//===------ CodeGeneration.cpp - Code generate the Scops. -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The CodeGeneration pass takes a Scop created by ScopInfo and translates it // back to LLVM-IR using Cloog. // // The Scop describes the high level memory behaviour of a control flow region. // Transformation passes can update the schedule (execution order) of statements // in the Scop. Cloog is used to generate an abstract syntax tree (clast) that // reflects the updated execution order. This clast is used to create new // LLVM-IR that is computational equivalent to the original control flow region, // but executes its code in the new execution order defined by the changed // scattering. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "polly-codegen" #include "polly/LinkAllPasses.h" #include "polly/Support/GICHelper.h" #include "polly/Support/ScopHelper.h" #include "polly/Cloog.h" #include "polly/Dependences.h" #include "polly/ScopInfo.h" #include "polly/TempScopInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Target/TargetData.h" #include "llvm/Module.h" #include "llvm/ADT/SetVector.h" #define CLOOG_INT_GMP 1 #include "cloog/cloog.h" #include "cloog/isl/cloog.h" #include #include using namespace polly; using namespace llvm; struct isl_set; namespace polly { static cl::opt Vector("enable-polly-vector", cl::desc("Enable polly vector code generation"), cl::Hidden, cl::value_desc("Vector code generation enabled if true"), cl::init(false)); static cl::opt OpenMP("enable-polly-openmp", cl::desc("Generate OpenMP parallel code"), cl::Hidden, cl::value_desc("OpenMP code generation enabled if true"), cl::init(false)); static cl::opt AtLeastOnce("enable-polly-atLeastOnce", cl::desc("Give polly the hint, that every loop is executed at least" "once"), cl::Hidden, cl::value_desc("OpenMP code generation enabled if true"), cl::init(false)); static cl::opt Aligned("enable-polly-aligned", cl::desc("Assumed aligned memory accesses."), cl::Hidden, cl::value_desc("OpenMP code generation enabled if true"), cl::init(false)); typedef DenseMap ValueMapT; typedef DenseMap CharMapT; typedef std::vector VectorValueMapT; // Create a new loop. // // @param Builder The builder used to create the loop. It also defines the // place where to create the loop. // @param UB The upper bound of the loop iv. // @param Stride The number by which the loop iv is incremented after every // iteration. static void createLoop(IRBuilder<> *Builder, Value *LB, Value *UB, APInt Stride, PHINode*& IV, BasicBlock*& AfterBB, Value*& IncrementedIV, DominatorTree *DT) { Function *F = Builder->GetInsertBlock()->getParent(); LLVMContext &Context = F->getContext(); BasicBlock *PreheaderBB = Builder->GetInsertBlock(); BasicBlock *HeaderBB = BasicBlock::Create(Context, "polly.loop_header", F); BasicBlock *BodyBB = BasicBlock::Create(Context, "polly.loop_body", F); AfterBB = BasicBlock::Create(Context, "polly.after_loop", F); Builder->CreateBr(HeaderBB); DT->addNewBlock(HeaderBB, PreheaderBB); Builder->SetInsertPoint(BodyBB); Builder->SetInsertPoint(HeaderBB); // Use the type of upper and lower bound. assert(LB->getType() == UB->getType() && "Different types for upper and lower bound."); IntegerType *LoopIVType = dyn_cast(UB->getType()); assert(LoopIVType && "UB is not integer?"); // IV IV = Builder->CreatePHI(LoopIVType, 2, "polly.loopiv"); IV->addIncoming(LB, PreheaderBB); // IV increment. Value *StrideValue = ConstantInt::get(LoopIVType, Stride.zext(LoopIVType->getBitWidth())); IncrementedIV = Builder->CreateAdd(IV, StrideValue, "polly.next_loopiv"); // Exit condition. if (AtLeastOnce) { // At least on iteration. UB = Builder->CreateAdd(UB, Builder->getInt64(1)); Value *CMP = Builder->CreateICmpEQ(IV, UB); Builder->CreateCondBr(CMP, AfterBB, BodyBB); } else { // Maybe not executed at all. Value *CMP = Builder->CreateICmpSLE(IV, UB); Builder->CreateCondBr(CMP, BodyBB, AfterBB); } DT->addNewBlock(BodyBB, HeaderBB); DT->addNewBlock(AfterBB, HeaderBB); Builder->SetInsertPoint(BodyBB); } class BlockGenerator { IRBuilder<> &Builder; ValueMapT &VMap; VectorValueMapT &ValueMaps; Scop &S; ScopStmt &statement; isl_set *scatteringDomain; public: BlockGenerator(IRBuilder<> &B, ValueMapT &vmap, VectorValueMapT &vmaps, ScopStmt &Stmt, isl_set *domain) : Builder(B), VMap(vmap), ValueMaps(vmaps), S(*Stmt.getParent()), statement(Stmt), scatteringDomain(domain) {} const Region &getRegion() { return S.getRegion(); } Value* makeVectorOperand(Value *operand, int vectorWidth) { if (operand->getType()->isVectorTy()) return operand; VectorType *vectorType = VectorType::get(operand->getType(), vectorWidth); Value *vector = UndefValue::get(vectorType); vector = Builder.CreateInsertElement(vector, operand, Builder.getInt32(0)); std::vector splat; for (int i = 0; i < vectorWidth; i++) splat.push_back (Builder.getInt32(0)); Constant *splatVector = ConstantVector::get(splat); return Builder.CreateShuffleVector(vector, vector, splatVector); } Value* getOperand(const Value *oldOperand, ValueMapT &BBMap, ValueMapT *VectorMap = 0) { const Instruction *OpInst = dyn_cast(oldOperand); if (!OpInst) return const_cast(oldOperand); if (VectorMap && VectorMap->count(oldOperand)) return (*VectorMap)[oldOperand]; // IVS and Parameters. if (VMap.count(oldOperand)) { Value *NewOperand = VMap[oldOperand]; // Insert a cast if types are different if (oldOperand->getType()->getScalarSizeInBits() < NewOperand->getType()->getScalarSizeInBits()) NewOperand = Builder.CreateTruncOrBitCast(NewOperand, oldOperand->getType()); return NewOperand; } // Instructions calculated in the current BB. if (BBMap.count(oldOperand)) { return BBMap[oldOperand]; } // Ignore instructions that are referencing ops in the old BB. These // instructions are unused. They where replace by new ones during // createIndependentBlocks(). if (getRegion().contains(OpInst->getParent())) return NULL; return const_cast(oldOperand); } Type *getVectorPtrTy(const Value *V, int vectorWidth) { PointerType *pointerType = dyn_cast(V->getType()); assert(pointerType && "PointerType expected"); Type *scalarType = pointerType->getElementType(); VectorType *vectorType = VectorType::get(scalarType, vectorWidth); return PointerType::getUnqual(vectorType); } /// @brief Load a vector from a set of adjacent scalars /// /// In case a set of scalars is known to be next to each other in memory, /// create a vector load that loads those scalars /// /// %vector_ptr= bitcast double* %p to <4 x double>* /// %vec_full = load <4 x double>* %vector_ptr /// Value *generateStrideOneLoad(const LoadInst *load, ValueMapT &BBMap, int size) { const Value *pointer = load->getPointerOperand(); Type *vectorPtrType = getVectorPtrTy(pointer, size); Value *newPointer = getOperand(pointer, BBMap); Value *VectorPtr = Builder.CreateBitCast(newPointer, vectorPtrType, "vector_ptr"); LoadInst *VecLoad = Builder.CreateLoad(VectorPtr, load->getNameStr() + "_p_vec_full"); if (!Aligned) VecLoad->setAlignment(8); return VecLoad; } /// @brief Load a vector initialized from a single scalar in memory /// /// In case all elements of a vector are initialized to the same /// scalar value, this value is loaded and shuffeled into all elements /// of the vector. /// /// %splat_one = load <1 x double>* %p /// %splat = shufflevector <1 x double> %splat_one, <1 x /// double> %splat_one, <4 x i32> zeroinitializer /// Value *generateStrideZeroLoad(const LoadInst *load, ValueMapT &BBMap, int size) { const Value *pointer = load->getPointerOperand(); Type *vectorPtrType = getVectorPtrTy(pointer, 1); Value *newPointer = getOperand(pointer, BBMap); Value *vectorPtr = Builder.CreateBitCast(newPointer, vectorPtrType, load->getNameStr() + "_p_vec_p"); LoadInst *scalarLoad= Builder.CreateLoad(vectorPtr, load->getNameStr() + "_p_splat_one"); if (!Aligned) scalarLoad->setAlignment(8); std::vector splat; for (int i = 0; i < size; i++) splat.push_back (Builder.getInt32(0)); Constant *splatVector = ConstantVector::get(splat); Value *vectorLoad = Builder.CreateShuffleVector(scalarLoad, scalarLoad, splatVector, load->getNameStr() + "_p_splat"); return vectorLoad; } /// @Load a vector from scalars distributed in memory /// /// In case some scalars a distributed randomly in memory. Create a vector /// by loading each scalar and by inserting one after the other into the /// vector. /// /// %scalar_1= load double* %p_1 /// %vec_1 = insertelement <2 x double> undef, double %scalar_1, i32 0 /// %scalar 2 = load double* %p_2 /// %vec_2 = insertelement <2 x double> %vec_1, double %scalar_1, i32 1 /// Value *generateUnknownStrideLoad(const LoadInst *load, VectorValueMapT &scalarMaps, int size) { const Value *pointer = load->getPointerOperand(); VectorType *vectorType = VectorType::get( dyn_cast(pointer->getType())->getElementType(), size); Value *vector = UndefValue::get(vectorType); for (int i = 0; i < size; i++) { Value *newPointer = getOperand(pointer, scalarMaps[i]); Value *scalarLoad = Builder.CreateLoad(newPointer, load->getNameStr() + "_p_scalar_"); vector = Builder.CreateInsertElement(vector, scalarLoad, Builder.getInt32(i), load->getNameStr() + "_p_vec_"); } return vector; } /// @brief Get the memory access offset to be added to the base address std::vector getMemoryAccessIndex(isl_map *accessRelation, Value *baseAddr) { isl_int offsetMPZ; isl_int_init(offsetMPZ); assert((isl_map_dim(accessRelation, isl_dim_out) == 1) && "Only single dimensional access functions supported"); if (isl_map_plain_is_fixed(accessRelation, isl_dim_out, 0, &offsetMPZ) == -1) errs() << "Only fixed value access functions supported\n"; // Convert the offset from MPZ to Value*. APInt offset = APInt_from_MPZ(offsetMPZ); Value *offsetValue = ConstantInt::get(Builder.getContext(), offset); PointerType *baseAddrType = dyn_cast(baseAddr->getType()); Type *arrayType = baseAddrType->getElementType(); Type *arrayElementType = dyn_cast(arrayType)->getElementType(); offsetValue = Builder.CreateSExtOrBitCast(offsetValue, arrayElementType); std::vector indexArray; Value *nullValue = Constant::getNullValue(arrayElementType); indexArray.push_back(nullValue); indexArray.push_back(offsetValue); isl_int_clear(offsetMPZ); return indexArray; } /// @brief Get the new operand address according to the changed access in /// JSCOP file. Value *getNewAccessOperand(isl_map *newAccessRelation, Value *baseAddr, const Value *oldOperand, ValueMapT &BBMap) { std::vector indexArray = getMemoryAccessIndex(newAccessRelation, baseAddr); Value *newOperand = Builder.CreateGEP(baseAddr, indexArray, "p_newarrayidx_"); return newOperand; } /// @brief Generate the operand address Value *generateLocationAccessed(const Instruction *Inst, const Value *pointer, ValueMapT &BBMap ) { MemoryAccess &access = statement.getAccessFor(Inst); isl_map *currentAccessRelation = access.getAccessFunction(); isl_map *newAccessRelation = access.getNewAccessFunction(); assert(isl_map_has_equal_dim(currentAccessRelation, newAccessRelation) && "Current and new access function dimensions differ"); if (!newAccessRelation) { Value *newPointer = getOperand(pointer, BBMap); return newPointer; } Value *baseAddr = const_cast(access.getBaseAddr()); Value *newPointer = getNewAccessOperand(newAccessRelation, baseAddr, pointer, BBMap); return newPointer; } Value *generateScalarLoad(const LoadInst *load, ValueMapT &BBMap) { const Value *pointer = load->getPointerOperand(); const Instruction *Inst = dyn_cast(load); Value *newPointer = generateLocationAccessed(Inst, pointer, BBMap); Value *scalarLoad = Builder.CreateLoad(newPointer, load->getNameStr() + "_p_scalar_"); return scalarLoad; } /// @brief Load a value (or several values as a vector) from memory. void generateLoad(const LoadInst *load, ValueMapT &vectorMap, VectorValueMapT &scalarMaps, int vectorWidth) { if (scalarMaps.size() == 1) { scalarMaps[0][load] = generateScalarLoad(load, scalarMaps[0]); return; } Value *newLoad; MemoryAccess &Access = statement.getAccessFor(load); assert(scatteringDomain && "No scattering domain available"); if (Access.isStrideZero(scatteringDomain)) newLoad = generateStrideZeroLoad(load, scalarMaps[0], vectorWidth); else if (Access.isStrideOne(scatteringDomain)) newLoad = generateStrideOneLoad(load, scalarMaps[0], vectorWidth); else newLoad = generateUnknownStrideLoad(load, scalarMaps, vectorWidth); vectorMap[load] = newLoad; } void copyBinInst(const BinaryOperator *Inst, ValueMapT &BBMap, ValueMapT &vectorMap, VectorValueMapT &scalarMaps, int vectorDimension, int vectorWidth) { Value *opZero = Inst->getOperand(0); Value *opOne = Inst->getOperand(1); // This is an old instruction that can be ignored. if (!opZero && !opOne) return; Value *newOpZero, *newOpOne; newOpZero = getOperand(opZero, BBMap, &vectorMap); newOpOne = getOperand(opOne, BBMap, &vectorMap); newOpZero = makeVectorOperand(newOpZero, vectorWidth); newOpOne = makeVectorOperand(newOpOne, vectorWidth); Value *newInst = Builder.CreateBinOp(Inst->getOpcode(), newOpZero, newOpOne, Inst->getNameStr() + "p_vec"); vectorMap[Inst] = newInst; return; } void copyVectorStore(const StoreInst *store, ValueMapT &BBMap, ValueMapT &vectorMap, VectorValueMapT &scalarMaps, int vectorDimension, int vectorWidth) { // In vector mode we only generate a store for the first dimension. if (vectorDimension > 0) return; MemoryAccess &Access = statement.getAccessFor(store); assert(scatteringDomain && "No scattering domain available"); const Value *pointer = store->getPointerOperand(); Value *vector = getOperand(store->getValueOperand(), BBMap, &vectorMap); if (Access.isStrideOne(scatteringDomain)) { Type *vectorPtrType = getVectorPtrTy(pointer, vectorWidth); Value *newPointer = getOperand(pointer, BBMap, &vectorMap); Value *VectorPtr = Builder.CreateBitCast(newPointer, vectorPtrType, "vector_ptr"); StoreInst *Store = Builder.CreateStore(vector, VectorPtr); if (!Aligned) Store->setAlignment(8); } else { for (unsigned i = 0; i < scalarMaps.size(); i++) { Value *scalar = Builder.CreateExtractElement(vector, Builder.getInt32(i)); Value *newPointer = getOperand(pointer, scalarMaps[i]); Builder.CreateStore(scalar, newPointer); } } return; } void copyInstScalar(const Instruction *Inst, ValueMapT &BBMap) { Instruction *NewInst = Inst->clone(); // Replace old operands with the new ones. for (Instruction::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end(); OI != OE; ++OI) { Value *OldOperand = *OI; Value *NewOperand = getOperand(OldOperand, BBMap); if (!NewOperand) { assert(!isa(NewInst) && "Store instructions are always needed!"); delete NewInst; return; } NewInst->replaceUsesOfWith(OldOperand, NewOperand); } Builder.Insert(NewInst); BBMap[Inst] = NewInst; if (!NewInst->getType()->isVoidTy()) NewInst->setName("p_" + Inst->getName()); } bool hasVectorOperands(const Instruction *Inst, ValueMapT &VectorMap) { for (Instruction::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end(); OI != OE; ++OI) if (VectorMap.count(*OI)) return true; return false; } int getVectorSize() { return ValueMaps.size(); } bool isVectorBlock() { return getVectorSize() > 1; } void copyInstruction(const Instruction *Inst, ValueMapT &BBMap, ValueMapT &vectorMap, VectorValueMapT &scalarMaps, int vectorDimension, int vectorWidth) { // Terminator instructions control the control flow. They are explicitally // expressed in the clast and do not need to be copied. if (Inst->isTerminator()) return; if (isVectorBlock()) { // If this instruction is already in the vectorMap, a vector instruction // was already issued, that calculates the values of all dimensions. No // need to create any more instructions. if (vectorMap.count(Inst)) return; } if (const LoadInst *load = dyn_cast(Inst)) { generateLoad(load, vectorMap, scalarMaps, vectorWidth); return; } if (isVectorBlock() && hasVectorOperands(Inst, vectorMap)) { if (const BinaryOperator *binaryInst = dyn_cast(Inst)) copyBinInst(binaryInst, BBMap, vectorMap, scalarMaps, vectorDimension, vectorWidth); else if (const StoreInst *store = dyn_cast(Inst)) copyVectorStore(store, BBMap, vectorMap, scalarMaps, vectorDimension, vectorWidth); else llvm_unreachable("Cannot issue vector code for this instruction"); return; } copyInstScalar(Inst, BBMap); } // Insert a copy of a basic block in the newly generated code. // // @param Builder The builder used to insert the code. It also specifies // where to insert the code. // @param BB The basic block to copy // @param VMap A map returning for any old value its new equivalent. This // is used to update the operands of the statements. // For new statements a relation old->new is inserted in this // map. void copyBB(BasicBlock *BB, DominatorTree *DT) { Function *F = Builder.GetInsertBlock()->getParent(); LLVMContext &Context = F->getContext(); BasicBlock *CopyBB = BasicBlock::Create(Context, "polly." + BB->getNameStr() + ".stmt", F); Builder.CreateBr(CopyBB); DT->addNewBlock(CopyBB, Builder.GetInsertBlock()); Builder.SetInsertPoint(CopyBB); // Create two maps that store the mapping from the original instructions of // the old basic block to their copies in the new basic block. Those maps // are basic block local. // // As vector code generation is supported there is one map for scalar values // and one for vector values. // // In case we just do scalar code generation, the vectorMap is not used and // the scalarMap has just one dimension, which contains the mapping. // // In case vector code generation is done, an instruction may either appear // in the vector map once (as it is calculating >vectorwidth< values at a // time. Or (if the values are calculated using scalar operations), it // appears once in every dimension of the scalarMap. VectorValueMapT scalarBlockMap(getVectorSize()); ValueMapT vectorBlockMap; for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) for (int i = 0; i < getVectorSize(); i++) { if (isVectorBlock()) VMap = ValueMaps[i]; copyInstruction(II, scalarBlockMap[i], vectorBlockMap, scalarBlockMap, i, getVectorSize()); } } }; /// Class to generate LLVM-IR that calculates the value of a clast_expr. class ClastExpCodeGen { IRBuilder<> &Builder; const CharMapT *IVS; Value *codegen(const clast_name *e, Type *Ty) { CharMapT::const_iterator I = IVS->find(e->name); if (I != IVS->end()) return Builder.CreateSExtOrBitCast(I->second, Ty); else llvm_unreachable("Clast name not found"); } Value *codegen(const clast_term *e, Type *Ty) { APInt a = APInt_from_MPZ(e->val); Value *ConstOne = ConstantInt::get(Builder.getContext(), a); ConstOne = Builder.CreateSExtOrBitCast(ConstOne, Ty); if (e->var) { Value *var = codegen(e->var, Ty); return Builder.CreateMul(ConstOne, var); } return ConstOne; } Value *codegen(const clast_binary *e, Type *Ty) { Value *LHS = codegen(e->LHS, Ty); APInt RHS_AP = APInt_from_MPZ(e->RHS); Value *RHS = ConstantInt::get(Builder.getContext(), RHS_AP); RHS = Builder.CreateSExtOrBitCast(RHS, Ty); switch (e->type) { case clast_bin_mod: return Builder.CreateSRem(LHS, RHS); case clast_bin_fdiv: { // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d Value *One = ConstantInt::get(Builder.getInt1Ty(), 1); Value *Zero = ConstantInt::get(Builder.getInt1Ty(), 0); One = Builder.CreateZExtOrBitCast(One, Ty); Zero = Builder.CreateZExtOrBitCast(Zero, Ty); Value *Sum1 = Builder.CreateSub(LHS, RHS); Value *Sum2 = Builder.CreateAdd(Sum1, One); Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); Value *Dividend = Builder.CreateSelect(isNegative, Sum2, LHS); return Builder.CreateSDiv(Dividend, RHS); } case clast_bin_cdiv: { // ceild(n,d) ((n < 0) ? n : (n + d - 1)) / d Value *One = ConstantInt::get(Builder.getInt1Ty(), 1); Value *Zero = ConstantInt::get(Builder.getInt1Ty(), 0); One = Builder.CreateZExtOrBitCast(One, Ty); Zero = Builder.CreateZExtOrBitCast(Zero, Ty); Value *Sum1 = Builder.CreateAdd(LHS, RHS); Value *Sum2 = Builder.CreateSub(Sum1, One); Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); Value *Dividend = Builder.CreateSelect(isNegative, LHS, Sum2); return Builder.CreateSDiv(Dividend, RHS); } case clast_bin_div: return Builder.CreateSDiv(LHS, RHS); default: llvm_unreachable("Unknown clast binary expression type"); }; } Value *codegen(const clast_reduction *r, Type *Ty) { assert(( r->type == clast_red_min || r->type == clast_red_max || r->type == clast_red_sum) && "Clast reduction type not supported"); Value *old = codegen(r->elts[0], Ty); for (int i=1; i < r->n; ++i) { Value *exprValue = codegen(r->elts[i], Ty); switch (r->type) { case clast_red_min: { Value *cmp = Builder.CreateICmpSLT(old, exprValue); old = Builder.CreateSelect(cmp, old, exprValue); break; } case clast_red_max: { Value *cmp = Builder.CreateICmpSGT(old, exprValue); old = Builder.CreateSelect(cmp, old, exprValue); break; } case clast_red_sum: old = Builder.CreateAdd(old, exprValue); break; default: llvm_unreachable("Clast unknown reduction type"); } } return old; } public: // A generator for clast expressions. // // @param B The IRBuilder that defines where the code to calculate the // clast expressions should be inserted. // @param IVMAP A Map that translates strings describing the induction // variables to the Values* that represent these variables // on the LLVM side. ClastExpCodeGen(IRBuilder<> &B, CharMapT *IVMap) : Builder(B), IVS(IVMap) {} // Generates code to calculate a given clast expression. // // @param e The expression to calculate. // @return The Value that holds the result. Value *codegen(const clast_expr *e, Type *Ty) { switch(e->type) { case clast_expr_name: return codegen((const clast_name *)e, Ty); case clast_expr_term: return codegen((const clast_term *)e, Ty); case clast_expr_bin: return codegen((const clast_binary *)e, Ty); case clast_expr_red: return codegen((const clast_reduction *)e, Ty); default: llvm_unreachable("Unknown clast expression!"); } } // @brief Reset the CharMap. // // This function is called to reset the CharMap to new one, while generating // OpenMP code. void setIVS(CharMapT *IVSNew) { IVS = IVSNew; } }; class ClastStmtCodeGen { // The Scop we code generate. Scop *S; ScalarEvolution &SE; DominatorTree *DT; ScopDetection *SD; Dependences *DP; TargetData *TD; // The Builder specifies the current location to code generate at. IRBuilder<> &Builder; // Map the Values from the old code to their counterparts in the new code. ValueMapT ValueMap; // clastVars maps from the textual representation of a clast variable to its // current *Value. clast variables are scheduling variables, original // induction variables or parameters. They are used either in loop bounds or // to define the statement instance that is executed. // // for (s = 0; s < n + 3; ++i) // for (t = s; t < m; ++j) // Stmt(i = s + 3 * m, j = t); // // {s,t,i,j,n,m} is the set of clast variables in this clast. CharMapT *clastVars; // Codegenerator for clast expressions. ClastExpCodeGen ExpGen; // Do we currently generate parallel code? bool parallelCodeGeneration; std::vector parallelLoops; public: const std::vector &getParallelLoops() { return parallelLoops; } protected: void codegen(const clast_assignment *a) { (*clastVars)[a->LHS] = ExpGen.codegen(a->RHS, TD->getIntPtrType(Builder.getContext())); } void codegen(const clast_assignment *a, ScopStmt *Statement, unsigned Dimension, int vectorDim, std::vector *VectorVMap = 0) { Value *RHS = ExpGen.codegen(a->RHS, TD->getIntPtrType(Builder.getContext())); assert(!a->LHS && "Statement assignments do not have left hand side"); const PHINode *PN; PN = Statement->getInductionVariableForDimension(Dimension); const Value *V = PN; if (VectorVMap) (*VectorVMap)[vectorDim][V] = RHS; ValueMap[V] = RHS; } void codegenSubstitutions(const clast_stmt *Assignment, ScopStmt *Statement, int vectorDim = 0, std::vector *VectorVMap = 0) { int Dimension = 0; while (Assignment) { assert(CLAST_STMT_IS_A(Assignment, stmt_ass) && "Substitions are expected to be assignments"); codegen((const clast_assignment *)Assignment, Statement, Dimension, vectorDim, VectorVMap); Assignment = Assignment->next; Dimension++; } } void codegen(const clast_user_stmt *u, std::vector *IVS = NULL, const char *iterator = NULL, isl_set *scatteringDomain = 0) { ScopStmt *Statement = (ScopStmt *)u->statement->usr; BasicBlock *BB = Statement->getBasicBlock(); if (u->substitutions) codegenSubstitutions(u->substitutions, Statement); int vectorDimensions = IVS ? IVS->size() : 1; VectorValueMapT VectorValueMap(vectorDimensions); if (IVS) { assert (u->substitutions && "Substitutions expected!"); int i = 0; for (std::vector::iterator II = IVS->begin(), IE = IVS->end(); II != IE; ++II) { (*clastVars)[iterator] = *II; codegenSubstitutions(u->substitutions, Statement, i, &VectorValueMap); i++; } } BlockGenerator Generator(Builder, ValueMap, VectorValueMap, *Statement, scatteringDomain); Generator.copyBB(BB, DT); } void codegen(const clast_block *b) { if (b->body) codegen(b->body); } /// @brief Create a classical sequential loop. void codegenForSequential(const clast_for *f, Value *lowerBound = 0, Value *upperBound = 0) { APInt Stride = APInt_from_MPZ(f->stride); PHINode *IV; Value *IncrementedIV; BasicBlock *AfterBB; // The value of lowerbound and upperbound will be supplied, if this // function is called while generating OpenMP code. Otherwise get // the values. assert(((lowerBound && upperBound) || (!lowerBound && !upperBound)) && "Either give both bounds or none"); if (lowerBound == 0 || upperBound == 0) { lowerBound = ExpGen.codegen(f->LB, TD->getIntPtrType(Builder.getContext())); upperBound = ExpGen.codegen(f->UB, TD->getIntPtrType(Builder.getContext())); } createLoop(&Builder, lowerBound, upperBound, Stride, IV, AfterBB, IncrementedIV, DT); // Add loop iv to symbols. (*clastVars)[f->iterator] = IV; if (f->body) codegen(f->body); // Loop is finished, so remove its iv from the live symbols. clastVars->erase(f->iterator); BasicBlock *HeaderBB = *pred_begin(AfterBB); BasicBlock *LastBodyBB = Builder.GetInsertBlock(); Builder.CreateBr(HeaderBB); IV->addIncoming(IncrementedIV, LastBodyBB); Builder.SetInsertPoint(AfterBB); } /// @brief Add a new definition of an openmp subfunction. Function* addOpenMPSubfunction(Module *M) { Function *F = Builder.GetInsertBlock()->getParent(); const std::string &Name = F->getNameStr() + ".omp_subfn"; std::vector Arguments(1, Builder.getInt8PtrTy()); FunctionType *FT = FunctionType::get(Builder.getVoidTy(), Arguments, false); Function *FN = Function::Create(FT, Function::InternalLinkage, Name, M); // Do not run any polly pass on the new function. SD->markFunctionAsInvalid(FN); Function::arg_iterator AI = FN->arg_begin(); AI->setName("omp.userContext"); return FN; } /// @brief Add values to the OpenMP structure. /// /// Create the subfunction structure and add the values from the list. Value *addValuesToOpenMPStruct(SetVector OMPDataVals, Function *SubFunction) { std::vector structMembers; // Create the structure. for (unsigned i = 0; i < OMPDataVals.size(); i++) structMembers.push_back(OMPDataVals[i]->getType()); StructType *structTy = StructType::get(Builder.getContext(), structMembers); // Store the values into the structure. Value *structData = Builder.CreateAlloca(structTy, 0, "omp.userContext"); for (unsigned i = 0; i < OMPDataVals.size(); i++) { Value *storeAddr = Builder.CreateStructGEP(structData, i); Builder.CreateStore(OMPDataVals[i], storeAddr); } return structData; } /// @brief Create OpenMP structure values. /// /// Create a list of values that has to be stored into the subfuncition /// structure. SetVector createOpenMPStructValues() { SetVector OMPDataVals; // Push the clast variables available in the clastVars. for (CharMapT::iterator I = clastVars->begin(), E = clastVars->end(); I != E; I++) OMPDataVals.insert(I->second); // Push the base addresses of memory references. for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) { ScopStmt *Stmt = *SI; for (SmallVector::iterator I = Stmt->memacc_begin(), E = Stmt->memacc_end(); I != E; ++I) { Value *BaseAddr = const_cast((*I)->getBaseAddr()); OMPDataVals.insert((BaseAddr)); } } return OMPDataVals; } /// @brief Extract the values from the subfunction parameter. /// /// Extract the values from the subfunction parameter and update the clast /// variables to point to the new values. void extractValuesFromOpenMPStruct(CharMapT *clastVarsOMP, SetVector OMPDataVals, Value *userContext) { // Extract the clast variables. unsigned i = 0; for (CharMapT::iterator I = clastVars->begin(), E = clastVars->end(); I != E; I++) { Value *loadAddr = Builder.CreateStructGEP(userContext, i); (*clastVarsOMP)[I->first] = Builder.CreateLoad(loadAddr); i++; } // Extract the base addresses of memory references. for (unsigned j = i; j < OMPDataVals.size(); j++) { Value *loadAddr = Builder.CreateStructGEP(userContext, j); Value *baseAddr = OMPDataVals[j]; ValueMap[baseAddr] = Builder.CreateLoad(loadAddr); } } /// @brief Add body to the subfunction. void addOpenMPSubfunctionBody(Function *FN, const clast_for *f, Value *structData, SetVector OMPDataVals) { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); LLVMContext &Context = FN->getContext(); IntegerType *intPtrTy = TD->getIntPtrType(Context); // Store the previous basic block. BasicBlock *PrevBB = Builder.GetInsertBlock(); // Create basic blocks. BasicBlock *HeaderBB = BasicBlock::Create(Context, "omp.setup", FN); BasicBlock *ExitBB = BasicBlock::Create(Context, "omp.exit", FN); BasicBlock *checkNextBB = BasicBlock::Create(Context, "omp.checkNext", FN); BasicBlock *loadIVBoundsBB = BasicBlock::Create(Context, "omp.loadIVBounds", FN); DT->addNewBlock(HeaderBB, PrevBB); DT->addNewBlock(ExitBB, HeaderBB); DT->addNewBlock(checkNextBB, HeaderBB); DT->addNewBlock(loadIVBoundsBB, HeaderBB); // Fill up basic block HeaderBB. Builder.SetInsertPoint(HeaderBB); Value *lowerBoundPtr = Builder.CreateAlloca(intPtrTy, 0, "omp.lowerBoundPtr"); Value *upperBoundPtr = Builder.CreateAlloca(intPtrTy, 0, "omp.upperBoundPtr"); Value *userContext = Builder.CreateBitCast(FN->arg_begin(), structData->getType(), "omp.userContext"); CharMapT clastVarsOMP; extractValuesFromOpenMPStruct(&clastVarsOMP, OMPDataVals, userContext); Builder.CreateBr(checkNextBB); // Add code to check if another set of iterations will be executed. Builder.SetInsertPoint(checkNextBB); Function *runtimeNextFunction = M->getFunction("GOMP_loop_runtime_next"); Value *ret1 = Builder.CreateCall2(runtimeNextFunction, lowerBoundPtr, upperBoundPtr); Value *hasNextSchedule = Builder.CreateTrunc(ret1, Builder.getInt1Ty(), "omp.hasNextScheduleBlock"); Builder.CreateCondBr(hasNextSchedule, loadIVBoundsBB, ExitBB); // Add code to to load the iv bounds for this set of iterations. Builder.SetInsertPoint(loadIVBoundsBB); Value *lowerBound = Builder.CreateLoad(lowerBoundPtr, "omp.lowerBound"); Value *upperBound = Builder.CreateLoad(upperBoundPtr, "omp.upperBound"); // Subtract one as the upper bound provided by openmp is a < comparison // whereas the codegenForSequential function creates a <= comparison. upperBound = Builder.CreateSub(upperBound, ConstantInt::get(intPtrTy, 1), "omp.upperBoundAdjusted"); // Use clastVarsOMP during code generation of the OpenMP subfunction. CharMapT *oldClastVars = clastVars; clastVars = &clastVarsOMP; ExpGen.setIVS(&clastVarsOMP); codegenForSequential(f, lowerBound, upperBound); // Restore the old clastVars. clastVars = oldClastVars; ExpGen.setIVS(oldClastVars); Builder.CreateBr(checkNextBB); // Add code to terminate this openmp subfunction. Builder.SetInsertPoint(ExitBB); Function *endnowaitFunction = M->getFunction("GOMP_loop_end_nowait"); Builder.CreateCall(endnowaitFunction); Builder.CreateRetVoid(); // Restore the builder back to previous basic block. Builder.SetInsertPoint(PrevBB); } /// @brief Create an OpenMP parallel for loop. /// /// This loop reflects a loop as if it would have been created by an OpenMP /// statement. void codegenForOpenMP(const clast_for *f) { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); IntegerType *intPtrTy = TD->getIntPtrType(Builder.getContext()); Function *SubFunction = addOpenMPSubfunction(M); SetVector OMPDataVals = createOpenMPStructValues(); Value *structData = addValuesToOpenMPStruct(OMPDataVals, SubFunction); addOpenMPSubfunctionBody(SubFunction, f, structData, OMPDataVals); // Create call for GOMP_parallel_loop_runtime_start. Value *subfunctionParam = Builder.CreateBitCast(structData, Builder.getInt8PtrTy(), "omp_data"); Value *numberOfThreads = Builder.getInt32(0); Value *lowerBound = ExpGen.codegen(f->LB, intPtrTy); Value *upperBound = ExpGen.codegen(f->UB, intPtrTy); // Add one as the upper bound provided by openmp is a < comparison // whereas the codegenForSequential function creates a <= comparison. upperBound = Builder.CreateAdd(upperBound, ConstantInt::get(intPtrTy, 1)); APInt APStride = APInt_from_MPZ(f->stride); Value *stride = ConstantInt::get(intPtrTy, APStride.zext(intPtrTy->getBitWidth())); SmallVector Arguments; Arguments.push_back(SubFunction); Arguments.push_back(subfunctionParam); Arguments.push_back(numberOfThreads); Arguments.push_back(lowerBound); Arguments.push_back(upperBound); Arguments.push_back(stride); Function *parallelStartFunction = M->getFunction("GOMP_parallel_loop_runtime_start"); Builder.CreateCall(parallelStartFunction, Arguments); // Create call to the subfunction. Builder.CreateCall(SubFunction, subfunctionParam); // Create call for GOMP_parallel_end. Function *FN = M->getFunction("GOMP_parallel_end"); Builder.CreateCall(FN); } bool isInnermostLoop(const clast_for *f) { const clast_stmt *stmt = f->body; while (stmt) { if (!CLAST_STMT_IS_A(stmt, stmt_user)) return false; stmt = stmt->next; } return true; } /// @brief Get the number of loop iterations for this loop. /// @param f The clast for loop to check. int getNumberOfIterations(const clast_for *f) { isl_set *loopDomain = isl_set_copy(isl_set_from_cloog_domain(f->domain)); isl_set *tmp = isl_set_copy(loopDomain); // Calculate a map similar to the identity map, but with the last input // and output dimension not related. // [i0, i1, i2, i3] -> [i0, i1, i2, o0] isl_dim *dim = isl_set_get_dim(loopDomain); dim = isl_dim_drop_outputs(dim, isl_set_n_dim(loopDomain) - 2, 1); dim = isl_dim_map_from_set(dim); isl_map *identity = isl_map_identity(dim); identity = isl_map_add_dims(identity, isl_dim_in, 1); identity = isl_map_add_dims(identity, isl_dim_out, 1); isl_map *map = isl_map_from_domain_and_range(tmp, loopDomain); map = isl_map_intersect(map, identity); isl_map *lexmax = isl_map_lexmax(isl_map_copy(map)); isl_map *lexmin = isl_map_lexmin(map); isl_map *sub = isl_map_sum(lexmax, isl_map_neg(lexmin)); isl_set *elements = isl_map_range(sub); if (!isl_set_is_singleton(elements)) { isl_set_free(elements); return -1; } isl_point *p = isl_set_sample_point(elements); isl_int v; isl_int_init(v); isl_point_get_coordinate(p, isl_dim_set, isl_set_n_dim(loopDomain) - 1, &v); int numberIterations = isl_int_get_si(v); isl_int_clear(v); isl_point_free(p); return (numberIterations) / isl_int_get_si(f->stride) + 1; } /// @brief Create vector instructions for this loop. void codegenForVector(const clast_for *f) { DEBUG(dbgs() << "Vectorizing loop '" << f->iterator << "'\n";); int vectorWidth = getNumberOfIterations(f); Value *LB = ExpGen.codegen(f->LB, TD->getIntPtrType(Builder.getContext())); APInt Stride = APInt_from_MPZ(f->stride); IntegerType *LoopIVType = dyn_cast(LB->getType()); Stride = Stride.zext(LoopIVType->getBitWidth()); Value *StrideValue = ConstantInt::get(LoopIVType, Stride); std::vector IVS(vectorWidth); IVS[0] = LB; for (int i = 1; i < vectorWidth; i++) IVS[i] = Builder.CreateAdd(IVS[i-1], StrideValue, "p_vector_iv"); isl_set *scatteringDomain = isl_set_from_cloog_domain(f->domain); // Add loop iv to symbols. (*clastVars)[f->iterator] = LB; const clast_stmt *stmt = f->body; while (stmt) { codegen((const clast_user_stmt *)stmt, &IVS, f->iterator, scatteringDomain); stmt = stmt->next; } // Loop is finished, so remove its iv from the live symbols. clastVars->erase(f->iterator); } void codegen(const clast_for *f) { if (Vector && isInnermostLoop(f) && DP->isParallelFor(f) && (-1 != getNumberOfIterations(f)) && (getNumberOfIterations(f) <= 16)) { codegenForVector(f); } else if (OpenMP && !parallelCodeGeneration && DP->isParallelFor(f)) { parallelCodeGeneration = true; parallelLoops.push_back(f->iterator); codegenForOpenMP(f); parallelCodeGeneration = false; } else codegenForSequential(f); } Value *codegen(const clast_equation *eq) { Value *LHS = ExpGen.codegen(eq->LHS, TD->getIntPtrType(Builder.getContext())); Value *RHS = ExpGen.codegen(eq->RHS, TD->getIntPtrType(Builder.getContext())); CmpInst::Predicate P; if (eq->sign == 0) P = ICmpInst::ICMP_EQ; else if (eq->sign > 0) P = ICmpInst::ICMP_SGE; else P = ICmpInst::ICMP_SLE; return Builder.CreateICmp(P, LHS, RHS); } void codegen(const clast_guard *g) { Function *F = Builder.GetInsertBlock()->getParent(); LLVMContext &Context = F->getContext(); BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); BasicBlock *MergeBB = BasicBlock::Create(Context, "polly.merge", F); DT->addNewBlock(ThenBB, Builder.GetInsertBlock()); DT->addNewBlock(MergeBB, Builder.GetInsertBlock()); Value *Predicate = codegen(&(g->eq[0])); for (int i = 1; i < g->n; ++i) { Value *TmpPredicate = codegen(&(g->eq[i])); Predicate = Builder.CreateAnd(Predicate, TmpPredicate); } Builder.CreateCondBr(Predicate, ThenBB, MergeBB); Builder.SetInsertPoint(ThenBB); codegen(g->then); Builder.CreateBr(MergeBB); Builder.SetInsertPoint(MergeBB); } void codegen(const clast_stmt *stmt) { if (CLAST_STMT_IS_A(stmt, stmt_root)) assert(false && "No second root statement expected"); else if (CLAST_STMT_IS_A(stmt, stmt_ass)) codegen((const clast_assignment *)stmt); else if (CLAST_STMT_IS_A(stmt, stmt_user)) codegen((const clast_user_stmt *)stmt); else if (CLAST_STMT_IS_A(stmt, stmt_block)) codegen((const clast_block *)stmt); else if (CLAST_STMT_IS_A(stmt, stmt_for)) codegen((const clast_for *)stmt); else if (CLAST_STMT_IS_A(stmt, stmt_guard)) codegen((const clast_guard *)stmt); if (stmt->next) codegen(stmt->next); } void addParameters(const CloogNames *names) { SCEVExpander Rewriter(SE, "polly"); // Create an instruction that specifies the location where the parameters // are expanded. CastInst::CreateIntegerCast(ConstantInt::getTrue(Builder.getContext()), Builder.getInt16Ty(), false, "insertInst", Builder.GetInsertBlock()); int i = 0; for (Scop::param_iterator PI = S->param_begin(), PE = S->param_end(); PI != PE; ++PI) { assert(i < names->nb_parameters && "Not enough parameter names"); const SCEV *Param = *PI; Type *Ty = Param->getType(); Instruction *insertLocation = --(Builder.GetInsertBlock()->end()); Value *V = Rewriter.expandCodeFor(Param, Ty, insertLocation); (*clastVars)[names->parameters[i]] = V; ++i; } } public: void codegen(const clast_root *r) { clastVars = new CharMapT(); addParameters(r->names); ExpGen.setIVS(clastVars); parallelCodeGeneration = false; const clast_stmt *stmt = (const clast_stmt*) r; if (stmt->next) codegen(stmt->next); delete clastVars; } ClastStmtCodeGen(Scop *scop, ScalarEvolution &se, DominatorTree *dt, ScopDetection *sd, Dependences *dp, TargetData *td, IRBuilder<> &B) : S(scop), SE(se), DT(dt), SD(sd), DP(dp), TD(td), Builder(B), ExpGen(Builder, NULL) {} }; } namespace { class CodeGeneration : public ScopPass { Region *region; Scop *S; DominatorTree *DT; ScalarEvolution *SE; ScopDetection *SD; TargetData *TD; RegionInfo *RI; std::vector parallelLoops; public: static char ID; CodeGeneration() : ScopPass(ID) {} // Adding prototypes required if OpenMP is enabled. void addOpenMPDefinitions(IRBuilder<> &Builder) { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); LLVMContext &Context = Builder.getContext(); IntegerType *intPtrTy = TD->getIntPtrType(Context); if (!M->getFunction("GOMP_parallel_end")) { FunctionType *FT = FunctionType::get(Type::getVoidTy(Context), false); Function::Create(FT, Function::ExternalLinkage, "GOMP_parallel_end", M); } if (!M->getFunction("GOMP_parallel_loop_runtime_start")) { // Type of first argument. std::vector Arguments(1, Builder.getInt8PtrTy()); FunctionType *FnArgTy = FunctionType::get(Builder.getVoidTy(), Arguments, false); PointerType *FnPtrTy = PointerType::getUnqual(FnArgTy); std::vector args; args.push_back(FnPtrTy); args.push_back(Builder.getInt8PtrTy()); args.push_back(Builder.getInt32Ty()); args.push_back(intPtrTy); args.push_back(intPtrTy); args.push_back(intPtrTy); FunctionType *type = FunctionType::get(Builder.getVoidTy(), args, false); Function::Create(type, Function::ExternalLinkage, "GOMP_parallel_loop_runtime_start", M); } if (!M->getFunction("GOMP_loop_runtime_next")) { PointerType *intLongPtrTy = PointerType::getUnqual(intPtrTy); std::vector args; args.push_back(intLongPtrTy); args.push_back(intLongPtrTy); FunctionType *type = FunctionType::get(Builder.getInt8Ty(), args, false); Function::Create(type, Function::ExternalLinkage, "GOMP_loop_runtime_next", M); } if (!M->getFunction("GOMP_loop_end_nowait")) { FunctionType *FT = FunctionType::get(Builder.getVoidTy(), std::vector(), false); Function::Create(FT, Function::ExternalLinkage, "GOMP_loop_end_nowait", M); } } // Split the entry edge of the region and generate a new basic block on this // edge. This function also updates ScopInfo and RegionInfo. // // @param region The region where the entry edge will be splitted. BasicBlock *splitEdgeAdvanced(Region *region) { BasicBlock *newBlock; BasicBlock *splitBlock; newBlock = SplitEdge(region->getEnteringBlock(), region->getEntry(), this); if (DT->dominates(region->getEntry(), newBlock)) { // Update ScopInfo. for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) if ((*SI)->getBasicBlock() == newBlock) { (*SI)->setBasicBlock(newBlock); break; } // Update RegionInfo. splitBlock = region->getEntry(); region->replaceEntry(newBlock); RI->setRegionFor(newBlock, region); } else { RI->setRegionFor(newBlock, region->getParent()); splitBlock = newBlock; } return splitBlock; } // Create a split block that branches either to the old code or to a new basic // block where the new code can be inserted. // // @param builder A builder that will be set to point to a basic block, where // the new code can be generated. // @return The split basic block. BasicBlock *addSplitAndStartBlock(IRBuilder<> *builder) { BasicBlock *splitBlock = splitEdgeAdvanced(region); splitBlock->setName("polly.enterScop"); Function *function = splitBlock->getParent(); BasicBlock *startBlock = BasicBlock::Create(function->getContext(), "polly.start", function); splitBlock->getTerminator()->eraseFromParent(); builder->SetInsertPoint(splitBlock); builder->CreateCondBr(builder->getTrue(), startBlock, region->getEntry()); DT->addNewBlock(startBlock, splitBlock); // Start code generation here. builder->SetInsertPoint(startBlock); return splitBlock; } // Merge the control flow of the newly generated code with the existing code. // // @param splitBlock The basic block where the control flow was split between // old and new version of the Scop. // @param builder An IRBuilder that points to the last instruction of the // newly generated code. void mergeControlFlow(BasicBlock *splitBlock, IRBuilder<> *builder) { BasicBlock *mergeBlock; Region *R = region; if (R->getExit()->getSinglePredecessor()) // No splitEdge required. A block with a single predecessor cannot have // PHI nodes that would complicate life. mergeBlock = R->getExit(); else { mergeBlock = SplitEdge(R->getExitingBlock(), R->getExit(), this); // SplitEdge will never split R->getExit(), as R->getExit() has more than // one predecessor. Hence, mergeBlock is always a newly generated block. mergeBlock->setName("polly.finalMerge"); R->replaceExit(mergeBlock); } builder->CreateBr(mergeBlock); if (DT->dominates(splitBlock, mergeBlock)) DT->changeImmediateDominator(mergeBlock, splitBlock); } bool runOnScop(Scop &scop) { S = &scop; region = &S->getRegion(); DT = &getAnalysis(); Dependences *DP = &getAnalysis(); SE = &getAnalysis(); SD = &getAnalysis(); TD = &getAnalysis(); RI = &getAnalysis(); parallelLoops.clear(); assert(region->isSimple() && "Only simple regions are supported"); // In the CFG and we generate next to original code of the Scop the // optimized version. Both the new and the original version of the code // remain in the CFG. A branch statement decides which version is executed. // At the moment, we always execute the newly generated version (the old one // is dead code eliminated by the cleanup passes). Later we may decide to // execute the new version only under certain conditions. This will be the // case if we support constructs for which we cannot prove all assumptions // at compile time. // // Before transformation: // // bb0 // | // orig_scop // | // bb1 // // After transformation: // bb0 // | // polly.splitBlock // / \. // | startBlock // | | // orig_scop new_scop // \ / // \ / // bb1 (joinBlock) IRBuilder<> builder(region->getEntry()); // The builder will be set to startBlock. BasicBlock *splitBlock = addSplitAndStartBlock(&builder); if (OpenMP) addOpenMPDefinitions(builder); ClastStmtCodeGen CodeGen(S, *SE, DT, SD, DP, TD, builder); CloogInfo &C = getAnalysis(); CodeGen.codegen(C.getClast()); parallelLoops.insert(parallelLoops.begin(), CodeGen.getParallelLoops().begin(), CodeGen.getParallelLoops().end()); mergeControlFlow(splitBlock, &builder); return true; } virtual void printScop(raw_ostream &OS) const { for (std::vector::const_iterator PI = parallelLoops.begin(), PE = parallelLoops.end(); PI != PE; ++PI) OS << "Parallel loop with iterator '" << *PI << "' generated\n"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); // FIXME: We do not create LoopInfo for the newly generated loops. AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); // FIXME: We do not yet add regions for the newly generated code to the // region tree. AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreservedID(IndependentBlocksID); } }; } char CodeGeneration::ID = 1; static RegisterPass Z("polly-codegen", "Polly - Create LLVM-IR from the polyhedral information"); Pass* polly::createCodeGenerationPass() { return new CodeGeneration(); }