//===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Take a scop created by ScopInfo and map it to GPU code using the ppcg // GPU mapping strategy. // //===----------------------------------------------------------------------===// #include "polly/CodeGen/IslNodeBuilder.h" #include "polly/CodeGen/Utils.h" #include "polly/DependenceInfo.h" #include "polly/LinkAllPasses.h" #include "polly/Options.h" #include "polly/ScopInfo.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "isl/union_map.h" extern "C" { #include "ppcg/cuda.h" #include "ppcg/gpu.h" #include "ppcg/gpu_print.h" #include "ppcg/ppcg.h" #include "ppcg/schedule.h" } #include "llvm/Support/Debug.h" using namespace polly; using namespace llvm; #define DEBUG_TYPE "polly-codegen-ppcg" static cl::opt DumpSchedule("polly-acc-dump-schedule", cl::desc("Dump the computed GPU Schedule"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt DumpCode("polly-acc-dump-code", cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt DumpKernelIR("polly-acc-dump-kernel-ir", cl::desc("Dump the kernel LLVM-IR"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); /// Create the ast expressions for a ScopStmt. /// /// This function is a callback for to generate the ast expressions for each /// of the scheduled ScopStmts. static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( void *Stmt, isl_ast_build *Build, isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, isl_id *Id, void *User), void *UserIndex, isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), void *User_expr) { // TODO: Implement the AST expression generation. For now we just return a // nullptr to ensure that we do not free uninitialized pointers. return nullptr; } /// Generate code for a GPU specific isl AST. /// /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which /// generates code for general-prupose AST nodes, with special functionality /// for generating GPU specific user nodes. /// /// @see GPUNodeBuilder::createUser class GPUNodeBuilder : public IslNodeBuilder { public: GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P, const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT, Scop &S, gpu_prog *Prog) : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) {} private: /// A module containing GPU code. /// /// This pointer is only set in case we are currently generating GPU code. std::unique_ptr GPUModule; /// The GPU program we generate code for. gpu_prog *Prog; /// Class to free isl_ids. class IslIdDeleter { public: void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; }; /// A set containing all isl_ids allocated in a GPU kernel. /// /// By releasing this set all isl_ids will be freed. std::set> KernelIDs; /// Create code for user-defined AST nodes. /// /// These AST nodes can be of type: /// /// - ScopStmt: A computational statement (TODO) /// - Kernel: A GPU kernel call (TODO) /// - Data-Transfer: A GPU <-> CPU data-transfer (TODO) /// /// @param UserStmt The ast node to generate code for. virtual void createUser(__isl_take isl_ast_node *UserStmt); /// Create GPU kernel. /// /// Code generate the kernel described by @p KernelStmt. /// /// @param KernelStmt The ast node to generate kernel code for. void createKernel(__isl_take isl_ast_node *KernelStmt); /// Create kernel function. /// /// Create a kernel function located in a newly created module that can serve /// as target for device code generation. Set the Builder to point to the /// start block of this newly created function. /// /// @param Kernel The kernel to generate code for. void createKernelFunction(ppcg_kernel *Kernel); /// Create the declaration of a kernel function. /// /// The kernel function takes as arguments: /// /// - One i8 pointer for each external array reference used in the kernel. /// - Host iterators (TODO) /// - Parameters (TODO) /// - Other LLVM Value references (TODO) /// /// @param Kernel The kernel to generate the function declaration for. /// @returns The newly declared function. Function *createKernelFunctionDecl(ppcg_kernel *Kernel); /// Insert intrinsic functions to obtain thread and block ids. /// /// @param The kernel to generate the intrinsic functions for. void insertKernelIntrinsics(ppcg_kernel *Kernel); /// Finalize the generation of the kernel function. /// /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- /// dump its IR to stderr. void finalizeKernelFunction(); }; void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); isl_id *Id = isl_ast_expr_get_id(StmtExpr); isl_id_free(Id); isl_ast_expr_free(StmtExpr); const char *Str = isl_id_get_name(Id); if (!strcmp(Str, "kernel")) { createKernel(UserStmt); isl_ast_expr_free(Expr); return; } isl_ast_expr_free(Expr); isl_ast_node_free(UserStmt); return; } void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { isl_id *Id = isl_ast_node_get_annotation(KernelStmt); ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); isl_id_free(Id); isl_ast_node_free(KernelStmt); assert(Kernel->tree && "Device AST of kernel node is empty"); Instruction &HostInsertPoint = *Builder.GetInsertPoint(); IslExprBuilder::IDToValueTy HostIDs = IDToValue; createKernelFunction(Kernel); Builder.SetInsertPoint(&HostInsertPoint); IDToValue = HostIDs; finalizeKernelFunction(); } /// Compute the DataLayout string for the NVPTX backend. /// /// @param is64Bit Are we looking for a 64 bit architecture? static std::string computeNVPTXDataLayout(bool is64Bit) { std::string Ret = "e"; if (!is64Bit) Ret += "-p:32:32"; Ret += "-i64:64-v16:16-v32:32-n16:32:64"; return Ret; } Function *GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel) { std::vector Args; std::string Identifier = "kernel_" + std::to_string(Kernel->id); for (long i = 0; i < Prog->n_array; i++) { if (!ppcg_kernel_requires_array_argument(Kernel, i)) continue; Args.push_back(Builder.getInt8PtrTy()); } auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, GPUModule.get()); FN->setCallingConv(CallingConv::PTX_Kernel); auto Arg = FN->arg_begin(); for (long i = 0; i < Kernel->n_array; i++) { if (!ppcg_kernel_requires_array_argument(Kernel, i)) continue; Arg->setName(Prog->array[i].name); Arg++; } return FN; } void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x, Intrinsic::nvvm_read_ptx_sreg_ctaid_y}; Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x, Intrinsic::nvvm_read_ptx_sreg_tid_y, Intrinsic::nvvm_read_ptx_sreg_tid_z}; auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { std::string Name = isl_id_get_name(Id); Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); Value *Val = Builder.CreateCall(IntrinsicFn, {}); Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); IDToValue[Id] = Val; KernelIDs.insert(std::unique_ptr(Id)); }; for (int i = 0; i < Kernel->n_grid; ++i) { isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); addId(Id, IntrinsicsBID[i]); } for (int i = 0; i < Kernel->n_block; ++i) { isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); addId(Id, IntrinsicsTID[i]); } } void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel) { std::string Identifier = "kernel_" + std::to_string(Kernel->id); GPUModule.reset(new Module(Identifier, Builder.getContext())); GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); Function *FN = createKernelFunctionDecl(Kernel); auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); Builder.SetInsertPoint(EntryBlock); Builder.CreateRetVoid(); Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); insertKernelIntrinsics(Kernel); } void GPUNodeBuilder::finalizeKernelFunction() { if (DumpKernelIR) outs() << *GPUModule << "\n"; GPUModule.release(); KernelIDs.clear(); } namespace { class PPCGCodeGeneration : public ScopPass { public: static char ID; /// The scop that is currently processed. Scop *S; LoopInfo *LI; DominatorTree *DT; ScalarEvolution *SE; const DataLayout *DL; RegionInfo *RI; PPCGCodeGeneration() : ScopPass(ID) {} /// Construct compilation options for PPCG. /// /// @returns The compilation options. ppcg_options *createPPCGOptions() { auto DebugOptions = (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); DebugOptions->dump_schedule_constraints = false; DebugOptions->dump_schedule = false; DebugOptions->dump_final_schedule = false; DebugOptions->dump_sizes = false; Options->debug = DebugOptions; Options->reschedule = true; Options->scale_tile_loops = false; Options->wrap = false; Options->non_negative_parameters = false; Options->ctx = nullptr; Options->sizes = nullptr; Options->tile_size = 32; Options->use_private_memory = false; Options->use_shared_memory = false; Options->max_shared_memory = 0; Options->target = PPCG_TARGET_CUDA; Options->openmp = false; Options->linearize_device_arrays = true; Options->live_range_reordering = false; Options->opencl_compiler_options = nullptr; Options->opencl_use_gpu = false; Options->opencl_n_include_file = 0; Options->opencl_include_files = nullptr; Options->opencl_print_kernel_types = false; Options->opencl_embed_kernel_code = false; Options->save_schedule_file = nullptr; Options->load_schedule_file = nullptr; return Options; } /// Get a tagged access relation containing all accesses of type @p AccessTy. /// /// Instead of a normal access of the form: /// /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] /// /// a tagged access has the form /// /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] /// /// where 'id' is an additional space that references the memory access that /// triggered the access. /// /// @param AccessTy The type of the memory accesses to collect. /// /// @return The relation describing all tagged memory accesses. isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace()); for (auto &Stmt : *S) for (auto &Acc : Stmt) if (Acc->getType() == AccessTy) { isl_map *Relation = Acc->getAccessRelation(); Relation = isl_map_intersect_domain(Relation, Stmt.getDomain()); isl_space *Space = isl_map_get_space(Relation); Space = isl_space_range(Space); Space = isl_space_from_range(Space); Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); isl_map *Universe = isl_map_universe(Space); Relation = isl_map_domain_product(Relation, Universe); Accesses = isl_union_map_add_map(Accesses, Relation); } return Accesses; } /// Get the set of all read accesses, tagged with the access id. /// /// @see getTaggedAccesses isl_union_map *getTaggedReads() { return getTaggedAccesses(MemoryAccess::READ); } /// Get the set of all may (and must) accesses, tagged with the access id. /// /// @see getTaggedAccesses isl_union_map *getTaggedMayWrites() { return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), getTaggedAccesses(MemoryAccess::MUST_WRITE)); } /// Get the set of all must accesses, tagged with the access id. /// /// @see getTaggedAccesses isl_union_map *getTaggedMustWrites() { return getTaggedAccesses(MemoryAccess::MUST_WRITE); } /// Collect parameter and array names as isl_ids. /// /// To reason about the different parameters and arrays used, ppcg requires /// a list of all isl_ids in use. As PPCG traditionally performs /// source-to-source compilation each of these isl_ids is mapped to the /// expression that represents it. As we do not have a corresponding /// expression in Polly, we just map each id to a 'zero' expression to match /// the data format that ppcg expects. /// /// @returns Retun a map from collected ids to 'zero' ast expressions. __isl_give isl_id_to_ast_expr *getNames() { auto *Names = isl_id_to_ast_expr_alloc( S->getIslCtx(), S->getNumParams() + std::distance(S->array_begin(), S->array_end())); auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx())); auto *Space = S->getParamSpace(); for (int I = 0, E = S->getNumParams(); I < E; ++I) { isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I); Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); } for (auto &Array : S->arrays()) { auto Id = Array.second->getBasePtrId(); Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); } isl_space_free(Space); isl_ast_expr_free(Zero); return Names; } /// Create a new PPCG scop from the current scop. /// /// The PPCG scop is initialized with data from the current polly::Scop. From /// this initial data, the data-dependences in the PPCG scop are initialized. /// We do not use Polly's dependence analysis for now, to ensure we match /// the PPCG default behaviour more closely. /// /// @returns A new ppcg scop. ppcg_scop *createPPCGScop() { auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); PPCGScop->options = createPPCGOptions(); PPCGScop->start = 0; PPCGScop->end = 0; PPCGScop->context = S->getContext(); PPCGScop->domain = S->getDomains(); PPCGScop->call = nullptr; PPCGScop->tagged_reads = getTaggedReads(); PPCGScop->reads = S->getReads(); PPCGScop->live_in = nullptr; PPCGScop->tagged_may_writes = getTaggedMayWrites(); PPCGScop->may_writes = S->getWrites(); PPCGScop->tagged_must_writes = getTaggedMustWrites(); PPCGScop->must_writes = S->getMustWrites(); PPCGScop->live_out = nullptr; PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace()); PPCGScop->tagger = nullptr; PPCGScop->independence = nullptr; PPCGScop->dep_flow = nullptr; PPCGScop->tagged_dep_flow = nullptr; PPCGScop->dep_false = nullptr; PPCGScop->dep_forced = nullptr; PPCGScop->dep_order = nullptr; PPCGScop->tagged_dep_order = nullptr; PPCGScop->schedule = S->getScheduleTree(); PPCGScop->names = getNames(); PPCGScop->pet = nullptr; compute_tagger(PPCGScop); compute_dependences(PPCGScop); return PPCGScop; } /// Collect the array acesses in a statement. /// /// @param Stmt The statement for which to collect the accesses. /// /// @returns A list of array accesses. gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { gpu_stmt_access *Accesses = nullptr; for (MemoryAccess *Acc : Stmt) { auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access); Access->read = Acc->isRead(); Access->write = Acc->isWrite(); Access->access = Acc->getAccessRelation(); isl_space *Space = isl_map_get_space(Access->access); Space = isl_space_range(Space); Space = isl_space_from_range(Space); Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId()); isl_map *Universe = isl_map_universe(Space); Access->tagged_access = isl_map_domain_product(Acc->getAccessRelation(), Universe); Access->exact_write = Acc->isWrite(); Access->ref_id = Acc->getId(); Access->next = Accesses; Accesses = Access; } return Accesses; } /// Collect the list of GPU statements. /// /// Each statement has an id, a pointer to the underlying data structure, /// as well as a list with all memory accesses. /// /// TODO: Initialize the list of memory accesses. /// /// @returns A linked-list of statements. gpu_stmt *getStatements() { gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt, std::distance(S->begin(), S->end())); int i = 0; for (auto &Stmt : *S) { gpu_stmt *GPUStmt = &Stmts[i]; GPUStmt->id = Stmt.getDomainId(); // We use the pet stmt pointer to keep track of the Polly statements. GPUStmt->stmt = (pet_stmt *)&Stmt; GPUStmt->accesses = getStmtAccesses(Stmt); i++; } return Stmts; } /// Derive the extent of an array. /// /// The extent of an array is defined by the set of memory locations for /// which a memory access in the iteration domain exists. /// /// @param Array The array to derive the extent for. /// /// @returns An isl_set describing the extent of the array. __isl_give isl_set *getExtent(ScopArrayInfo *Array) { isl_union_map *Accesses = S->getAccesses(); Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains()); isl_union_set *AccessUSet = isl_union_map_range(Accesses); isl_set *AccessSet = isl_union_set_extract_set(AccessUSet, Array->getSpace()); isl_union_set_free(AccessUSet); return AccessSet; } /// Derive the bounds of an array. /// /// For the first dimension we derive the bound of the array from the extent /// of this dimension. For inner dimensions we obtain their size directly from /// ScopArrayInfo. /// /// @param PPCGArray The array to compute bounds for. /// @param Array The polly array from which to take the information. void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { if (PPCGArray.n_index > 0) { isl_set *Dom = isl_set_copy(PPCGArray.extent); Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); isl_set_free(Dom); Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom)); isl_aff *One = isl_aff_zero_on_domain(LS); One = isl_aff_add_constant_si(One, 1); Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); Bound = isl_pw_aff_gist(Bound, S->getContext()); PPCGArray.bound[0] = Bound; } for (unsigned i = 1; i < PPCGArray.n_index; ++i) { isl_pw_aff *Bound = Array->getDimensionSizePw(i); auto LS = isl_pw_aff_get_domain_space(Bound); auto Aff = isl_multi_aff_zero(LS); Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); PPCGArray.bound[i] = Bound; } } /// Create the arrays for @p PPCGProg. /// /// @param PPCGProg The program to compute the arrays for. void createArrays(gpu_prog *PPCGProg) { int i = 0; for (auto &Element : S->arrays()) { ScopArrayInfo *Array = Element.second.get(); std::string TypeName; raw_string_ostream OS(TypeName); OS << *Array->getElementType(); TypeName = OS.str(); gpu_array_info &PPCGArray = PPCGProg->array[i]; PPCGArray.space = Array->getSpace(); PPCGArray.type = strdup(TypeName.c_str()); PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8; PPCGArray.name = strdup(Array->getName().c_str()); PPCGArray.extent = nullptr; PPCGArray.n_index = Array->getNumberOfDimensions(); PPCGArray.bound = isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index); PPCGArray.extent = getExtent(Array); PPCGArray.n_ref = 0; PPCGArray.refs = nullptr; PPCGArray.accessed = true; PPCGArray.read_only_scalar = false; PPCGArray.has_compound_element = false; PPCGArray.local = false; PPCGArray.declare_local = false; PPCGArray.global = false; PPCGArray.linearize = false; PPCGArray.dep_order = nullptr; setArrayBounds(PPCGArray, Array); i++; collect_references(PPCGProg, &PPCGArray); } } /// Create an identity map between the arrays in the scop. /// /// @returns An identity map between the arrays in the scop. isl_union_map *getArrayIdentity() { isl_union_map *Maps = isl_union_map_empty(S->getParamSpace()); for (auto &Item : S->arrays()) { ScopArrayInfo *Array = Item.second.get(); isl_space *Space = Array->getSpace(); Space = isl_space_map_from_set(Space); isl_map *Identity = isl_map_identity(Space); Maps = isl_union_map_add_map(Maps, Identity); } return Maps; } /// Create a default-initialized PPCG GPU program. /// /// @returns A new gpu grogram description. gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { if (!PPCGScop) return nullptr; auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog); PPCGProg->ctx = S->getIslCtx(); PPCGProg->scop = PPCGScop; PPCGProg->context = isl_set_copy(PPCGScop->context); PPCGProg->read = isl_union_map_copy(PPCGScop->reads); PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); PPCGProg->tagged_must_kill = isl_union_map_copy(PPCGScop->tagged_must_kills); PPCGProg->to_inner = getArrayIdentity(); PPCGProg->to_outer = getArrayIdentity(); PPCGProg->may_persist = compute_may_persist(PPCGProg); PPCGProg->any_to_outer = nullptr; PPCGProg->array_order = nullptr; PPCGProg->n_stmts = std::distance(S->begin(), S->end()); PPCGProg->stmts = getStatements(); PPCGProg->n_array = std::distance(S->array_begin(), S->array_end()); PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info, PPCGProg->n_array); createArrays(PPCGProg); return PPCGProg; } struct PrintGPUUserData { struct cuda_info *CudaInfo; struct gpu_prog *PPCGProg; std::vector Kernels; }; /// Print a user statement node in the host code. /// /// We use ppcg's printing facilities to print the actual statement and /// additionally build up a list of all kernels that are encountered in the /// host ast. /// /// @param P The printer to print to /// @param Options The printing options to use /// @param Node The node to print /// @param User A user pointer to carry additional data. This pointer is /// expected to be of type PrintGPUUserData. /// /// @returns A printer to which the output has been printed. static __isl_give isl_printer * printHostUser(__isl_take isl_printer *P, __isl_take isl_ast_print_options *Options, __isl_take isl_ast_node *Node, void *User) { auto Data = (struct PrintGPUUserData *)User; auto Id = isl_ast_node_get_annotation(Node); if (Id) { bool IsUser = !strcmp(isl_id_get_name(Id), "user"); // If this is a user statement, format it ourselves as ppcg would // otherwise try to call pet functionality that is not available in // Polly. if (IsUser) { P = isl_printer_start_line(P); P = isl_printer_print_ast_node(P, Node); P = isl_printer_end_line(P); isl_id_free(Id); isl_ast_print_options_free(Options); return P; } auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); isl_id_free(Id); Data->Kernels.push_back(Kernel); } return print_host_user(P, Options, Node, User); } /// Print C code corresponding to the control flow in @p Kernel. /// /// @param Kernel The kernel to print void printKernel(ppcg_kernel *Kernel) { auto *P = isl_printer_to_str(S->getIslCtx()); P = isl_printer_set_output_format(P, ISL_FORMAT_C); auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); P = isl_ast_node_print(Kernel->tree, P, Options); char *String = isl_printer_get_str(P); printf("%s\n", String); free(String); isl_printer_free(P); } /// Print C code corresponding to the GPU code described by @p Tree. /// /// @param Tree An AST describing GPU code /// @param PPCGProg The PPCG program from which @Tree has been constructed. void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { auto *P = isl_printer_to_str(S->getIslCtx()); P = isl_printer_set_output_format(P, ISL_FORMAT_C); PrintGPUUserData Data; Data.PPCGProg = PPCGProg; auto *Options = isl_ast_print_options_alloc(S->getIslCtx()); Options = isl_ast_print_options_set_print_user(Options, printHostUser, &Data); P = isl_ast_node_print(Tree, P, Options); char *String = isl_printer_get_str(P); printf("# host\n"); printf("%s\n", String); free(String); isl_printer_free(P); for (auto Kernel : Data.Kernels) { printf("# kernel%d\n", Kernel->id); printKernel(Kernel); } } // Generate a GPU program using PPCG. // // GPU mapping consists of multiple steps: // // 1) Compute new schedule for the program. // 2) Map schedule to GPU (TODO) // 3) Generate code for new schedule (TODO) // // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer // is mostly CPU specific. Instead, we use PPCG's GPU code generation // strategy directly from this pass. gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen); PPCGGen->ctx = S->getIslCtx(); PPCGGen->options = PPCGScop->options; PPCGGen->print = nullptr; PPCGGen->print_user = nullptr; PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; PPCGGen->prog = PPCGProg; PPCGGen->tree = nullptr; PPCGGen->types.n = 0; PPCGGen->types.name = nullptr; PPCGGen->sizes = nullptr; PPCGGen->used_sizes = nullptr; PPCGGen->kernel_id = 0; // Set scheduling strategy to same strategy PPCG is using. isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); isl_options_set_schedule_whole_component(PPCGGen->ctx, false); isl_schedule *Schedule = get_schedule(PPCGGen); int has_permutable = has_any_permutable_node(Schedule); if (!has_permutable || has_permutable < 0) { Schedule = isl_schedule_free(Schedule); } else { Schedule = map_to_device(PPCGGen, Schedule); PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); } if (DumpSchedule) { isl_printer *P = isl_printer_to_str(S->getIslCtx()); P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); P = isl_printer_print_str(P, "Schedule\n"); P = isl_printer_print_str(P, "========\n"); if (Schedule) P = isl_printer_print_schedule(P, Schedule); else P = isl_printer_print_str(P, "No schedule found\n"); printf("%s\n", isl_printer_get_str(P)); isl_printer_free(P); } if (DumpCode) { printf("Code\n"); printf("====\n"); if (PPCGGen->tree) printGPUTree(PPCGGen->tree, PPCGProg); else printf("No code generated\n"); } isl_schedule_free(Schedule); return PPCGGen; } /// Free gpu_gen structure. /// /// @param PPCGGen The ppcg_gen object to free. void freePPCGGen(gpu_gen *PPCGGen) { isl_ast_node_free(PPCGGen->tree); isl_union_map_free(PPCGGen->sizes); isl_union_map_free(PPCGGen->used_sizes); free(PPCGGen); } /// Free the options in the ppcg scop structure. /// /// ppcg is not freeing these options for us. To avoid leaks we do this /// ourselves. /// /// @param PPCGScop The scop referencing the options to free. void freeOptions(ppcg_scop *PPCGScop) { free(PPCGScop->options->debug); PPCGScop->options->debug = nullptr; free(PPCGScop->options); PPCGScop->options = nullptr; } /// Generate code for a given GPU AST described by @p Root. /// /// @param Root An isl_ast_node pointing to the root of the GPU AST. /// @param Prog The GPU Program to generate code for. void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { ScopAnnotator Annotator; Annotator.buildAliasScopes(*S); Region *R = &S->getRegion(); simplifyRegion(R, DT, LI, RI); BasicBlock *EnteringBB = R->getEnteringBlock(); PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S, Prog); // Only build the run-time condition and parameters _after_ having // introduced the conditional branch. This is important as the conditional // branch will guard the original scop from new induction variables that // the SCEVExpander may introduce while code generating the parameters and // which may introduce scalar dependences that prevent us from correctly // code generating this scop. BasicBlock *StartBlock = executeScopConditionally(*S, this, Builder.getTrue()); // TODO: Handle LICM // TODO: Verify run-time checks auto SplitBlock = StartBlock->getSinglePredecessor(); Builder.SetInsertPoint(SplitBlock->getTerminator()); NodeBuilder.addParameters(S->getContext()); Builder.SetInsertPoint(&*StartBlock->begin()); NodeBuilder.create(Root); NodeBuilder.finalizeSCoP(*S); } bool runOnScop(Scop &CurrentScop) override { S = &CurrentScop; LI = &getAnalysis().getLoopInfo(); DT = &getAnalysis().getDomTree(); SE = &getAnalysis().getSE(); DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout(); RI = &getAnalysis().getRegionInfo(); auto PPCGScop = createPPCGScop(); auto PPCGProg = createPPCGProg(PPCGScop); auto PPCGGen = generateGPU(PPCGScop, PPCGProg); if (PPCGGen->tree) generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); freeOptions(PPCGScop); freePPCGGen(PPCGGen); gpu_prog_free(PPCGProg); ppcg_scop_free(PPCGScop); return true; } void printScop(raw_ostream &, Scop &) const override {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); // FIXME: We do not yet add regions for the newly generated code to the // region tree. AU.addPreserved(); AU.addPreserved(); } }; } char PPCGCodeGeneration::ID = 1; Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); } INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", "Polly - Apply PPCG translation to SCOP", false, false) INITIALIZE_PASS_DEPENDENCY(DependenceInfo); INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); INITIALIZE_PASS_DEPENDENCY(ScopDetection); INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", "Polly - Apply PPCG translation to SCOP", false, false)