//===----- ScopDetection.cpp - Detect Scops --------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Detect the maximal Scops of a function. // // A static control part (Scop) is a subgraph of the control flow graph (CFG) // that only has statically known control flow and can therefore be described // within the polyhedral model. // // Every Scop fullfills these restrictions: // // * It is a single entry single exit region // // * Only affine linear bounds in the loops // // Every natural loop in a Scop must have a number of loop iterations that can // be described as an affine linear function in surrounding loop iterators or // parameters. (A parameter is a scalar that does not change its value during // execution of the Scop). // // * Only comparisons of affine linear expressions in conditions // // * All loops and conditions perfectly nested // // The control flow needs to be structured such that it could be written using // just 'for' and 'if' statements, without the need for any 'goto', 'break' or // 'continue'. // // * Side effect free functions call // // Only function calls and intrinsics that do not have side effects are allowed // (readnone). // // The Scop detection finds the largest Scops by checking if the largest // region is a Scop. If this is not the case, its canonical subregions are // checked until a region is a Scop. It is now tried to extend this Scop by // creating a larger non canonical region. // //===----------------------------------------------------------------------===// #include "polly/ScopDetection.h" #include "polly/LinkAllPasses.h" #include "polly/Support/ScopHelper.h" #include "polly/Support/SCEVValidator.h" #include "llvm/IR/LLVMContext.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/RegionIterator.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/DebugInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Assembly/Writer.h" #define DEBUG_TYPE "polly-detect" #include "llvm/Support/Debug.h" #include using namespace llvm; using namespace polly; static cl::opt OnlyFunction("polly-detect-only", cl::desc("Only detect scops in function"), cl::Hidden, cl::value_desc("The function name to detect scops in"), cl::ValueRequired, cl::init("")); static cl::opt IgnoreAliasing("polly-ignore-aliasing", cl::desc("Ignore possible aliasing of the array bases"), cl::Hidden, cl::init(false)); static cl::opt ReportLevel("polly-report", cl::desc("Print information about Polly"), cl::Hidden, cl::init(false)); static cl::opt AllowNonAffine("polly-allow-nonaffine", cl::desc("Allow non affine access functions in arrays"), cl::Hidden, cl::init(false)); //===----------------------------------------------------------------------===// // Statistics. STATISTIC(ValidRegion, "Number of regions that a valid part of Scop"); #define BADSCOP_STAT(NAME, DESC) \ STATISTIC(Bad##NAME##ForScop, "Number of bad regions for Scop: " DESC) #define INVALID(NAME, MESSAGE) \ do { \ std::string Buf; \ raw_string_ostream fmt(Buf); \ fmt << MESSAGE; \ fmt.flush(); \ LastFailure = Buf; \ DEBUG(dbgs() << MESSAGE); \ DEBUG(dbgs() << "\n"); \ assert(!Context.Verifying && #NAME); \ if (!Context.Verifying) \ ++Bad##NAME##ForScop; \ return false; \ } while (0); #define INVALID_NOVERIFY(NAME, MESSAGE) \ do { \ std::string Buf; \ raw_string_ostream fmt(Buf); \ fmt << MESSAGE; \ fmt.flush(); \ LastFailure = Buf; \ DEBUG(dbgs() << MESSAGE); \ DEBUG(dbgs() << "\n"); \ /* DISABLED: assert(!Context.Verifying && #NAME); */ \ if (!Context.Verifying) \ ++Bad##NAME##ForScop; \ return false; \ } while (0); BADSCOP_STAT(CFG, "CFG too complex"); BADSCOP_STAT(IndVar, "Non canonical induction variable in loop"); BADSCOP_STAT(LoopBound, "Loop bounds can not be computed"); BADSCOP_STAT(FuncCall, "Function call with side effects appeared"); BADSCOP_STAT(AffFunc, "Expression not affine"); BADSCOP_STAT(Scalar, "Found scalar dependency"); BADSCOP_STAT(Alias, "Found base address alias"); BADSCOP_STAT(SimpleRegion, "Region not simple"); BADSCOP_STAT(Other, "Others"); //===----------------------------------------------------------------------===// // ScopDetection. bool ScopDetection::isMaxRegionInScop(const Region &R) const { // The Region is valid only if it could be found in the set. return ValidRegions.count(&R); } std::string ScopDetection::regionIsInvalidBecause(const Region *R) const { if (!InvalidRegions.count(R)) return ""; return InvalidRegions.find(R)->second; } bool ScopDetection::isValidCFG(BasicBlock &BB, DetectionContext &Context) const { Region &RefRegion = Context.CurRegion; TerminatorInst *TI = BB.getTerminator(); // Return instructions are only valid if the region is the top level region. if (isa(TI) && !RefRegion.getExit() && TI->getNumOperands() == 0) return true; BranchInst *Br = dyn_cast(TI); if (!Br) INVALID(CFG, "Non branch instruction terminates BB: " + BB.getName()); if (Br->isUnconditional()) return true; Value *Condition = Br->getCondition(); // UndefValue is not allowed as condition. if (isa(Condition)) INVALID(AffFunc, "Condition based on 'undef' value in BB: " + BB.getName()); // Only Constant and ICmpInst are allowed as condition. if (!(isa(Condition) || isa(Condition))) INVALID(AffFunc, "Condition in BB '" + BB.getName() + "' neither " "constant nor an icmp instruction"); // Allow perfectly nested conditions. assert(Br->getNumSuccessors() == 2 && "Unexpected number of successors"); if (ICmpInst *ICmp = dyn_cast(Condition)) { // Unsigned comparisons are not allowed. They trigger overflow problems // in the code generation. // // TODO: This is not sufficient and just hides bugs. However it does pretty // well. if (ICmp->isUnsigned()) return false; // Are both operands of the ICmp affine? if (isa(ICmp->getOperand(0)) || isa(ICmp->getOperand(1))) INVALID(AffFunc, "undef operand in branch at BB: " + BB.getName()); const SCEV *LHS = SE->getSCEV(ICmp->getOperand(0)); const SCEV *RHS = SE->getSCEV(ICmp->getOperand(1)); if (!isAffineExpr(&Context.CurRegion, LHS, *SE) || !isAffineExpr(&Context.CurRegion, RHS, *SE)) INVALID(AffFunc, "Non affine branch in BB '" << BB.getName() << "' with LHS: " << *LHS << " and RHS: " << *RHS); } // Allow loop exit conditions. Loop *L = LI->getLoopFor(&BB); if (L && L->getExitingBlock() == &BB) return true; // Allow perfectly nested conditions. Region *R = RI->getRegionFor(&BB); if (R->getEntry() != &BB) INVALID(CFG, "Not well structured condition at BB: " + BB.getName()); return true; } bool ScopDetection::isValidCallInst(CallInst &CI) { if (CI.mayHaveSideEffects() || CI.doesNotReturn()) return false; if (CI.doesNotAccessMemory()) return true; Function *CalledFunction = CI.getCalledFunction(); // Indirect calls are not supported. if (CalledFunction == 0) return false; // TODO: Intrinsics. return false; } bool ScopDetection::isValidMemoryAccess(Instruction &Inst, DetectionContext &Context) const { Value *Ptr = getPointerOperand(Inst); const SCEV *AccessFunction = SE->getSCEV(Ptr); const SCEVUnknown *BasePointer; Value *BaseValue; BasePointer = dyn_cast(SE->getPointerBase(AccessFunction)); if (!BasePointer) INVALID(AffFunc, "No base pointer"); BaseValue = BasePointer->getValue(); if (isa(BaseValue)) INVALID(AffFunc, "Undefined base pointer"); AccessFunction = SE->getMinusSCEV(AccessFunction, BasePointer); if (!isAffineExpr(&Context.CurRegion, AccessFunction, *SE, BaseValue) && !AllowNonAffine) INVALID(AffFunc, "Non affine access function: " << *AccessFunction); // FIXME: Alias Analysis thinks IntToPtrInst aliases with alloca instructions // created by IndependentBlocks Pass. if (isa(BaseValue)) INVALID(Other, "Find bad intToptr prt: " << *BaseValue); // Check if the base pointer of the memory access does alias with // any other pointer. This cannot be handled at the moment. AliasSet &AS = Context.AST.getAliasSetForPointer(BaseValue, AliasAnalysis::UnknownSize, Inst.getMetadata(LLVMContext::MD_tbaa)); // INVALID triggers an assertion in verifying mode, if it detects that a SCoP // was detected by SCoP detection and that this SCoP was invalidated by a pass // that stated it would preserve the SCoPs. // We disable this check as the independent blocks pass may create memory // references which seem to alias, if -basicaa is not available. They actually // do not, but as we can not proof this without -basicaa we would fail. We // disable this check to not cause irrelevant verification failures. if (!AS.isMustAlias() && !IgnoreAliasing) { std::string Message; raw_string_ostream OS(Message); OS << "Possible aliasing: "; std::vector Pointers; for (AliasSet::iterator AI = AS.begin(), AE = AS.end(); AI != AE; ++AI) Pointers.push_back(AI.getPointer()); std::sort(Pointers.begin(), Pointers.end()); for (std::vector::iterator PI = Pointers.begin(), PE = Pointers.end(); ;) { Value *V = *PI; if (V->getName().size() == 0) OS << "\"" << *V << "\""; else OS << "\"" << V->getName() << "\""; ++PI; if (PI != PE) OS << ", "; else break; } INVALID_NOVERIFY(Alias, OS.str()) } return true; } bool ScopDetection::hasScalarDependency(Instruction &Inst, Region &RefRegion) const { for (Instruction::use_iterator UI = Inst.use_begin(), UE = Inst.use_end(); UI != UE; ++UI) if (Instruction *Use = dyn_cast(*UI)) if (!RefRegion.contains(Use->getParent())) { // DirtyHack 1: PHINode user outside the Scop is not allow, if this // PHINode is induction variable, the scalar to array transform may // break it and introduce a non-indvar PHINode, which is not allow in // Scop. // This can be fix by: // Introduce a IndependentBlockPrepare pass, which translate all // PHINodes not in Scop to array. // The IndependentBlockPrepare pass can also split the entry block of // the function to hold the alloca instruction created by scalar to // array. and split the exit block of the Scop so the new create load // instruction for escape users will not break other Scops. if (isa(Use)) return true; } return false; } bool ScopDetection::isValidInstruction(Instruction &Inst, DetectionContext &Context) const { // Only canonical IVs are allowed. if (PHINode *PN = dyn_cast(&Inst)) if (!isIndVar(PN, LI)) INVALID(IndVar, "Non canonical PHI node: " << Inst); // Scalar dependencies are not allowed. if (hasScalarDependency(Inst, Context.CurRegion)) INVALID(Scalar, "Scalar dependency found: " << Inst); // We only check the call instruction but not invoke instruction. if (CallInst *CI = dyn_cast(&Inst)) { if (isValidCallInst(*CI)) return true; INVALID(FuncCall, "Call instruction: " << Inst); } if (!Inst.mayWriteToMemory() && !Inst.mayReadFromMemory()) { if (isa(Inst)) INVALID(Other, "Alloca instruction: " << Inst); return true; } // Check the access function. if (isa(Inst) || isa(Inst)) return isValidMemoryAccess(Inst, Context); // We do not know this instruction, therefore we assume it is invalid. INVALID(Other, "Unknown instruction: " << Inst); } bool ScopDetection::isValidBasicBlock(BasicBlock &BB, DetectionContext &Context) const { if (!isValidCFG(BB, Context)) return false; // Check all instructions, except the terminator instruction. for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I) if (!isValidInstruction(*I, Context)) return false; Loop *L = LI->getLoopFor(&BB); if (L && L->getHeader() == &BB && !isValidLoop(L, Context)) return false; return true; } bool ScopDetection::isValidLoop(Loop *L, DetectionContext &Context) const { PHINode *IndVar = L->getCanonicalInductionVariable(); // No canonical induction variable. if (!IndVar) INVALID(IndVar, "No canonical IV at loop header: " << L->getHeader()->getName()); // Is the loop count affine? const SCEV *LoopCount = SE->getBackedgeTakenCount(L); if (!isAffineExpr(&Context.CurRegion, LoopCount, *SE)) INVALID(LoopBound, "Non affine loop bound '" << *LoopCount << "' in loop: " << L->getHeader()->getName()); return true; } Region *ScopDetection::expandRegion(Region &R) { // Initial no valid region was found (greater than R) Region *LastValidRegion = NULL; Region *ExpandedRegion = R.getExpandedRegion(); DEBUG(dbgs() << "\tExpanding " << R.getNameStr() << "\n"); while (ExpandedRegion) { DetectionContext Context(*ExpandedRegion, *AA, false /* verifying */); DEBUG(dbgs() << "\t\tTrying " << ExpandedRegion->getNameStr() << "\n"); // Check the exit first (cheap) if (isValidExit(Context)) { // If the exit is valid check all blocks // - if true, a valid region was found => store it + keep expanding // - if false, .tbd. => stop (should this really end the loop?) if (!allBlocksValid(Context)) break; // Delete unnecessary regions (allocated by getExpandedRegion) if (LastValidRegion) delete LastValidRegion; // Store this region, because it is the greatest valid (encountered so far) LastValidRegion = ExpandedRegion; // Create and test the next greater region (if any) ExpandedRegion = ExpandedRegion->getExpandedRegion(); } else { // Create and test the next greater region (if any) Region *TmpRegion = ExpandedRegion->getExpandedRegion(); // Delete unnecessary regions (allocated by getExpandedRegion) delete ExpandedRegion; ExpandedRegion = TmpRegion; } } DEBUG( if (LastValidRegion) dbgs() << "\tto " << LastValidRegion->getNameStr() << "\n"; else dbgs() << "\tExpanding " << R.getNameStr() << " failed\n"; ); return LastValidRegion; } void ScopDetection::findScops(Region &R) { DetectionContext Context(R, *AA, false /*verifying*/); LastFailure = ""; if (isValidRegion(Context)) { ++ValidRegion; ValidRegions.insert(&R); return; } InvalidRegions[&R] = LastFailure; for (Region::iterator I = R.begin(), E = R.end(); I != E; ++I) findScops(**I); // Try to expand regions. // // As the region tree normally only contains canonical regions, non canonical // regions that form a Scop are not found. Therefore, those non canonical // regions are checked by expanding the canonical ones. std::vector ToExpand; for (Region::iterator I = R.begin(), E = R.end(); I != E; ++I) ToExpand.push_back(*I); for (std::vector::iterator RI = ToExpand.begin(), RE = ToExpand.end(); RI != RE; ++RI) { Region *CurrentRegion = *RI; // Skip invalid regions. Regions may become invalid, if they are element of // an already expanded region. if (ValidRegions.find(CurrentRegion) == ValidRegions.end()) continue; Region *ExpandedR = expandRegion(*CurrentRegion); if (!ExpandedR) continue; R.addSubRegion(ExpandedR, true); ValidRegions.insert(ExpandedR); ValidRegions.erase(CurrentRegion); for (Region::iterator I = ExpandedR->begin(), E = ExpandedR->end(); I != E; ++I) ValidRegions.erase(*I); } } bool ScopDetection::allBlocksValid(DetectionContext &Context) const { Region &R = Context.CurRegion; for (Region::block_iterator I = R.block_begin(), E = R.block_end(); I != E; ++I) if (!isValidBasicBlock(**I, Context)) return false; return true; } bool ScopDetection::isValidExit(DetectionContext &Context) const { Region &R = Context.CurRegion; // PHI nodes are not allowed in the exit basic block. if (BasicBlock *Exit = R.getExit()) { BasicBlock::iterator I = Exit->begin(); if (I != Exit->end() && isa(*I)) INVALID(Other, "PHI node in exit BB"); } return true; } bool ScopDetection::isValidRegion(DetectionContext &Context) const { Region &R = Context.CurRegion; DEBUG(dbgs() << "Checking region: " << R.getNameStr() << "\n\t"); // The toplevel region is no valid region. if (!R.getParent()) { DEBUG(dbgs() << "Top level region is invalid"; dbgs() << "\n"); return false; } // SCoP cannot contain the entry block of the function, because we need // to insert alloca instruction there when translate scalar to array. if (R.getEntry() == &(R.getEntry()->getParent()->getEntryBlock())) INVALID(Other, "Region containing entry block of function is invalid!"); // Only a simple region is allowed. if (!R.isSimple()) INVALID(SimpleRegion, "Region not simple: " << R.getNameStr()); if (!isValidExit(Context)) return false; if (!allBlocksValid(Context)) return false; DEBUG(dbgs() << "OK\n"); return true; } bool ScopDetection::isValidFunction(llvm::Function &F) { return !InvalidFunctions.count(&F); } void ScopDetection::getDebugLocation(const Region *R, unsigned &LineBegin, unsigned &LineEnd, std::string &FileName) { LineBegin = -1; LineEnd = 0; for (Region::const_block_iterator RI = R->block_begin(), RE = R->block_end(); RI != RE; ++RI) for (BasicBlock::iterator BI = (*RI)->begin(), BE = (*RI)->end(); BI != BE; ++BI) { DebugLoc DL = BI->getDebugLoc(); if (DL.isUnknown()) continue; DIScope Scope(DL.getScope(BI->getContext())); if (FileName.empty()) FileName = Scope.getFilename(); unsigned NewLine = DL.getLine(); LineBegin = std::min(LineBegin, NewLine); LineEnd = std::max(LineEnd, NewLine); break; } } void ScopDetection::printLocations() { for (iterator RI = begin(), RE = end(); RI != RE; ++RI) { unsigned LineEntry, LineExit; std::string FileName; getDebugLocation(*RI, LineEntry, LineExit, FileName); if (FileName.empty()) { outs() << "Scop detected at unknown location. Compile with debug info " "(-g) to get more precise information. \n"; return; } outs() << FileName << ":" << LineEntry << ": Scop start\n"; outs() << FileName << ":" << LineExit << ": Scop end\n"; } } bool ScopDetection::runOnFunction(llvm::Function &F) { AA = &getAnalysis(); SE = &getAnalysis(); LI = &getAnalysis(); RI = &getAnalysis(); Region *TopRegion = RI->getTopLevelRegion(); releaseMemory(); if (OnlyFunction != "" && F.getName() != OnlyFunction) return false; if (!isValidFunction(F)) return false; findScops(*TopRegion); if (ReportLevel >= 1) printLocations(); return false; } void polly::ScopDetection::verifyRegion(const Region &R) const { assert(isMaxRegionInScop(R) && "Expect R is a valid region."); DetectionContext Context(const_cast(R), *AA, true /*verifying*/); isValidRegion(Context); } void polly::ScopDetection::verifyAnalysis() const { for (RegionSet::const_iterator I = ValidRegions.begin(), E = ValidRegions.end(); I != E; ++I) verifyRegion(**I); } void ScopDetection::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); // We also need AA and RegionInfo when we are verifying analysis. AU.addRequiredTransitive(); AU.addRequiredTransitive(); AU.setPreservesAll(); } void ScopDetection::print(raw_ostream &OS, const Module *)const { for (RegionSet::const_iterator I = ValidRegions.begin(), E = ValidRegions.end(); I != E; ++I) OS << "Valid Region for Scop: " << (*I)->getNameStr() << '\n'; OS << "\n"; } void ScopDetection::releaseMemory() { ValidRegions.clear(); InvalidRegions.clear(); // Do not clear the invalid function set. } char ScopDetection::ID = 0; INITIALIZE_PASS_BEGIN(ScopDetection, "polly-detect", "Polly - Detect static control parts (SCoPs)", false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_DEPENDENCY(LoopInfo) INITIALIZE_PASS_DEPENDENCY(PostDominatorTree) INITIALIZE_PASS_DEPENDENCY(RegionInfo) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_END(ScopDetection, "polly-detect", "Polly - Detect static control parts (SCoPs)", false, false) Pass *polly::createScopDetectionPass() { return new ScopDetection(); }