_map_dim(Map.keep(), isl_dim_out) == 0; } /// Return only the mappings that map to known values. /// /// @param UMap { [] -> ValInst[] } /// /// @return { [] -> ValInst[] } isl::union_map filterKnownValInst(const isl::union_map &UMap) { auto Result = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep()))); UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat { if (!isMapToUnknown(Map)) Result = give(isl_union_map_add_map(Result.take(), Map.take())); return isl::stat::ok; }); return Result; } /// Try to find a 'natural' extension of a mapped to elements outside its /// domain. /// /// @param Relevant The map with mapping that may not be modified. /// @param Universe The domain to which @p Relevant needs to be extended. /// /// @return A map with that associates the domain elements of @p Relevant to the /// same elements and in addition the elements of @p Universe to some /// undefined elements. The function prefers to return simple maps. isl::union_map expandMapping(isl::union_map Relevant, isl::union_set Universe) { Relevant = give(isl_union_map_coalesce(Relevant.take())); auto RelevantDomain = give(isl_union_map_domain(Relevant.copy())); auto Simplified = give(isl_union_map_gist_domain(Relevant.take(), RelevantDomain.take())); Simplified = give(isl_union_map_coalesce(Simplified.take())); return give( isl_union_map_intersect_domain(Simplified.take(), Universe.take())); } /// Represent the knowledge of the contents of any array elements in any zone or /// the knowledge we would add when mapping a scalar to an array element. /// /// Every array element at every zone unit has one of two states: /// /// - Unused: Not occupied by any value so a transformation can change it to /// other values. /// /// - Occupied: The element contains a value that is still needed. /// /// The union of Unused and Unknown zones forms the universe, the set of all /// elements at every timepoint. The universe can easily be derived from the /// array elements that are accessed someway. Arrays that are never accessed /// also never play a role in any computation and can hence be ignored. With a /// given universe, only one of the sets needs to stored implicitly. Computing /// the complement is also an expensive operation, hence this class has been /// designed that only one of sets is needed while the other is assumed to be /// implicit. It can still be given, but is mostly ignored. /// /// There are two use cases for the Knowledge class: /// /// 1) To represent the knowledge of the current state of ScopInfo. The unused /// state means that an element is currently unused: there is no read of it /// before the next overwrite. Also called 'Existing'. /// /// 2) To represent the requirements for mapping a scalar to array elements. The /// unused state means that there is no change/requirement. Also called /// 'Proposed'. /// /// In addition to these states at unit zones, Knowledge needs to know when /// values are written. This is because written values may have no lifetime (one /// reason is that the value is never read). Such writes would therefore never /// conflict, but overwrite values that might still be required. Another source /// of problems are multiple writes to the same element at the same timepoint, /// because their order is undefined. class Knowledge { private: /// { [Element[] -> Zone[]] } /// Set of array elements and when they are alive. /// Can contain a nullptr; in this case the set is implicitly defined as the /// complement of #Unused. /// /// The set of alive array elements is represented as zone, as the set of live /// values can differ depending on how the elements are interpreted. /// Assuming a value X is written at timestep [0] and read at timestep [1] /// without being used at any later point, then the value is alive in the /// interval ]0,1[. This interval cannot be represented by an integer set, as /// it does not contain any integer point. Zones allow us to represent this /// interval and can be converted to sets of timepoints when needed (e.g., in /// isConflicting when comparing to the write sets). /// @see convertZoneToTimepoints and this file's comment for more details. isl::union_set Occupied; /// { [Element[] -> Zone[]] } /// Set of array elements when they are not alive, i.e. their memory can be /// used for other purposed. Can contain a nullptr; in this case the set is /// implicitly defined as the complement of #Occupied. isl::union_set Unused; /// { [Element[] -> Zone[]] -> ValInst[] } /// Maps to the known content for each array element at any interval. /// /// Any element/interval can map to multiple known elements. This is due to /// multiple llvm::Value referring to the same content. Examples are /// /// - A value stored and loaded again. The LoadInst represents the same value /// as the StoreInst's value operand. /// /// - A PHINode is equal to any one of the incoming values. In case of /// LCSSA-form, it is always equal to its single incoming value. /// /// Two Knowledges are considered not conflicting if at least one of the known /// values match. Not known values are not stored as an unnamed tuple (as /// #Written does), but maps to nothing. /// /// Known values are usually just defined for #Occupied elements. Knowing /// #Unused contents has no advantage as it can be overwritten. isl::union_map Known; /// { [Element[] -> Scatter[]] -> ValInst[] } /// The write actions currently in the scop or that would be added when /// mapping a scalar. Maps to the value that is written. /// /// Written values that cannot be identified are represented by an unknown /// ValInst[] (an unnamed tuple of 0 dimension). It conflicts with itself. isl::union_map Written; /// Check whether this Knowledge object is well-formed. void checkConsistency() const { #ifndef NDEBUG // Default-initialized object if (!Occupied && !Unused && !Known && !Written) return; assert(Occupied || Unused); assert(Known); assert(Written); // If not all fields are defined, we cannot derived the universe. if (!Occupied || !Unused) return; assert(isl_union_set_is_disjoint(Occupied.keep(), Unused.keep()) == isl_bool_true); auto Universe = give(isl_union_set_union(Occupied.copy(), Unused.copy())); assert(!Known.domain().is_subset(Universe).is_false()); assert(!Written.domain().is_subset(Universe).is_false()); #endif } public: /// Initialize a nullptr-Knowledge. This is only provided for convenience; do /// not use such an object. Knowledge() {} /// Create a new object with the given members. Knowledge(isl::union_set Occupied, isl::union_set Unused, isl::union_map Known, isl::union_map Written) : Occupied(std::move(Occupied)), Unused(std::move(Unused)), Known(std::move(Known)), Written(std::move(Written)) { checkConsistency(); } /// Return whether this object was not default-constructed. bool isUsable() const { return (Occupied || Unused) && Known && Written; } /// Print the content of this object to @p OS. void print(llvm::raw_ostream &OS, unsigned Indent = 0) const { if (isUsable()) { if (Occupied) OS.indent(Indent) << "Occupied: " << Occupied << "\n"; else OS.indent(Indent) << "Occupied: \n"; if (Unused) OS.indent(Indent) << "Unused: " << Unused << "\n"; else OS.indent(Indent) << "Unused: \n"; OS.indent(Indent) << "Known: " << Known << "\n"; OS.indent(Indent) << "Written : " << Written << '\n'; } else { OS.indent(Indent) << "Invalid knowledge\n"; } } /// Combine two knowledges, this and @p That. void learnFrom(Knowledge That) { assert(!isConflicting(*this, That)); assert(Unused && That.Occupied); assert( !That.Unused && "This function is only prepared to learn occupied elements from That"); assert(!Occupied && "This function does not implement " "`this->Occupied = " "give(isl_union_set_union(this->Occupied.take(), " "That.Occupied.copy()));`"); Unused = give(isl_union_set_subtract(Unused.take(), That.Occupied.copy())); Known = give(isl_union_map_union(Known.take(), That.Known.copy())); Written = give(isl_union_map_union(Written.take(), That.Written.take())); checkConsistency(); } /// Determine whether two Knowledges conflict with each other. /// /// In theory @p Existing and @p Proposed are symmetric, but the /// implementation is constrained by the implicit interpretation. That is, @p /// Existing must have #Unused defined (use case 1) and @p Proposed must have /// #Occupied defined (use case 1). /// /// A conflict is defined as non-preserved semantics when they are merged. For /// instance, when for the same array and zone they assume different /// llvm::Values. /// /// @param Existing One of the knowledges with #Unused defined. /// @param Proposed One of the knowledges with #Occupied defined. /// @param OS Dump the conflict reason to this output stream; use /// nullptr to not output anything. /// @param Indent Indention for the conflict reason. /// /// @return True, iff the two knowledges are conflicting. static bool isConflicting(const Knowledge &Existing, const Knowledge &Proposed, llvm::raw_ostream *OS = nullptr, unsigned Indent = 0) { assert(Existing.Unused); assert(Proposed.Occupied); #ifndef NDEBUG if (Existing.Occupied && Proposed.Unused) { auto ExistingUniverse = give(isl_union_set_union(Existing.Occupied.copy(), Existing.Unused.copy())); auto ProposedUniverse = give(isl_union_set_union(Proposed.Occupied.copy(), Proposed.Unused.copy())); assert(isl_union_set_is_equal(ExistingUniverse.keep(), ProposedUniverse.keep()) == isl_bool_true && "Both inputs' Knowledges must be over the same universe"); } #endif // Do the Existing and Proposed lifetimes conflict? // // Lifetimes are described as the cross-product of array elements and zone // intervals in which they are alive (the space { [Element[] -> Zone[]] }). // In the following we call this "element/lifetime interval". // // In order to not conflict, one of the following conditions must apply for // each element/lifetime interval: // // 1. If occupied in one of the knowledges, it is unused in the other. // // - or - // // 2. Both contain the same value. // // Instead of partitioning the element/lifetime intervals into a part that // both Knowledges occupy (which requires an expensive subtraction) and for // these to check whether they are known to be the same value, we check only // the second condition and ensure that it also applies when then first // condition is true. This is done by adding a wildcard value to // Proposed.Known and Existing.Unused such that they match as a common known // value. We use the "unknown ValInst" for this purpose. Every // Existing.Unused may match with an unknown Proposed.Occupied because these // never are in conflict with each other. auto ProposedOccupiedAnyVal = makeUnknownForDomain(Proposed.Occupied); auto ProposedValues = Proposed.Known.unite(ProposedOccupiedAnyVal); auto ExistingUnusedAnyVal = makeUnknownForDomain(Existing.Unused); auto ExistingValues = Existing.Known.unite(ExistingUnusedAnyVal); auto MatchingVals = ExistingValues.intersect(ProposedValues); auto Matches = MatchingVals.domain(); // Any Proposed.Occupied must either have a match between the known values // of Existing and Occupied, or be in Existing.Unused. In the latter case, // the previously added "AnyVal" will match each other. if (!Proposed.Occupied.is_subset(Matches)) { if (OS) { auto Conflicting = Proposed.Occupied.subtract(Matches); auto ExistingConflictingKnown = Existing.Known.intersect_domain(Conflicting); auto ProposedConflictingKnown = Proposed.Known.intersect_domain(Conflicting); OS->indent(Indent) << "Proposed lifetime conflicting with Existing's\n"; OS->indent(Indent) << "Conflicting occupied: " << Conflicting << "\n"; if (!ExistingConflictingKnown.is_empty()) OS->indent(Indent) << "Existing Known: " << ExistingConflictingKnown << "\n"; if (!ProposedConflictingKnown.is_empty()) OS->indent(Indent) << "Proposed Known: " << ProposedConflictingKnown << "\n"; } return true; } // Do the writes in Existing conflict with occupied values in Proposed? // // In order to not conflict, it must either write to unused lifetime or // write the same value. To check, we remove the writes that write into // Proposed.Unused (they never conflict) and then see whether the written // value is already in Proposed.Known. If there are multiple known values // and a written value is known under different names, it is enough when one // of the written values (assuming that they are the same value under // different names, e.g. a PHINode and one of the incoming values) matches // one of the known names. // // We convert here the set of lifetimes to actual timepoints. A lifetime is // in conflict with a set of write timepoints, if either a live timepoint is // clearly within the lifetime or if a write happens at the beginning of the // lifetime (where it would conflict with the value that actually writes the // value alive). There is no conflict at the end of a lifetime, as the alive // value will always be read, before it is overwritten again. The last // property holds in Polly for all scalar values and we expect all users of // Knowledge to check this property also for accesses to MemoryKind::Array. auto ProposedFixedDefs = convertZoneToTimepoints(Proposed.Occupied, true, false); auto ProposedFixedKnown = convertZoneToTimepoints(Proposed.Known, isl::dim::in, true, false); auto ExistingConflictingWrites = Existing.Written.intersect_domain(ProposedFixedDefs); auto ExistingConflictingWritesDomain = ExistingConflictingWrites.domain(); auto CommonWrittenVal = ProposedFixedKnown.intersect(ExistingConflictingWrites); auto CommonWrittenValDomain = CommonWrittenVal.domain(); if (!ExistingConflictingWritesDomain.is_subset(CommonWrittenValDomain)) { if (OS) { auto ExistingConflictingWritten = ExistingConflictingWrites.subtract_domain(CommonWrittenValDomain); auto ProposedConflictingKnown = ProposedFixedKnown.subtract_domain( ExistingConflictingWritten.domain()); OS->indent(Indent) << "Proposed a lifetime where there is an Existing write into it\n"; OS->indent(Indent) << "Existing conflicting writes: " << ExistingConflictingWritten << "\n"; if (!ProposedConflictingKnown.is_empty()) OS->indent(Indent) << "Proposed conflicting known: " << ProposedConflictingKnown << "\n"; } return true; } // Do the writes in Proposed conflict with occupied values in Existing? auto ExistingAvailableDefs = convertZoneToTimepoints(Existing.Unused, true, false); auto ExistingKnownDefs = convertZoneToTimepoints(Existing.Known, isl::dim::in, true, false); auto ProposedWrittenDomain = Proposed.Written.domain(); auto KnownIdentical = ExistingKnownDefs.intersect(Proposed.Written); auto IdenticalOrUnused = ExistingAvailableDefs.unite(KnownIdentical.domain()); if (!ProposedWrittenDomain.is_subset(IdenticalOrUnused)) { if (OS) { auto Conflicting = ProposedWrittenDomain.subtract(IdenticalOrUnused); auto ExistingConflictingKnown = ExistingKnownDefs.intersect_domain(Conflicting); auto ProposedConflictingWritten = Proposed.Written.intersect_domain(Conflicting); OS->indent(Indent) << "Proposed writes into range used by Existing\n"; OS->indent(Indent) << "Proposed conflicting writes: " << ProposedConflictingWritten << "\n"; if (!ExistingConflictingKnown.is_empty()) OS->indent(Indent) << "Existing conflicting known: " << ExistingConflictingKnown << "\n"; } return true; } // Does Proposed write at the same time as Existing already does (order of // writes is undefined)? Writing the same value is permitted. auto ExistingWrittenDomain = isl::manage(isl_union_map_domain(Existing.Written.copy())); auto BothWritten = Existing.Written.domain().intersect(Proposed.Written.domain()); auto ExistingKnownWritten = filterKnownValInst(Existing.Written); auto ProposedKnownWritten = filterKnownValInst(Proposed.Written); auto CommonWritten = ExistingKnownWritten.intersect(ProposedKnownWritten).domain(); if (!BothWritten.is_subset(CommonWritten)) { if (OS) { auto Conflicting = BothWritten.subtract(CommonWritten); auto ExistingConflictingWritten = Existing.Written.intersect_domain(Conflicting); auto ProposedConflictingWritten = Proposed.Written.intersect_domain(Conflicting); OS->indent(Indent) << "Proposed writes at the same time as an already " "Existing write\n"; OS->indent(Indent) << "Conflicting writes: " << Conflicting << "\n"; if (!ExistingConflictingWritten.is_empty()) OS->indent(Indent) << "Exiting write: " << ExistingConflictingWritten << "\n"; if (!ProposedConflictingWritten.is_empty()) OS->indent(Indent) << "Proposed write: " << ProposedConflictingWritten << "\n"; } return true; } return false; } }; std::string printIntruction(Instruction *Instr, bool IsForDebug = false) { std::string Result; raw_string_ostream OS(Result); Instr->print(OS, IsForDebug); OS.flush(); size_t i = 0; while (i < Result.size() && Result[i] == ' ') i += 1; return Result.substr(i); } /// Base class for algorithms based on zones, like DeLICM. class ZoneAlgorithm { protected: /// Hold a reference to the isl_ctx to avoid it being freed before we released /// all of the isl objects. /// /// This must be declared before any other member that holds an isl object. /// This guarantees that the shared_ptr and its isl_ctx is destructed last, /// after all other members free'd the isl objects they were holding. std::shared_ptr IslCtx; /// Cached reaching definitions for each ScopStmt. /// /// Use getScalarReachingDefinition() to get its contents. DenseMap ScalarReachDefZone; /// The analyzed Scop. Scop *S; /// LoopInfo analysis used to determine whether values are synthesizable. LoopInfo *LI; /// Parameter space that does not need realignment. isl::space ParamSpace; /// Space the schedule maps to. isl::space ScatterSpace; /// Cached version of the schedule and domains. isl::union_map Schedule; /// Combined access relations of all MemoryKind::Array READ accesses. /// { DomainRead[] -> Element[] } isl::union_map AllReads; /// Combined access relations of all MemoryKind::Array, MAY_WRITE accesses. /// { DomainMayWrite[] -> Element[] } isl::union_map AllMayWrites; /// Combined access relations of all MemoryKind::Array, MUST_WRITE accesses. /// { DomainMustWrite[] -> Element[] } isl::union_map AllMustWrites; /// The value instances written to array elements of all write accesses. /// { [Element[] -> DomainWrite[]] -> ValInst[] } isl::union_map AllWriteValInst; /// All reaching definitions for MemoryKind::Array writes. /// { [Element[] -> Zone[]] -> DomainWrite[] } isl::union_map WriteReachDefZone; /// Map llvm::Values to an isl identifier. /// Used with -polly-use-llvm-names=false as an alternative method to get /// unique ids that do not depend on pointer values. DenseMap ValueIds; /// Prepare the object before computing the zones of @p S. ZoneAlgorithm(Scop *S, LoopInfo *LI) : IslCtx(S->getSharedIslCtx()), S(S), LI(LI), Schedule(give(S->getSchedule())) { auto Domains = give(S->getDomains()); Schedule = give(isl_union_map_intersect_domain(Schedule.take(), Domains.take())); ParamSpace = give(isl_union_map_get_space(Schedule.keep())); ScatterSpace = getScatterSpace(Schedule); } private: /// Check whether @p Stmt can be accurately analyzed by zones. /// /// What violates our assumptions: /// - A load after a write of the same location; we assume that all reads /// occur before the writes. /// - Two writes to the same location; we cannot model the order in which /// these occur. /// /// Scalar reads implicitly always occur before other accesses therefore never /// violate the first condition. There is also at most one write to a scalar, /// satisfying the second condition. bool isCompatibleStmt(ScopStmt *Stmt) { auto Stores = makeEmptyUnionMap(); auto Loads = makeEmptyUnionMap(); // This assumes that the MemoryKind::Array MemoryAccesses are iterated in // order. for (auto *MA : *Stmt) { if (!MA->isLatestArrayKind()) continue; auto AccRel = give(isl_union_map_from_map(getAccessRelationFor(MA).take())); if (MA->isRead()) { // Reject load after store to same location. if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) { OptimizationRemarkMissed R(DEBUG_TYPE, "LoadAfterStore", MA->getAccessInstruction()); R << "load after store of same element in same statement"; R << " (previous stores: " << Stores; R << ", loading: " << AccRel << ")"; S->getFunction().getContext().diagnose(R); return false; } Loads = give(isl_union_map_union(Loads.take(), AccRel.take())); continue; } if (!isa(MA->getAccessInstruction())) { DEBUG(dbgs() << "WRITE that is not a StoreInst not supported\n"); OptimizationRemarkMissed R(DEBUG_TYPE, "UnusualStore", MA->getAccessInstruction()); R << "encountered write that is not a StoreInst: " << printIntruction(MA->getAccessInstruction()); S->getFunction().getContext().diagnose(R); return false; } // In region statements the order is less clear, eg. the load and store // might be in a boxed loop. if (Stmt->isRegionStmt() && !isl_union_map_is_disjoint(Loads.keep(), AccRel.keep())) { OptimizationRemarkMissed R(DEBUG_TYPE, "StoreInSubregion", MA->getAccessInstruction()); R << "store is in a non-affine subregion"; S->getFunction().getContext().diagnose(R); return false; } // Do not allow more than one store to the same location. if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) { OptimizationRemarkMissed R(DEBUG_TYPE, "StoreAfterStore", MA->getAccessInstruction()); R << "store after store of same element in same statement"; R << " (previous stores: " << Stores; R << ", storing: " << AccRel << ")"; S->getFunction().getContext().diagnose(R); return false; } Stores = give(isl_union_map_union(Stores.take(), AccRel.take())); } return true; } void addArrayReadAccess(MemoryAccess *MA) { assert(MA->isLatestArrayKind()); assert(MA->isRead()); // { DomainRead[] -> Element[] } auto AccRel = getAccessRelationFor(MA); AllReads = give(isl_union_map_add_map(AllReads.take(), AccRel.copy())); } void addArrayWriteAccess(MemoryAccess *MA) { assert(MA->isLatestArrayKind()); assert(MA->isWrite()); auto *Stmt = MA->getStatement(); // { Domain[] -> Element[] } auto AccRel = getAccessRelationFor(MA); if (MA->isMustWrite()) AllMustWrites = give(isl_union_map_add_map(AllMustWrites.take(), AccRel.copy())); if (MA->isMayWrite()) AllMayWrites = give(isl_union_map_add_map(AllMayWrites.take(), AccRel.copy())); // { Domain[] -> ValInst[] } auto WriteValInstance = makeValInst(MA->getAccessValue(), Stmt, LI->getLoopFor(MA->getAccessInstruction()->getParent()), MA->isMustWrite()); // { Domain[] -> [Element[] -> Domain[]] } auto IncludeElement = give(isl_map_curry(isl_map_domain_map(AccRel.copy()))); // { [Element[] -> DomainWrite[]] -> ValInst[] } auto EltWriteValInst = give( isl_map_apply_domain(WriteValInstance.take(), IncludeElement.take())); AllWriteValInst = give( isl_union_map_add_map(AllWriteValInst.take(), EltWriteValInst.take())); } protected: isl::union_set makeEmptyUnionSet() const { return give(isl_union_set_empty(ParamSpace.copy())); } isl::union_map makeEmptyUnionMap() const { return give(isl_union_map_empty(ParamSpace.copy())); } /// Check whether @p S can be accurately analyzed by zones. bool isCompatibleScop() { for (auto &Stmt : *S) { if (!isCompatibleStmt(&Stmt)) return false; } return true; } /// Get the schedule for @p Stmt. /// /// The domain of the result is as narrow as possible. isl::map getScatterFor(ScopStmt *Stmt) const { auto ResultSpace = give(isl_space_map_from_domain_and_range( Stmt->getDomainSpace(), ScatterSpace.copy())); return give(isl_union_map_extract_map(Schedule.keep(), ResultSpace.take())); } /// Get the schedule of @p MA's parent statement. isl::map getScatterFor(MemoryAccess *MA) const { return getScatterFor(MA->getStatement()); } /// Get the schedule for the statement instances of @p Domain. isl::union_map getScatterFor(isl::union_set Domain) const { return give(isl_union_map_intersect_domain(Schedule.copy(), Domain.take())); } /// Get the schedule for the statement instances of @p Domain. isl::map getScatterFor(isl::set Domain) const { auto ResultSpace = give(isl_space_map_from_domain_and_range( isl_set_get_space(Domain.keep()), ScatterSpace.copy())); auto UDomain = give(isl_union_set_from_set(Domain.copy())); auto UResult = getScatterFor(std::move(UDomain)); auto Result = singleton(std::move(UResult), std::move(ResultSpace)); assert(!Result || isl_set_is_equal(give(isl_map_domain(Result.copy())).keep(), Domain.keep()) == isl_bool_true); return Result; } /// Get the domain of @p Stmt. isl::set getDomainFor(ScopStmt *Stmt) const { return give(isl_set_remove_redundancies(Stmt->getDomain())); } /// Get the domain @p MA's parent statement. isl::set getDomainFor(MemoryAccess *MA) const { return getDomainFor(MA->getStatement()); } /// Get the access relation of @p MA. /// /// The domain of the result is as narrow as possible. isl::map getAccessRelationFor(MemoryAccess *MA) const { auto Domain = getDomainFor(MA); auto AccRel = MA->getLatestAccessRelation(); return give(isl_map_intersect_domain(AccRel.take(), Domain.take())); } /// Get the reaching definition of a scalar defined in @p Stmt. /// /// Note that this does not depend on the llvm::Instruction, only on the /// statement it is defined in. Therefore the same computation can be reused. /// /// @param Stmt The statement in which a scalar is defined. /// /// @return { Scatter[] -> DomainDef[] } isl::map getScalarReachingDefinition(ScopStmt *Stmt) { auto &Result = ScalarReachDefZone[Stmt]; if (Result) return Result; auto Domain = getDomainFor(Stmt); Result = computeScalarReachingDefinition(Schedule, Domain, false, true); simplify(Result); return Result; } /// Get the reaching definition of a scalar defined in @p DefDomain. /// /// @param DomainDef { DomainDef[] } /// The write statements to get the reaching definition for. /// /// @return { Scatter[] -> DomainDef[] } isl::map getScalarReachingDefinition(isl::set DomainDef) { auto DomId = give(isl_set_get_tuple_id(DomainDef.keep())); auto *Stmt = static_cast(isl_id_get_user(DomId.keep())); auto StmtResult = getScalarReachingDefinition(Stmt); return give(isl_map_intersect_range(StmtResult.take(), DomainDef.take())); } /// Create a statement-to-unknown value mapping. /// /// @param Stmt The statement whose instances are mapped to unknown. /// /// @return { Domain[] -> ValInst[] } isl::map makeUnknownForDomain(ScopStmt *Stmt) const { return ::makeUnknownForDomain(getDomainFor(Stmt)); } /// Create an isl_id that represents @p V. isl::id makeValueId(Value *V) { if (!V) return nullptr; auto &Id = ValueIds[V]; if (Id.is_null()) { auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1, std::string(), UseInstructionNames); Id = give(isl_id_alloc(IslCtx.get(), Name.c_str(), V)); } return Id; } /// Create the space for an llvm::Value that is available everywhere. isl::space makeValueSpace(Value *V) { auto Result = give(isl_space_set_from_params(ParamSpace.copy())); return give(isl_space_set_tuple_id(Result.take(), isl_dim_set, makeValueId(V).take())); } /// Create a set with the llvm::Value @p V which is available everywhere. isl::set makeValueSet(Value *V) { auto Space = makeValueSpace(V); return give(isl_set_universe(Space.take())); } /// Create a mapping from a statement instance to the instance of an /// llvm::Value that can be used in there. /// /// Although LLVM IR uses single static assignment, llvm::Values can have /// different contents in loops, when they get redefined in the last /// iteration. This function tries to get the statement instance of the /// previous definition, relative to a user. /// /// Example: /// for (int i = 0; i < N; i += 1) { /// DEF: /// int v = A[i]; /// USE: /// use(v); /// } /// /// The value instance used by statement instance USE[i] is DEF[i]. Hence, /// makeValInst returns: /// /// { USE[i] -> [DEF[i] -> v[]] : 0 <= i < N } /// /// @param Val The value to get the instance of. /// @param UserStmt The statement that uses @p Val. Can be nullptr. /// @param Scope Loop the using instruction resides in. /// @param IsCertain Pass true if the definition of @p Val is a /// MUST_WRITE or false if the write is conditional. /// /// @return { DomainUse[] -> ValInst[] } isl::map makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope, bool IsCertain = true) { // When known knowledge is disabled, just return the unknown value. It will // either get filtered out or conflict with itself. if (!DelicmComputeKnown) return makeUnknownForDomain(UserStmt); // If the definition/write is conditional, the value at the location could // be either the written value or the old value. Since we cannot know which // one, consider the value to be unknown. if (!IsCertain) return makeUnknownForDomain(UserStmt); auto DomainUse = getDomainFor(UserStmt); auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true); switch (VUse.getKind()) { case VirtualUse::Constant: case VirtualUse::Block: case VirtualUse::Hoisted: case VirtualUse::ReadOnly: { // The definition does not depend on the statement which uses it. auto ValSet = makeValueSet(Val); return give( isl_map_from_domain_and_range(DomainUse.take(), ValSet.take())); } case VirtualUse::Synthesizable: { auto *ScevExpr = VUse.getScevExpr(); auto UseDomainSpace = give(isl_set_get_space(DomainUse.keep())); // Construct the SCEV space. // TODO: Add only the induction variables referenced in SCEVAddRecExpr // expressions, not just all of them. auto ScevId = give(isl_id_alloc(UseDomainSpace.get_ctx().get(), nullptr, const_cast(ScevExpr))); auto ScevSpace = give(isl_space_drop_dims(UseDomainSpace.copy(), isl_dim_set, 0, 0)); ScevSpace = give( isl_space_set_tuple_id(ScevSpace.take(), isl_dim_set, ScevId.copy())); // { DomainUse[] -> ScevExpr[] } auto ValInst = give(isl_map_identity(isl_space_map_from_domain_and_range( UseDomainSpace.copy(), ScevSpace.copy()))); return ValInst; } case VirtualUse::Intra: { // Definition and use is in the same statement. We do not need to compute // a reaching definition. // { llvm::Value } auto ValSet = makeValueSet(Val); // { UserDomain[] -> llvm::Value } auto ValInstSet = give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take())); // { UserDomain[] -> [UserDomain[] - >llvm::Value] } auto Result = give(isl_map_reverse(isl_map_domain_map(ValInstSet.take()))); simplify(Result); return Result; } case VirtualUse::Inter: { // The value is defined in a different statement. auto *Inst = cast(Val); auto *ValStmt = S->getStmtFor(Inst); // If the llvm::Value is defined in a removed Stmt, we cannot derive its // domain. We could use an arbitrary statement, but this could result in // different ValInst[] for the same llvm::Value. if (!ValStmt) return ::makeUnknownForDomain(DomainUse); // { DomainDef[] } auto DomainDef = getDomainFor(ValStmt); // { Scatter[] -> DomainDef[] } auto ReachDef = getScalarReachingDefinition(DomainDef); // { DomainUse[] -> Scatter[] } auto UserSched = getScatterFor(DomainUse); // { DomainUse[] -> DomainDef[] } auto UsedInstance = give(isl_map_apply_range(UserSched.take(), ReachDef.take())); // { llvm::Value } auto ValSet = makeValueSet(Val); // { DomainUse[] -> llvm::Value[] } auto ValInstSet = give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take())); // { DomainUse[] -> [DomainDef[] -> llvm::Value] } auto Result = give(isl_map_range_product(UsedInstance.take(), ValInstSet.take())); simplify(Result); return Result; } } llvm_unreachable("Unhandled use type"); } /// Compute the different zones. void computeCommon() { AllReads = makeEmptyUnionMap(); AllMayWrites = makeEmptyUnionMap(); AllMustWrites = makeEmptyUnionMap(); AllWriteValInst = makeEmptyUnionMap(); for (auto &Stmt : *S) { for (auto *MA : Stmt) { if (!MA->isLatestArrayKind()) continue; if (MA->isRead()) addArrayReadAccess(MA); if (MA->isWrite()) addArrayWriteAccess(MA); } } // { DomainWrite[] -> Element[] } auto AllWrites = give(isl_union_map_union(AllMustWrites.copy(), AllMayWrites.copy())); // { [Element[] -> Zone[]] -> DomainWrite[] } WriteReachDefZone = computeReachingDefinition(Schedule, AllWrites, false, true); simplify(WriteReachDefZone); } /// Print the current state of all MemoryAccesses to @p. void printAccesses(llvm::raw_ostream &OS, int Indent = 0) const { OS.indent(Indent) << "After accesses {\n"; for (auto &Stmt : *S) { OS.indent(Indent + 4) << Stmt.getBaseName() << "\n"; for (auto *MA : Stmt) MA->print(OS); } OS.indent(Indent) << "}\n"; } public: /// Return the SCoP this object is analyzing. Scop *getScop() const { return S; } }; /// Implementation of the DeLICM/DePRE transformation. class DeLICMImpl : public ZoneAlgorithm { private: /// Knowledge before any transformation took place. Knowledge OriginalZone; /// Current knowledge of the SCoP including all already applied /// transformations. Knowledge Zone; /// Number of StoreInsts something can be mapped to. int NumberOfCompatibleTargets = 0; /// The number of StoreInsts to which at least one value or PHI has been /// mapped to. int NumberOfTargetsMapped = 0; /// The number of llvm::Value mapped to some array element. int NumberOfMappedValueScalars = 0; /// The number of PHIs mapped to some array element. int NumberOfMappedPHIScalars = 0; /// Determine whether two knowledges are conflicting with each other. /// /// @see Knowledge::isConflicting bool isConflicting(const Knowledge &Proposed) { raw_ostream *OS = nullptr; DEBUG(OS = &llvm::dbgs()); return Knowledge::isConflicting(Zone, Proposed, OS, 4); } /// Determine whether @p SAI is a scalar that can be mapped to an array /// element. bool isMappable(const ScopArrayInfo *SAI) { assert(SAI); if (SAI->isValueKind()) { auto *MA = S->getValueDef(SAI); if (!MA) { DEBUG(dbgs() << " Reject because value is read-only within the scop\n"); return false; } // Mapping if value is used after scop is not supported. The code // generator would need to reload the scalar after the scop, but it // does not have the information to where it is mapped to. Only the // MemoryAccesses have that information, not the ScopArrayInfo. auto Inst = MA->getAccessInstruction(); for (auto User : Inst->users()) { if (!isa(User)) return false; auto UserInst = cast(User); if (!S->contains(UserInst)) { DEBUG(dbgs() << " Reject because value is escaping\n"); return false; } } return true; } if (SAI->isPHIKind()) { auto *MA = S->getPHIRead(SAI); assert(MA); // Mapping of an incoming block from before the SCoP is not supported by // the code generator. auto PHI = cast(MA->getAccessInstruction()); for (auto Incoming : PHI->blocks()) { if (!S->contains(Incoming)) { DEBUG(dbgs() << " Reject because at least one incoming block is " "not in the scop region\n"); return false; } } return true; } DEBUG(dbgs() << " Reject ExitPHI or other non-value\n"); return false; } /// Compute the uses of a MemoryKind::Value and its lifetime (from its /// definition to the last use). /// /// @param SAI The ScopArrayInfo representing the value's storage. /// /// @return { DomainDef[] -> DomainUse[] }, { DomainDef[] -> Zone[] } /// First element is the set of uses for each definition. /// The second is the lifetime of each definition. std::tuple computeValueUses(const ScopArrayInfo *SAI) { assert(SAI->isValueKind()); // { DomainRead[] } auto Reads = makeEmptyUnionSet(); // Find all uses. for (auto *MA : S->getValueUses(SAI)) Reads = give(isl_union_set_add_set(Reads.take(), getDomainFor(MA).take())); // { DomainRead[] -> Scatter[] } auto ReadSchedule = getScatterFor(Reads); auto *DefMA = S->getValueDef(SAI); assert(DefMA); // { DomainDef[] } auto Writes = getDomainFor(DefMA); // { DomainDef[] -> Scatter[] } auto WriteScatter = getScatterFor(Writes); // { Scatter[] -> DomainDef[] } auto ReachDef = getScalarReachingDefinition(DefMA->getStatement()); // { [DomainDef[] -> Scatter[]] -> DomainUse[] } auto Uses = give( isl_union_map_apply_range(isl_union_map_from_map(isl_map_range_map( isl_map_reverse(ReachDef.take()))), isl_union_map_reverse(ReadSchedule.take()))); // { DomainDef[] -> Scatter[] } auto UseScatter = singleton(give(isl_union_set_unwrap(isl_union_map_domain(Uses.copy()))), give(isl_space_map_from_domain_and_range( isl_set_get_space(Writes.keep()), ScatterSpace.copy()))); // { DomainDef[] -> Zone[] } auto Lifetime = betweenScatter(WriteScatter, UseScatter, false, true); // { DomainDef[] -> DomainRead[] } auto DefUses = give(isl_union_map_domain_factor_domain(Uses.take())); return std::make_pair(DefUses, Lifetime); } /// For each 'execution' of a PHINode, get the incoming block that was /// executed before. /// /// For each PHI instance we can directly determine which was the incoming /// block, and hence derive which value the PHI has. /// /// @param SAI The ScopArrayInfo representing the PHI's storage. /// /// @return { DomainPHIRead[] -> DomainPHIWrite[] } isl::union_map computePerPHI(const ScopArrayInfo *SAI) { assert(SAI->isPHIKind()); // { DomainPHIWrite[] -> Scatter[] } auto PHIWriteScatter = makeEmptyUnionMap(); // Collect all incoming block timepoint. for (auto *MA : S->getPHIIncomings(SAI)) { auto Scatter = getScatterFor(MA); PHIWriteScatter = give(isl_union_map_add_map(PHIWriteScatter.take(), Scatter.take())); } // { DomainPHIRead[] -> Scatter[] } auto PHIReadScatter = getScatterFor(S->getPHIRead(SAI)); // { DomainPHIRead[] -> Scatter[] } auto BeforeRead = beforeScatter(PHIReadScatter, true); // { Scatter[] } auto WriteTimes = singleton( give(isl_union_map_range(PHIWriteScatter.copy())), ScatterSpace); // { DomainPHIRead[] -> Scatter[] } auto PHIWriteTimes = give(isl_map_intersect_range(BeforeRead.take(), WriteTimes.take())); auto LastPerPHIWrites = give(isl_map_lexmax(PHIWriteTimes.take())); // { DomainPHIRead[] -> DomainPHIWrite[] } auto Result = give(isl_union_map_apply_range( isl_union_map_from_map(LastPerPHIWrites.take()), isl_union_map_reverse(PHIWriteScatter.take()))); assert(isl_union_map_is_single_valued(Result.keep()) == isl_bool_true); assert(isl_union_map_is_injective(Result.keep()) == isl_bool_true); return Result; } /// Try to map a MemoryKind::Value to a given array element. /// /// @param SAI Representation of the scalar's memory to map. /// @param TargetElt { Scatter[] -> Element[] } /// Suggestion where to map a scalar to when at a timepoint. /// /// @return true if the scalar was successfully mapped. bool tryMapValue(const ScopArrayInfo *SAI, isl::map TargetElt) { assert(SAI->isValueKind()); auto *DefMA = S->getValueDef(SAI); assert(DefMA->isValueKind()); assert(DefMA->isMustWrite()); auto *V = DefMA->getAccessValue(); auto *DefInst = DefMA->getAccessInstruction(); // Stop if the scalar has already been mapped. if (!DefMA->getLatestScopArrayInfo()->isValueKind()) return false; // { DomainDef[] -> Scatter[] } auto DefSched = getScatterFor(DefMA); // Where each write is mapped to, according to the suggestion. // { DomainDef[] -> Element[] } auto DefTarget = give(isl_map_apply_domain( TargetElt.copy(), isl_map_reverse(DefSched.copy()))); simplify(DefTarget); DEBUG(dbgs() << " Def Mapping: " << DefTarget << '\n'); auto OrigDomain = getDomainFor(DefMA); auto MappedDomain = give(isl_map_domain(DefTarget.copy())); if (!isl_set_is_subset(OrigDomain.keep(), MappedDomain.keep())) { DEBUG(dbgs() << " Reject because mapping does not encompass all instances\n"); return false; } // { DomainDef[] -> Zone[] } isl::map Lifetime; // { DomainDef[] -> DomainUse[] } isl::union_map DefUses; std::tie(DefUses, Lifetime) = computeValueUses(SAI); DEBUG(dbgs() << " Lifetime: " << Lifetime << '\n'); /// { [Element[] -> Zone[]] } auto EltZone = give( isl_map_wrap(isl_map_apply_domain(Lifetime.copy(), DefTarget.copy()))); simplify(EltZone); // { DomainDef[] -> ValInst[] } auto ValInst = makeValInst(V, DefMA->getStatement(), LI->getLoopFor(DefInst->getParent())); // { DomainDef[] -> [Element[] -> Zone[]] } auto EltKnownTranslator = give(isl_map_range_product(DefTarget.copy(), Lifetime.copy())); // { [Element[] -> Zone[]] -> ValInst[] } auto EltKnown = give(isl_map_apply_domain(ValInst.copy(), EltKnownTranslator.take())); simplify(EltKnown); // { DomainDef[] -> [Element[] -> Scatter[]] } auto WrittenTranslator = give(isl_map_range_product(DefTarget.copy(), DefSched.take())); // { [Element[] -> Scatter[]] -> ValInst[] } auto DefEltSched = give(isl_map_apply_domain(ValInst.copy(), WrittenTranslator.take())); simplify(DefEltSched); Knowledge Proposed(EltZone, nullptr, filterKnownValInst(EltKnown), DefEltSched); if (isConflicting(Proposed)) return false; // { DomainUse[] -> Element[] } auto UseTarget = give( isl_union_map_apply_range(isl_union_map_reverse(DefUses.take()), isl_union_map_from_map(DefTarget.copy()))); mapValue(SAI, std::move(DefTarget), std::move(UseTarget), std::move(Lifetime), std::move(Proposed)); return true; } /// After a scalar has been mapped, update the global knowledge. void applyLifetime(Knowledge Proposed) { Zone.learnFrom(std::move(Proposed)); } /// Map a MemoryKind::Value scalar to an array element. /// /// Callers must have ensured that the mapping is valid and not conflicting. /// /// @param SAI The ScopArrayInfo representing the scalar's memory to /// map. /// @param DefTarget { DomainDef[] -> Element[] } /// The array element to map the scalar to. /// @param UseTarget { DomainUse[] -> Element[] } /// The array elements the uses are mapped to. /// @param Lifetime { DomainDef[] -> Zone[] } /// The lifetime of each llvm::Value definition for /// reporting. /// @param Proposed Mapping constraints for reporting. void mapValue(const ScopArrayInfo *SAI, isl::map DefTarget, isl::union_map UseTarget, isl::map Lifetime, Knowledge Proposed) { // Redirect the read accesses. for (auto *MA : S->getValueUses(SAI)) { // { DomainUse[] } auto Domain = getDomainFor(MA); // { DomainUse[] -> Element[] } auto NewAccRel = give(isl_union_map_intersect_domain( UseTarget.copy(), isl_union_set_from_set(Domain.take()))); simplify(NewAccRel); assert(isl_union_map_n_map(NewAccRel.keep()) == 1); MA->setNewAccessRelation(isl_map_from_union_map(NewAccRel.take())); } auto *WA = S->getValueDef(SAI); WA->setNewAccessRelation(DefTarget.copy()); applyLifetime(Proposed); MappedValueScalars++; NumberOfMappedValueScalars += 1; } /// Express the incoming values of a PHI for each incoming statement in an /// isl::union_map. /// /// @param SAI The PHI scalar represented by a ScopArrayInfo. /// /// @return { PHIWriteDomain[] -> ValInst[] } isl::union_map determinePHIWrittenValues(const ScopArrayInfo *SAI) { auto Result = makeEmptyUnionMap(); // Collect the incoming values. for (auto *MA : S->getPHIIncomings(SAI)) { // { DomainWrite[] -> ValInst[] } isl::union_map ValInst; auto *WriteStmt = MA->getStatement(); auto Incoming = MA->getIncoming(); assert(!Incoming.empty()); if (Incoming.size() == 1) { ValInst = makeValInst(Incoming[0].second, WriteStmt, LI->getLoopFor(Incoming[0].first)); } else { // If the PHI is in a subregion's exit node it can have multiple // incoming values (+ maybe another incoming edge from an unrelated // block). We cannot directly represent it as a single llvm::Value. // We currently model it as unknown value, but modeling as the PHIInst // itself could be OK, too. ValInst = makeUnknownForDomain(WriteStmt); } Result = give(isl_union_map_union(Result.take(), ValInst.take())); } assert(isl_union_map_is_single_valued(Result.keep()) == isl_bool_true && "Cannot have multiple incoming values for same incoming statement"); return Result; } /// Try to map a MemoryKind::PHI scalar to a given array element. /// /// @param SAI Representation of the scalar's memory to map. /// @param TargetElt { Scatter[] -> Element[] } /// Suggestion where to map the scalar to when at a /// timepoint. /// /// @return true if the PHI scalar has been mapped. bool tryMapPHI(const ScopArrayInfo *SAI, isl::map TargetElt) { auto *PHIRead = S->getPHIRead(SAI); assert(PHIRead->isPHIKind()); assert(PHIRead->isRead()); // Skip if already been mapped. if (!PHIRead->getLatestScopArrayInfo()->isPHIKind()) return false; // { DomainRead[] -> Scatter[] } auto PHISched = getScatterFor(PHIRead); // { DomainRead[] -> Element[] } auto PHITarget = give(isl_map_apply_range(PHISched.copy(), TargetElt.copy())); simplify(PHITarget); DEBUG(dbgs() << " Mapping: " << PHITarget << '\n'); auto OrigDomain = getDomainFor(PHIRead); auto MappedDomain = give(isl_map_domain(PHITarget.copy())); if (!isl_set_is_subset(OrigDomain.keep(), MappedDomain.keep())) { DEBUG(dbgs() << " Reject because mapping does not encompass all instances\n"); return false; } // { DomainRead[] -> DomainWrite[] } auto PerPHIWrites = computePerPHI(SAI); // { DomainWrite[] -> Element[] } auto WritesTarget = give(isl_union_map_reverse(isl_union_map_apply_domain( PerPHIWrites.copy(), isl_union_map_from_map(PHITarget.copy())))); simplify(WritesTarget); // { DomainWrite[] } auto UniverseWritesDom = give(isl_union_set_empty(ParamSpace.copy())); for (auto *MA : S->getPHIIncomings(SAI)) UniverseWritesDom = give(isl_union_set_add_set(UniverseWritesDom.take(), getDomainFor(MA).take())); auto RelevantWritesTarget = WritesTarget; if (DelicmOverapproximateWrites) WritesTarget = expandMapping(WritesTarget, UniverseWritesDom); auto ExpandedWritesDom = give(isl_union_map_domain(WritesTarget.copy())); if (!DelicmPartialWrites && !isl_union_set_is_subset(UniverseWritesDom.keep(), ExpandedWritesDom.keep())) { DEBUG(dbgs() << " Reject because did not find PHI write mapping for " "all instances\n"); if (DelicmOverapproximateWrites) DEBUG(dbgs() << " Relevant Mapping: " << RelevantWritesTarget << '\n'); DEBUG(dbgs() << " Deduced Mapping: " << WritesTarget << '\n'); DEBUG(dbgs() << " Missing instances: " << give(isl_union_set_subtract(UniverseWritesDom.copy(), ExpandedWritesDom.copy())) << '\n'); return false; } // { DomainRead[] -> Scatter[] } auto PerPHIWriteScatter = give(isl_map_from_union_map( isl_union_map_apply_range(PerPHIWrites.copy(), Schedule.copy()))); // { DomainRead[] -> Zone[] } auto Lifetime = betweenScatter(PerPHIWriteScatter, PHISched, false, true); simplify(Lifetime); DEBUG(dbgs() << " Lifetime: " << Lifetime << "\n"); // { DomainWrite[] -> Zone[] } auto WriteLifetime = give(isl_union_map_apply_domain( isl_union_map_from_map(Lifetime.copy()), PerPHIWrites.copy())); // { DomainWrite[] -> ValInst[] } auto WrittenValue = determinePHIWrittenValues(SAI); // { DomainWrite[] -> [Element[] -> Scatter[]] } auto WrittenTranslator = give(isl_union_map_range_product(WritesTarget.copy(), Schedule.copy())); // { [Element[] -> Scatter[]] -> ValInst[] } auto Written = give(isl_union_map_apply_domain(WrittenValue.copy(), WrittenTranslator.copy())); simplify(Written); // { DomainWrite[] -> [Element[] -> Zone[]] } auto LifetimeTranslator = give( isl_union_map_range_product(WritesTarget.copy(), WriteLifetime.copy())); // { DomainWrite[] -> ValInst[] } auto WrittenKnownValue = filterKnownValInst(WrittenValue); // { [Element[] -> Zone[]] -> ValInst[] } auto EltLifetimeInst = give(isl_union_map_apply_domain( WrittenKnownValue.copy(), LifetimeTranslator.copy())); simplify(EltLifetimeInst); // { [Element[] -> Zone[] } auto Occupied = give(isl_union_map_range(LifetimeTranslator.copy())); simplify(Occupied); Knowledge Proposed(Occupied, nullptr, EltLifetimeInst, Written); if (isConflicting(Proposed)) return false; mapPHI(SAI, std::move(PHITarget), std::move(WritesTarget), std::move(Lifetime), std::move(Proposed)); return true; } /// Map a MemoryKind::PHI scalar to an array element. /// /// Callers must have ensured that the mapping is valid and not conflicting /// with the common knowledge. /// /// @param SAI The ScopArrayInfo representing the scalar's memory to /// map. /// @param ReadTarget { DomainRead[] -> Element[] } /// The array element to map the scalar to. /// @param WriteTarget { DomainWrite[] -> Element[] } /// New access target for each PHI incoming write. /// @param Lifetime { DomainRead[] -> Zone[] } /// The lifetime of each PHI for reporting. /// @param Proposed Mapping constraints for reporting. void mapPHI(const ScopArrayInfo *SAI, isl::map ReadTarget, isl::union_map WriteTarget, isl::map Lifetime, Knowledge Proposed) { // Redirect the PHI incoming writes. for (auto *MA : S->getPHIIncomings(SAI)) { // { DomainWrite[] } auto Domain = getDomainFor(MA); // { DomainWrite[] -> Element[] } auto NewAccRel = give(isl_union_map_intersect_domain( WriteTarget.copy(), isl_union_set_from_set(Domain.take()))); simplify(NewAccRel); assert(isl_union_map_n_map(NewAccRel.keep()) == 1); MA->setNewAccessRelation(isl_map_from_union_map(NewAccRel.take())); } // Redirect the PHI read. auto *PHIRead = S->getPHIRead(SAI); PHIRead->setNewAccessRelation(ReadTarget.copy()); applyLifetime(Proposed); MappedPHIScalars++; NumberOfMappedPHIScalars++; } /// Search and map scalars to memory overwritten by @p TargetStoreMA. /// /// Start trying to map scalars that are used in the same statement as the /// store. For every successful mapping, try to also map scalars of the /// statements where those are written. Repeat, until no more mapping /// opportunity is found. /// /// There is currently no preference in which order scalars are tried. /// Ideally, we would direct it towards a load instruction of the same array /// element. bool collapseScalarsToStore(MemoryAccess *TargetStoreMA) { assert(TargetStoreMA->isLatestArrayKind()); assert(TargetStoreMA->isMustWrite()); auto TargetStmt = TargetStoreMA->getStatement(); // { DomTarget[] } auto TargetDom = getDomainFor(TargetStmt); // { DomTarget[] -> Element[] } auto TargetAccRel = getAccessRelationFor(TargetStoreMA); // { Zone[] -> DomTarget[] } // For each point in time, find the next target store instance. auto Target = computeScalarReachingOverwrite(Schedule, TargetDom, false, true); // { Zone[] -> Element[] } // Use the target store's write location as a suggestion to map scalars to. auto EltTarget = give(isl_map_apply_range(Target.take(), TargetAccRel.take())); simplify(EltTarget); DEBUG(dbgs() << " Target mapping is " << EltTarget << '\n'); // Stack of elements not yet processed. SmallVector Worklist; // Set of scalars already tested. SmallPtrSet Closed; // Lambda to add all scalar reads to the work list. auto ProcessAllIncoming = [&](ScopStmt *Stmt) { for (auto *MA : *Stmt) { if (!MA->isLatestScalarKind()) continue; if (!MA->isRead()) continue; Worklist.push_back(MA); } }; auto *WrittenVal = TargetStoreMA->getAccessInstruction()->getOperand(0); if (auto *WrittenValInputMA = TargetStmt->lookupInputAccessOf(WrittenVal)) Worklist.push_back(WrittenValInputMA); else ProcessAllIncoming(TargetStmt); auto AnyMapped = false; auto &DL = S->getRegion().getEntry()->getModule()->getDataLayout(); auto StoreSize = DL.getTypeAllocSize(TargetStoreMA->getAccessValue()->getType()); while (!Worklist.empty()) { auto *MA = Worklist.pop_back_val(); auto *SAI = MA->getScopArrayInfo(); if (Closed.count(SAI)) continue; Closed.insert(SAI); DEBUG(dbgs() << "\n Trying to map " << MA << " (SAI: " << SAI << ")\n"); // Skip non-mappable scalars. if (!isMappable(SAI)) continue; auto MASize = DL.getTypeAllocSize(MA->getAccessValue()->getType()); if (MASize > StoreSize) { DEBUG(dbgs() << " Reject because storage size is insufficient\n"); continue; } // Try to map MemoryKind::Value scalars. if (SAI->isValueKind()) { if (!tryMapValue(SAI, EltTarget)) continue; auto *DefAcc = S->getValueDef(SAI); ProcessAllIncoming(DefAcc->getStatement()); AnyMapped = true; continue; } // Try to map MemoryKind::PHI scalars. if (SAI->isPHIKind()) { if (!tryMapPHI(SAI, EltTarget)) continue; // Add inputs of all incoming statements to the worklist. Prefer the // input accesses of the incoming blocks. for (auto *PHIWrite : S->getPHIIncomings(SAI)) { auto *PHIWriteStmt = PHIWrite->getStatement(); bool FoundAny = false; for (auto Incoming : PHIWrite->getIncoming()) { auto *IncomingInputMA = PHIWriteStmt->lookupInputAccessOf(Incoming.second); if (!IncomingInputMA) continue; Worklist.push_back(IncomingInputMA); FoundAny = true; } if (!FoundAny) ProcessAllIncoming(PHIWrite->getStatement()); } AnyMapped = true; continue; } } if (AnyMapped) { TargetsMapped++; NumberOfTargetsMapped++; } return AnyMapped; } /// Compute when an array element is unused. /// /// @return { [Element[] -> Zone[]] } isl::union_set computeLifetime() const { // { Element[] -> Zone[] } auto ArrayUnused = computeArrayUnused(Schedule, AllMustWrites, AllReads, false, false, true); auto Result = give(isl_union_map_wrap(ArrayUnused.copy())); simplify(Result); return Result; } /// Compute which value an array element stores at every instant. /// /// @return { [Element[] -> Zone[]] -> ValInst[] } isl::union_map computeKnown() const { // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] } auto EltReachdDef = distributeDomain(give(isl_union_map_curry(WriteReachDefZone.copy()))); // { [Element[] -> DomainWrite[]] -> ValInst[] } auto AllKnownWriteValInst = filterKnownValInst(AllWriteValInst); // { [Element[] -> Zone[]] -> ValInst[] } return EltReachdDef.apply_range(AllKnownWriteValInst); } /// Determine when an array element is written to, and which value instance is /// written. /// /// @return { [Element[] -> Scatter[]] -> ValInst[] } isl::union_map computeWritten() const { // { [Element[] -> Scatter[]] -> ValInst[] } auto EltWritten = applyDomainRange(AllWriteValInst, Schedule); simplify(EltWritten); return EltWritten; } /// Determine whether an access touches at most one element. /// /// The accessed element could be a scalar or accessing an array with constant /// subscript, such that all instances access only that element. /// /// @param MA The access to test. /// /// @return True, if zero or one elements are accessed; False if at least two /// different elements are accessed. bool isScalarAccess(MemoryAccess *MA) { auto Map = getAccessRelationFor(MA); auto Set = give(isl_map_range(Map.take())); return isl_set_is_singleton(Set.keep()) == isl_bool_true; } /// Print mapping statistics to @p OS. void printStatistics(llvm::raw_ostream &OS, int Indent = 0) const { OS.indent(Indent) << "Statistics {\n"; OS.indent(Indent + 4) << "Compatible overwrites: " << NumberOfCompatibleTargets << "\n"; OS.indent(Indent + 4) << "Overwrites mapped to: " << NumberOfTargetsMapped << '\n'; OS.indent(Indent + 4) << "Value scalars mapped: " << NumberOfMappedValueScalars << '\n'; OS.indent(Indent + 4) << "PHI scalars mapped: " << NumberOfMappedPHIScalars << '\n'; OS.indent(Indent) << "}\n"; } /// Return whether at least one transformation been applied. bool isModified() const { return NumberOfTargetsMapped > 0; } public: DeLICMImpl(Scop *S, LoopInfo *LI) : ZoneAlgorithm(S, LI) {} /// Calculate the lifetime (definition to last use) of every array element. /// /// @return True if the computed lifetimes (#Zone) is usable. bool computeZone() { // Check that nothing strange occurs. if (!isCompatibleScop()) { DeLICMIncompatible++; return false; } isl::union_set EltUnused; isl::union_map EltKnown, EltWritten; { IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), DelicmMaxOps); computeCommon(); EltUnused = computeLifetime(); EltKnown = computeKnown(); EltWritten = computeWritten(); } DeLICMAnalyzed++; if (!EltUnused || !EltKnown || !EltWritten) { assert(isl_ctx_last_error(IslCtx.get()) == isl_error_quota && "The only reason that these things have not been computed should " "be if the max-operations limit hit"); DeLICMOutOfQuota++; DEBUG(dbgs() << "DeLICM analysis exceeded max_operations\n"); DebugLoc Begin, End; getDebugLocations(getBBPairForRegion(&S->getRegion()), Begin, End); OptimizationRemarkAnalysis R(DEBUG_TYPE, "OutOfQuota", Begin, S->getEntry()); R << "maximal number of operations exceeded during zone analysis"; S->getFunction().getContext().diagnose(R); return false; } Zone = OriginalZone = Knowledge(nullptr, EltUnused, EltKnown, EltWritten); DEBUG(dbgs() << "Computed Zone:\n"; OriginalZone.print(dbgs(), 4)); assert(Zone.isUsable() && OriginalZone.isUsable()); return true; } /// Try to map as many scalars to unused array elements as possible. /// /// Multiple scalars might be mappable to intersecting unused array element /// zones, but we can only chose one. This is a greedy algorithm, therefore /// the first processed element claims it. void greedyCollapse() { bool Modified = false; for (auto &Stmt : *S) { for (auto *MA : Stmt) { if (!MA->isLatestArrayKind()) continue; if (!MA->isWrite()) continue; if (MA->isMayWrite()) { DEBUG(dbgs() << "Access " << MA << " pruned because it is a MAY_WRITE\n"); OptimizationRemarkMissed R(DEBUG_TYPE, "TargetMayWrite", MA->getAccessInstruction()); R << "Skipped possible mapping target because it is not an " "unconditional overwrite"; S->getFunction().getContext().diagnose(R); continue; } if (Stmt.getNumIterators() == 0) { DEBUG(dbgs() << "Access " << MA << " pruned because it is not in a loop\n"); OptimizationRemarkMissed R(DEBUG_TYPE, "WriteNotInLoop", MA->getAccessInstruction()); R << "skipped possible mapping target because it is not in a loop"; S->getFunction().getContext().diagnose(R); continue; } if (isScalarAccess(MA)) { DEBUG(dbgs() << "Access " << MA << " pruned because it writes only a single element\n"); OptimizationRemarkMissed R(DEBUG_TYPE, "ScalarWrite", MA->getAccessInstruction()); R << "skipped possible mapping target because the memory location " "written to does not depend on its outer loop"; S->getFunction().getContext().diagnose(R); continue; } NumberOfCompatibleTargets++; DEBUG(dbgs() << "Analyzing target access " << MA << "\n"); if (collapseScalarsToStore(MA)) Modified = true; } } if (Modified) DeLICMScopsModified++; } /// Dump the internal information about a performed DeLICM to @p OS. void print(llvm::raw_ostream &OS, int Indent = 0) { if (!Zone.isUsable()) { OS.indent(Indent) << "Zone not computed\n"; return; } printStatistics(OS, Indent); if (!isModified()) { OS.indent(Indent) << "No modification has been made\n"; return; } printAccesses(OS, Indent); } }; class DeLICM : public ScopPass { private: DeLICM(const DeLICM &) = delete; const DeLICM &operator=(const DeLICM &) = delete; /// The pass implementation, also holding per-scop data. std::unique_ptr Impl; void collapseToUnused(Scop &S) { auto &LI = getAnalysis().getLoopInfo(); Impl = make_unique(&S, &LI); if (!Impl->computeZone()) { DEBUG(dbgs() << "Abort because cannot reliably compute lifetimes\n"); return; } DEBUG(dbgs() << "Collapsing scalars to unused array elements...\n"); Impl->greedyCollapse(); DEBUG(dbgs() << "\nFinal Scop:\n"); DEBUG(dbgs() << S); } public: static char ID; explicit DeLICM() : ScopPass(ID) {} virtual void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequiredTransitive(); AU.addRequired(); AU.setPreservesAll(); } virtual bool runOnScop(Scop &S) override { // Free resources for previous scop's computation, if not yet done. releaseMemory(); collapseToUnused(S); return false; } virtual void printScop(raw_ostream &OS, Scop &S) const override { if (!Impl) return; assert(Impl->getScop() == &S); OS << "DeLICM result:\n"; Impl->print(OS); } virtual void releaseMemory() override { Impl.reset(); } }; char DeLICM::ID; } // anonymous namespace Pass *polly::createDeLICMPass() { return new DeLICM(); } INITIALIZE_PASS_BEGIN(DeLICM, "polly-delicm", "Polly - DeLICM/DePRE", false, false) INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_END(DeLICM, "polly-delicm", "Polly - DeLICM/DePRE", false, false) bool polly::isConflicting( isl::union_set ExistingOccupied, isl::union_set ExistingUnused, isl::union_map ExistingKnown, isl::union_map ExistingWrites, isl::union_set ProposedOccupied, isl::union_set ProposedUnused, isl::union_map ProposedKnown, isl::union_map ProposedWrites, llvm::raw_ostream *OS, unsigned Indent) { Knowledge Existing(std::move(ExistingOccupied), std::move(ExistingUnused), std::move(ExistingKnown), std::move(ExistingWrites)); Knowledge Proposed(std::move(ProposedOccupied), std::move(ProposedUnused), std::move(ProposedKnown), std::move(ProposedWrites)); return Knowledge::isConflicting(Existing, Proposed, OS, Indent); }