//===- DependenceInfo.cpp - Calculate dependency information for a Scop. --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Calculate the data dependency relations for a Scop using ISL. // // The integer set library (ISL) from Sven, has a integrated dependency analysis // to calculate data dependences. This pass takes advantage of this and // calculate those dependences a Scop. // // The dependences in this pass are exact in terms that for a specific read // statement instance only the last write statement instance is returned. In // case of may writes a set of possible write instances is returned. This // analysis will never produce redundant dependences. // //===----------------------------------------------------------------------===// // #include "polly/DependenceInfo.h" #include "polly/LinkAllPasses.h" #include "polly/Options.h" #include "polly/ScopInfo.h" #include "polly/Support/GICHelper.h" #include "polly/Support/ISLTools.h" #include "llvm/Support/Debug.h" #include #include #include #include #include #include #include #include #include using namespace polly; using namespace llvm; #define DEBUG_TYPE "polly-dependence" static cl::opt OptComputeOut( "polly-dependences-computeout", cl::desc("Bound the dependence analysis by a maximal amount of " "computational steps (0 means no bound)"), cl::Hidden, cl::init(500000), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt LegalityCheckDisabled( "disable-polly-legality", cl::desc("Disable polly legality check"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt UseReductions("polly-dependences-use-reductions", cl::desc("Exploit reductions in dependence analysis"), cl::Hidden, cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory)); enum AnalysisType { VALUE_BASED_ANALYSIS, MEMORY_BASED_ANALYSIS }; static cl::opt OptAnalysisType( "polly-dependences-analysis-type", cl::desc("The kind of dependence analysis to use"), cl::values(clEnumValN(VALUE_BASED_ANALYSIS, "value-based", "Exact dependences without transitive dependences"), clEnumValN(MEMORY_BASED_ANALYSIS, "memory-based", "Overapproximation of dependences")), cl::Hidden, cl::init(VALUE_BASED_ANALYSIS), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt OptAnalysisLevel( "polly-dependences-analysis-level", cl::desc("The level of dependence analysis"), cl::values(clEnumValN(Dependences::AL_Statement, "statement-wise", "Statement-level analysis"), clEnumValN(Dependences::AL_Reference, "reference-wise", "Memory reference level analysis that distinguish" " accessed references in the same statement"), clEnumValN(Dependences::AL_Access, "access-wise", "Memory reference level analysis that distinguish" " access instructions in the same statement")), cl::Hidden, cl::init(Dependences::AL_Statement), cl::ZeroOrMore, cl::cat(PollyCategory)); //===----------------------------------------------------------------------===// /// Tag the @p Relation domain with @p TagId static __isl_give isl_map *tag(__isl_take isl_map *Relation, __isl_take isl_id *TagId) { isl_space *Space = isl_map_get_space(Relation); Space = isl_space_drop_dims(Space, isl_dim_out, 0, isl_map_dim(Relation, isl_dim_out)); Space = isl_space_set_tuple_id(Space, isl_dim_out, TagId); isl_multi_aff *Tag = isl_multi_aff_domain_map(Space); Relation = isl_map_preimage_domain_multi_aff(Relation, Tag); return Relation; } /// Tag the @p Relation domain with either MA->getArrayId() or /// MA->getId() based on @p TagLevel static __isl_give isl_map *tag(__isl_take isl_map *Relation, MemoryAccess *MA, Dependences::AnalysisLevel TagLevel) { if (TagLevel == Dependences::AL_Reference) return tag(Relation, MA->getArrayId().release()); if (TagLevel == Dependences::AL_Access) return tag(Relation, MA->getId().release()); // No need to tag at the statement level. return Relation; } /// Collect information about the SCoP @p S. static void collectInfo(Scop &S, isl_union_map *&Read, isl_union_map *&MustWrite, isl_union_map *&MayWrite, isl_union_map *&ReductionTagMap, isl_union_set *&TaggedStmtDomain, Dependences::AnalysisLevel Level) { isl_space *Space = S.getParamSpace().release(); Read = isl_union_map_empty(isl_space_copy(Space)); MustWrite = isl_union_map_empty(isl_space_copy(Space)); MayWrite = isl_union_map_empty(isl_space_copy(Space)); ReductionTagMap = isl_union_map_empty(isl_space_copy(Space)); isl_union_map *StmtSchedule = isl_union_map_empty(Space); SmallPtrSet ReductionArrays; if (UseReductions) for (ScopStmt &Stmt : S) for (MemoryAccess *MA : Stmt) if (MA->isReductionLike()) ReductionArrays.insert(MA->getScopArrayInfo()); for (ScopStmt &Stmt : S) { for (MemoryAccess *MA : Stmt) { isl_set *domcp = Stmt.getDomain().release(); isl_map *accdom = MA->getAccessRelation().release(); accdom = isl_map_intersect_domain(accdom, domcp); if (ReductionArrays.count(MA->getScopArrayInfo())) { // Wrap the access domain and adjust the schedule accordingly. // // An access domain like // Stmt[i0, i1] -> MemAcc_A[i0 + i1] // will be transformed into // [Stmt[i0, i1] -> MemAcc_A[i0 + i1]] -> MemAcc_A[i0 + i1] // // We collect all the access domains in the ReductionTagMap. // This is used in Dependences::calculateDependences to create // a tagged Schedule tree. ReductionTagMap = isl_union_map_add_map(ReductionTagMap, isl_map_copy(accdom)); accdom = isl_map_range_map(accdom); } else { accdom = tag(accdom, MA, Level); if (Level > Dependences::AL_Statement) { isl_map *StmtScheduleMap = Stmt.getSchedule().release(); assert(StmtScheduleMap && "Schedules that contain extension nodes require special " "handling."); isl_map *Schedule = tag(StmtScheduleMap, MA, Level); StmtSchedule = isl_union_map_add_map(StmtSchedule, Schedule); } } if (MA->isRead()) Read = isl_union_map_add_map(Read, accdom); else if (MA->isMayWrite()) MayWrite = isl_union_map_add_map(MayWrite, accdom); else MustWrite = isl_union_map_add_map(MustWrite, accdom); } if (!ReductionArrays.empty() && Level == Dependences::AL_Statement) StmtSchedule = isl_union_map_add_map(StmtSchedule, Stmt.getSchedule().release()); } StmtSchedule = isl_union_map_intersect_params( StmtSchedule, S.getAssumedContext().release()); TaggedStmtDomain = isl_union_map_domain(StmtSchedule); ReductionTagMap = isl_union_map_coalesce(ReductionTagMap); Read = isl_union_map_coalesce(Read); MustWrite = isl_union_map_coalesce(MustWrite); MayWrite = isl_union_map_coalesce(MayWrite); } /// Fix all dimension of @p Zero to 0 and add it to @p user static void fixSetToZero(isl::set Zero, isl::union_set *User) { for (unsigned i = 0; i < Zero.dim(isl::dim::set); i++) Zero = Zero.fix_si(isl::dim::set, i, 0); *User = User->add_set(Zero); } /// Compute the privatization dependences for a given dependency @p Map /// /// Privatization dependences are widened original dependences which originate /// or end in a reduction access. To compute them we apply the transitive close /// of the reduction dependences (which maps each iteration of a reduction /// statement to all following ones) on the RAW/WAR/WAW dependences. The /// dependences which start or end at a reduction statement will be extended to /// depend on all following reduction statement iterations as well. /// Note: "Following" here means according to the reduction dependences. /// /// For the input: /// /// S0: *sum = 0; /// for (int i = 0; i < 1024; i++) /// S1: *sum += i; /// S2: *sum = *sum * 3; /// /// we have the following dependences before we add privatization dependences: /// /// RAW: /// { S0[] -> S1[0]; S1[1023] -> S2[] } /// WAR: /// { } /// WAW: /// { S0[] -> S1[0]; S1[1024] -> S2[] } /// RED: /// { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 } /// /// and afterwards: /// /// RAW: /// { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023; /// S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023} /// WAR: /// { } /// WAW: /// { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023; /// S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023} /// RED: /// { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 } /// /// Note: This function also computes the (reverse) transitive closure of the /// reduction dependences. void Dependences::addPrivatizationDependences() { isl_union_map *PrivRAW, *PrivWAW, *PrivWAR; // The transitive closure might be over approximated, thus could lead to // dependency cycles in the privatization dependences. To make sure this // will not happen we remove all negative dependences after we computed // the transitive closure. TC_RED = isl_union_map_transitive_closure(isl_union_map_copy(RED), nullptr); // FIXME: Apply the current schedule instead of assuming the identity schedule // here. The current approach is only valid as long as we compute the // dependences only with the initial (identity schedule). Any other // schedule could change "the direction of the backward dependences" we // want to eliminate here. isl_union_set *UDeltas = isl_union_map_deltas(isl_union_map_copy(TC_RED)); isl_union_set *Universe = isl_union_set_universe(isl_union_set_copy(UDeltas)); isl::union_set Zero = isl::manage(isl_union_set_empty(isl_union_set_get_space(Universe))); for (isl::set Set : isl::manage_copy(Universe).get_set_list()) fixSetToZero(Set, &Zero); isl_union_map *NonPositive = isl_union_set_lex_le_union_set(UDeltas, Zero.release()); TC_RED = isl_union_map_subtract(TC_RED, NonPositive); TC_RED = isl_union_map_union( TC_RED, isl_union_map_reverse(isl_union_map_copy(TC_RED))); TC_RED = isl_union_map_coalesce(TC_RED); isl_union_map **Maps[] = {&RAW, &WAW, &WAR}; isl_union_map **PrivMaps[] = {&PrivRAW, &PrivWAW, &PrivWAR}; for (unsigned u = 0; u < 3; u++) { isl_union_map **Map = Maps[u], **PrivMap = PrivMaps[u]; *PrivMap = isl_union_map_apply_range(isl_union_map_copy(*Map), isl_union_map_copy(TC_RED)); *PrivMap = isl_union_map_union( *PrivMap, isl_union_map_apply_range(isl_union_map_copy(TC_RED), isl_union_map_copy(*Map))); *Map = isl_union_map_union(*Map, *PrivMap); } isl_union_set_free(Universe); } static __isl_give isl_union_flow *buildFlow(__isl_keep isl_union_map *Snk, __isl_keep isl_union_map *Src, __isl_keep isl_union_map *MaySrc, __isl_keep isl_schedule *Schedule) { isl_union_access_info *AI; AI = isl_union_access_info_from_sink(isl_union_map_copy(Snk)); if (MaySrc) AI = isl_union_access_info_set_may_source(AI, isl_union_map_copy(MaySrc)); if (Src) AI = isl_union_access_info_set_must_source(AI, isl_union_map_copy(Src)); AI = isl_union_access_info_set_schedule(AI, isl_schedule_copy(Schedule)); auto Flow = isl_union_access_info_compute_flow(AI); LLVM_DEBUG(if (!Flow) dbgs() << "last error: " << isl_ctx_last_error(isl_schedule_get_ctx(Schedule)) << '\n';); return Flow; } /// Compute exact WAR dependences /// We need exact WAR dependences. That is, if there are /// dependences of the form: /// must-W2 (sink) <- must-W1 (sink) <- R (source) /// We wish to generate *ONLY*: /// { R -> W1 }, /// NOT: /// { R -> W2, R -> W1 } /// /// However, in the case of may-writes, we do *not* wish to allow /// may-writes to block must-writes. This makes sense, since perhaps the /// may-write will not happen. In that case, the exact dependence will /// be the (read -> must-write). /// Example: /// must-W2 (sink) <- may-W1 (sink) <- R (source) /// We wish to generate: /// { R-> W1, R -> W2 } /// /// We use the fact that may dependences are not allowed to flow /// through a must source. That way, reads will be stopped by intermediate /// must-writes. /// However, may-sources may not interfere with one another. Hence, reads /// will not block each other from generating dependences. /// /// Write (Sink) <- MustWrite (Must-Source) <- Read (MaySource) is /// present, then the dependence /// { Write <- Read } /// is not tracked. /// /// We would like to specify the Must-Write as kills, source as Read /// and sink as Write. /// ISL does not have the functionality currently to support "kills". /// Use the Must-Source as a way to specify "kills". /// The drawback is that we will have both /// { Write <- MustWrite, Write <- Read } /// /// We need to filter this to track only { Write <- Read }. /// /// Filtering { Write <- Read } from WAROverestimated: /// -------------------------------------------------- /// isl_union_flow_get_full_may_dependence gives us dependences of the form /// WAROverestimated = { Read+MustWrite -> [Write -> MemoryAccess]} /// /// We need to intersect the domain with Read to get only /// Read dependences. /// Read = { Read -> MemoryAccess } /// /// /// 1. Construct: /// WARMemAccesses = { Read+Write -> [Read+Write -> MemoryAccess] } /// This takes a Read+Write from WAROverestimated and maps it to the /// corresponding wrapped memory access from WAROverestimated. /// /// 2. Apply WARMemAcesses to the domain of WAR Overestimated to give: /// WAR = { [Read+Write -> MemoryAccess] -> [Write -> MemoryAccess] } /// /// WAR is in a state where we can intersect with Read, since they /// have the same structure. /// /// 3. Intersect this with a wrapped Read. Read is wrapped /// to ensure the domains look the same. /// WAR = WAR \intersect (wrapped Read) /// WAR = { [Read -> MemoryAccesss] -> [Write -> MemoryAccess] } /// /// 4. Project out the memory access in the domain to get /// WAR = { Read -> Write } static isl_union_map *buildWAR(isl_union_map *Write, isl_union_map *MustWrite, isl_union_map *Read, isl_schedule *Schedule) { isl_union_flow *Flow = buildFlow(Write, MustWrite, Read, Schedule); auto *WAROverestimated = isl_union_flow_get_full_may_dependence(Flow); // 1. Constructing WARMemAccesses // WarMemAccesses = { Read+Write -> [Write -> MemAccess] } // Range factor of range product // { Read+Write -> MemAcesss } // Domain projection // { [Read+Write -> MemAccess] -> Read+Write } // Reverse // { Read+Write -> [Read+Write -> MemAccess] } auto WARMemAccesses = isl_union_map_copy(WAROverestimated); WARMemAccesses = isl_union_map_range_factor_range(WAROverestimated); WARMemAccesses = isl_union_map_domain_map(WARMemAccesses); WARMemAccesses = isl_union_map_reverse(WARMemAccesses); // 2. Apply to get domain tagged with memory accesses isl_union_map *WAR = isl_union_map_apply_domain(WAROverestimated, WARMemAccesses); // 3. Intersect with Read to extract only reads auto ReadWrapped = isl_union_map_wrap(isl_union_map_copy(Read)); WAR = isl_union_map_intersect_domain(WAR, ReadWrapped); // 4. Project out memory accesses to get usual style dependences WAR = isl_union_map_range_factor_domain(WAR); WAR = isl_union_map_domain_factor_domain(WAR); isl_union_flow_free(Flow); return WAR; } void Dependences::calculateDependences(Scop &S) { isl_union_map *Read, *MustWrite, *MayWrite, *ReductionTagMap; isl_schedule *Schedule; isl_union_set *TaggedStmtDomain; LLVM_DEBUG(dbgs() << "Scop: \n" << S << "\n"); collectInfo(S, Read, MustWrite, MayWrite, ReductionTagMap, TaggedStmtDomain, Level); bool HasReductions = !isl_union_map_is_empty(ReductionTagMap); LLVM_DEBUG(dbgs() << "Read: " << Read << '\n'; dbgs() << "MustWrite: " << MustWrite << '\n'; dbgs() << "MayWrite: " << MayWrite << '\n'; dbgs() << "ReductionTagMap: " << ReductionTagMap << '\n'; dbgs() << "TaggedStmtDomain: " << TaggedStmtDomain << '\n';); Schedule = S.getScheduleTree().release(); if (!HasReductions) { isl_union_map_free(ReductionTagMap); // Tag the schedule tree if we want fine-grain dependence info if (Level > AL_Statement) { auto TaggedMap = isl_union_set_unwrap(isl_union_set_copy(TaggedStmtDomain)); auto Tags = isl_union_map_domain_map_union_pw_multi_aff(TaggedMap); Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags); } } else { isl_union_map *IdentityMap; isl_union_pw_multi_aff *ReductionTags, *IdentityTags, *Tags; // Extract Reduction tags from the combined access domains in the given // SCoP. The result is a map that maps each tagged element in the domain to // the memory location it accesses. ReductionTags = {[Stmt[i] -> // Array[f(i)]] -> Stmt[i] } ReductionTags = isl_union_map_domain_map_union_pw_multi_aff(ReductionTagMap); // Compute an identity map from each statement in domain to itself. // IdentityTags = { [Stmt[i] -> Stmt[i] } IdentityMap = isl_union_set_identity(isl_union_set_copy(TaggedStmtDomain)); IdentityTags = isl_union_pw_multi_aff_from_union_map(IdentityMap); Tags = isl_union_pw_multi_aff_union_add(ReductionTags, IdentityTags); // By pulling back Tags from Schedule, we have a schedule tree that can // be used to compute normal dependences, as well as 'tagged' reduction // dependences. Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags); } LLVM_DEBUG(dbgs() << "Read: " << Read << "\n"; dbgs() << "MustWrite: " << MustWrite << "\n"; dbgs() << "MayWrite: " << MayWrite << "\n"; dbgs() << "Schedule: " << Schedule << "\n"); isl_union_map *StrictWAW = nullptr; { IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), OptComputeOut); RAW = WAW = WAR = RED = nullptr; isl_union_map *Write = isl_union_map_union(isl_union_map_copy(MustWrite), isl_union_map_copy(MayWrite)); // We are interested in detecting reductions that do not have intermediate // computations that are captured by other statements. // // Example: // void f(int *A, int *B) { // for(int i = 0; i <= 100; i++) { // // *-WAR (S0[i] -> S0[i + 1] 0 <= i <= 100)------------* // | | // *-WAW (S0[i] -> S0[i + 1] 0 <= i <= 100)------------* // | | // v | // S0: *A += i; >------------------*-----------------------* // | // if (i >= 98) { WAR (S0[i] -> S1[i]) 98 <= i <= 100 // | // S1: *B = *A; <--------------* // } // } // } // // S0[0 <= i <= 100] has a reduction. However, the values in // S0[98 <= i <= 100] is captured in S1[98 <= i <= 100]. // Since we allow free reordering on our reduction dependences, we need to // remove all instances of a reduction statement that have data dependences // originating from them. // In the case of the example, we need to remove S0[98 <= i <= 100] from // our reduction dependences. // // When we build up the WAW dependences that are used to detect reductions, // we consider only **Writes that have no intermediate Reads**. // // `isl_union_flow_get_must_dependence` gives us dependences of the form: // (sink <- must_source). // // It *will not give* dependences of the form: // 1. (sink <- ... <- may_source <- ... <- must_source) // 2. (sink <- ... <- must_source <- ... <- must_source) // // For a detailed reference on ISL's flow analysis, see: // "Presburger Formulas and Polyhedral Compilation" - Approximate Dataflow // Analysis. // // Since we set "Write" as a must-source, "Read" as a may-source, and ask // for must dependences, we get all Writes to Writes that **do not flow // through a Read**. // // ScopInfo::checkForReductions makes sure that if something captures // the reduction variable in the same basic block, then it is rejected // before it is even handed here. This makes sure that there is exactly // one read and one write to a reduction variable in a Statement. // Example: // void f(int *sum, int A[N], int B[N]) { // for (int i = 0; i < N; i++) { // *sum += A[i]; < the store and the load is not tagged as a // B[i] = *sum; < reduction-like access due to the overlap. // } // } isl_union_flow *Flow = buildFlow(Write, Write, Read, Schedule); StrictWAW = isl_union_flow_get_must_dependence(Flow); isl_union_flow_free(Flow); if (OptAnalysisType == VALUE_BASED_ANALYSIS) { Flow = buildFlow(Read, MustWrite, MayWrite, Schedule); RAW = isl_union_flow_get_may_dependence(Flow); isl_union_flow_free(Flow); Flow = buildFlow(Write, MustWrite, MayWrite, Schedule); WAW = isl_union_flow_get_may_dependence(Flow); isl_union_flow_free(Flow); WAR = buildWAR(Write, MustWrite, Read, Schedule); isl_union_map_free(Write); isl_schedule_free(Schedule); } else { isl_union_flow *Flow; Flow = buildFlow(Read, nullptr, Write, Schedule); RAW = isl_union_flow_get_may_dependence(Flow); isl_union_flow_free(Flow); Flow = buildFlow(Write, nullptr, Read, Schedule); WAR = isl_union_flow_get_may_dependence(Flow); isl_union_flow_free(Flow); Flow = buildFlow(Write, nullptr, Write, Schedule); WAW = isl_union_flow_get_may_dependence(Flow); isl_union_flow_free(Flow); isl_union_map_free(Write); isl_schedule_free(Schedule); } isl_union_map_free(MustWrite); isl_union_map_free(MayWrite); isl_union_map_free(Read); RAW = isl_union_map_coalesce(RAW); WAW = isl_union_map_coalesce(WAW); WAR = isl_union_map_coalesce(WAR); // End of max_operations scope. } if (isl_ctx_last_error(IslCtx.get()) == isl_error_quota) { isl_union_map_free(RAW); isl_union_map_free(WAW); isl_union_map_free(WAR); isl_union_map_free(StrictWAW); RAW = WAW = WAR = StrictWAW = nullptr; isl_ctx_reset_error(IslCtx.get()); } // Drop out early, as the remaining computations are only needed for // reduction dependences or dependences that are finer than statement // level dependences. if (!HasReductions && Level == AL_Statement) { RED = isl_union_map_empty(isl_union_map_get_space(RAW)); TC_RED = isl_union_map_empty(isl_union_set_get_space(TaggedStmtDomain)); isl_union_set_free(TaggedStmtDomain); isl_union_map_free(StrictWAW); return; } isl_union_map *STMT_RAW, *STMT_WAW, *STMT_WAR; STMT_RAW = isl_union_map_intersect_domain( isl_union_map_copy(RAW), isl_union_set_copy(TaggedStmtDomain)); STMT_WAW = isl_union_map_intersect_domain( isl_union_map_copy(WAW), isl_union_set_copy(TaggedStmtDomain)); STMT_WAR = isl_union_map_intersect_domain(isl_union_map_copy(WAR), TaggedStmtDomain); LLVM_DEBUG({ dbgs() << "Wrapped Dependences:\n"; dump(); dbgs() << "\n"; }); // To handle reduction dependences we proceed as follows: // 1) Aggregate all possible reduction dependences, namely all self // dependences on reduction like statements. // 2) Intersect them with the actual RAW & WAW dependences to the get the // actual reduction dependences. This will ensure the load/store memory // addresses were __identical__ in the two iterations of the statement. // 3) Relax the original RAW, WAW and WAR dependences by subtracting the // actual reduction dependences. Binary reductions (sum += A[i]) cause // the same, RAW, WAW and WAR dependences. // 4) Add the privatization dependences which are widened versions of // already present dependences. They model the effect of manual // privatization at the outermost possible place (namely after the last // write and before the first access to a reduction location). // Step 1) RED = isl_union_map_empty(isl_union_map_get_space(RAW)); for (ScopStmt &Stmt : S) { for (MemoryAccess *MA : Stmt) { if (!MA->isReductionLike()) continue; isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release()); isl_map *Identity = isl_map_from_domain_and_range(isl_set_copy(AccDomW), AccDomW); RED = isl_union_map_add_map(RED, Identity); } } // Step 2) RED = isl_union_map_intersect(RED, isl_union_map_copy(RAW)); RED = isl_union_map_intersect(RED, StrictWAW); if (!isl_union_map_is_empty(RED)) { // Step 3) RAW = isl_union_map_subtract(RAW, isl_union_map_copy(RED)); WAW = isl_union_map_subtract(WAW, isl_union_map_copy(RED)); WAR = isl_union_map_subtract(WAR, isl_union_map_copy(RED)); // Step 4) addPrivatizationDependences(); } else TC_RED = isl_union_map_empty(isl_union_map_get_space(RED)); LLVM_DEBUG({ dbgs() << "Final Wrapped Dependences:\n"; dump(); dbgs() << "\n"; }); // RED_SIN is used to collect all reduction dependences again after we // split them according to the causing memory accesses. The current assumption // is that our method of splitting will not have any leftovers. In the end // we validate this assumption until we have more confidence in this method. isl_union_map *RED_SIN = isl_union_map_empty(isl_union_map_get_space(RAW)); // For each reduction like memory access, check if there are reduction // dependences with the access relation of the memory access as a domain // (wrapped space!). If so these dependences are caused by this memory access. // We then move this portion of reduction dependences back to the statement -> // statement space and add a mapping from the memory access to these // dependences. for (ScopStmt &Stmt : S) { for (MemoryAccess *MA : Stmt) { if (!MA->isReductionLike()) continue; isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release()); isl_union_map *AccRedDepU = isl_union_map_intersect_domain( isl_union_map_copy(TC_RED), isl_union_set_from_set(AccDomW)); if (isl_union_map_is_empty(AccRedDepU)) { isl_union_map_free(AccRedDepU); continue; } isl_map *AccRedDep = isl_map_from_union_map(AccRedDepU); RED_SIN = isl_union_map_add_map(RED_SIN, isl_map_copy(AccRedDep)); AccRedDep = isl_map_zip(AccRedDep); AccRedDep = isl_set_unwrap(isl_map_domain(AccRedDep)); setReductionDependences(MA, AccRedDep); } } assert(isl_union_map_is_equal(RED_SIN, TC_RED) && "Intersecting the reduction dependence domain with the wrapped access " "relation is not enough, we need to loosen the access relation also"); isl_union_map_free(RED_SIN); RAW = isl_union_map_zip(RAW); WAW = isl_union_map_zip(WAW); WAR = isl_union_map_zip(WAR); RED = isl_union_map_zip(RED); TC_RED = isl_union_map_zip(TC_RED); LLVM_DEBUG({ dbgs() << "Zipped Dependences:\n"; dump(); dbgs() << "\n"; }); RAW = isl_union_set_unwrap(isl_union_map_domain(RAW)); WAW = isl_union_set_unwrap(isl_union_map_domain(WAW)); WAR = isl_union_set_unwrap(isl_union_map_domain(WAR)); RED = isl_union_set_unwrap(isl_union_map_domain(RED)); TC_RED = isl_union_set_unwrap(isl_union_map_domain(TC_RED)); LLVM_DEBUG({ dbgs() << "Unwrapped Dependences:\n"; dump(); dbgs() << "\n"; }); RAW = isl_union_map_union(RAW, STMT_RAW); WAW = isl_union_map_union(WAW, STMT_WAW); WAR = isl_union_map_union(WAR, STMT_WAR); RAW = isl_union_map_coalesce(RAW); WAW = isl_union_map_coalesce(WAW); WAR = isl_union_map_coalesce(WAR); RED = isl_union_map_coalesce(RED); TC_RED = isl_union_map_coalesce(TC_RED); LLVM_DEBUG(dump()); } bool Dependences::isValidSchedule(Scop &S, StatementToIslMapTy *NewSchedule) const { if (LegalityCheckDisabled) return true; isl_union_map *Dependences = (getDependences(TYPE_RAW | TYPE_WAW | TYPE_WAR)).release(); isl_space *Space = S.getParamSpace().release(); isl_union_map *Schedule = isl_union_map_empty(Space); isl_space *ScheduleSpace = nullptr; for (ScopStmt &Stmt : S) { isl_map *StmtScat; if (NewSchedule->find(&Stmt) == NewSchedule->end()) StmtScat = Stmt.getSchedule().release(); else StmtScat = isl_map_copy((*NewSchedule)[&Stmt]); assert(StmtScat && "Schedules that contain extension nodes require special handling."); if (!ScheduleSpace) ScheduleSpace = isl_space_range(isl_map_get_space(StmtScat)); Schedule = isl_union_map_add_map(Schedule, StmtScat); } Dependences = isl_union_map_apply_domain(Dependences, isl_union_map_copy(Schedule)); Dependences = isl_union_map_apply_range(Dependences, Schedule); isl_set *Zero = isl_set_universe(isl_space_copy(ScheduleSpace)); for (unsigned i = 0; i < isl_set_dim(Zero, isl_dim_set); i++) Zero = isl_set_fix_si(Zero, isl_dim_set, i, 0); isl_union_set *UDeltas = isl_union_map_deltas(Dependences); isl_set *Deltas = isl_union_set_extract_set(UDeltas, ScheduleSpace); isl_union_set_free(UDeltas); isl_map *NonPositive = isl_set_lex_le_set(Deltas, Zero); bool IsValid = isl_map_is_empty(NonPositive); isl_map_free(NonPositive); return IsValid; } // Check if the current scheduling dimension is parallel. // // We check for parallelism by verifying that the loop does not carry any // dependences. // // Parallelism test: if the distance is zero in all outer dimensions, then it // has to be zero in the current dimension as well. // // Implementation: first, translate dependences into time space, then force // outer dimensions to be equal. If the distance is zero in the current // dimension, then the loop is parallel. The distance is zero in the current // dimension if it is a subset of a map with equal values for the current // dimension. bool Dependences::isParallel(isl_union_map *Schedule, isl_union_map *Deps, isl_pw_aff **MinDistancePtr) const { isl_set *Deltas, *Distance; isl_map *ScheduleDeps; unsigned Dimension; bool IsParallel; Deps = isl_union_map_apply_range(Deps, isl_union_map_copy(Schedule)); Deps = isl_union_map_apply_domain(Deps, isl_union_map_copy(Schedule)); if (isl_union_map_is_empty(Deps)) { isl_union_map_free(Deps); return true; } ScheduleDeps = isl_map_from_union_map(Deps); Dimension = isl_map_dim(ScheduleDeps, isl_dim_out) - 1; for (unsigned i = 0; i < Dimension; i++) ScheduleDeps = isl_map_equate(ScheduleDeps, isl_dim_out, i, isl_dim_in, i); Deltas = isl_map_deltas(ScheduleDeps); Distance = isl_set_universe(isl_set_get_space(Deltas)); // [0, ..., 0, +] - All zeros and last dimension larger than zero for (unsigned i = 0; i < Dimension; i++) Distance = isl_set_fix_si(Distance, isl_dim_set, i, 0); Distance = isl_set_lower_bound_si(Distance, isl_dim_set, Dimension, 1); Distance = isl_set_intersect(Distance, Deltas); IsParallel = isl_set_is_empty(Distance); if (IsParallel || !MinDistancePtr) { isl_set_free(Distance); return IsParallel; } Distance = isl_set_project_out(Distance, isl_dim_set, 0, Dimension); Distance = isl_set_coalesce(Distance); // This last step will compute a expression for the minimal value in the // distance polyhedron Distance with regards to the first (outer most) // dimension. *MinDistancePtr = isl_pw_aff_coalesce(isl_set_dim_min(Distance, 0)); return false; } static void printDependencyMap(raw_ostream &OS, __isl_keep isl_union_map *DM) { if (DM) OS << DM << "\n"; else OS << "n/a\n"; } void Dependences::print(raw_ostream &OS) const { OS << "\tRAW dependences:\n\t\t"; printDependencyMap(OS, RAW); OS << "\tWAR dependences:\n\t\t"; printDependencyMap(OS, WAR); OS << "\tWAW dependences:\n\t\t"; printDependencyMap(OS, WAW); OS << "\tReduction dependences:\n\t\t"; printDependencyMap(OS, RED); OS << "\tTransitive closure of reduction dependences:\n\t\t"; printDependencyMap(OS, TC_RED); } void Dependences::dump() const { print(dbgs()); } void Dependences::releaseMemory() { isl_union_map_free(RAW); isl_union_map_free(WAR); isl_union_map_free(WAW); isl_union_map_free(RED); isl_union_map_free(TC_RED); RED = RAW = WAR = WAW = TC_RED = nullptr; for (auto &ReductionDeps : ReductionDependences) isl_map_free(ReductionDeps.second); ReductionDependences.clear(); } isl::union_map Dependences::getDependences(int Kinds) const { assert(hasValidDependences() && "No valid dependences available"); isl::space Space = isl::manage_copy(RAW).get_space(); isl::union_map Deps = Deps.empty(Space); if (Kinds & TYPE_RAW) Deps = Deps.unite(isl::manage_copy(RAW)); if (Kinds & TYPE_WAR) Deps = Deps.unite(isl::manage_copy(WAR)); if (Kinds & TYPE_WAW) Deps = Deps.unite(isl::manage_copy(WAW)); if (Kinds & TYPE_RED) Deps = Deps.unite(isl::manage_copy(RED)); if (Kinds & TYPE_TC_RED) Deps = Deps.unite(isl::manage_copy(TC_RED)); Deps = Deps.coalesce(); Deps = Deps.detect_equalities(); return Deps; } bool Dependences::hasValidDependences() const { return (RAW != nullptr) && (WAR != nullptr) && (WAW != nullptr); } __isl_give isl_map * Dependences::getReductionDependences(MemoryAccess *MA) const { return isl_map_copy(ReductionDependences.lookup(MA)); } void Dependences::setReductionDependences(MemoryAccess *MA, isl_map *D) { assert(ReductionDependences.count(MA) == 0 && "Reduction dependences set twice!"); ReductionDependences[MA] = D; } const Dependences & DependenceAnalysis::Result::getDependences(Dependences::AnalysisLevel Level) { if (Dependences *d = D[Level].get()) return *d; return recomputeDependences(Level); } const Dependences &DependenceAnalysis::Result::recomputeDependences( Dependences::AnalysisLevel Level) { D[Level].reset(new Dependences(S.getSharedIslCtx(), Level)); D[Level]->calculateDependences(S); return *D[Level]; } DependenceAnalysis::Result DependenceAnalysis::run(Scop &S, ScopAnalysisManager &SAM, ScopStandardAnalysisResults &SAR) { return {S, {}}; } AnalysisKey DependenceAnalysis::Key; PreservedAnalyses DependenceInfoPrinterPass::run(Scop &S, ScopAnalysisManager &SAM, ScopStandardAnalysisResults &SAR, SPMUpdater &U) { auto &DI = SAM.getResult(S, SAR); if (auto d = DI.D[OptAnalysisLevel].get()) { d->print(OS); return PreservedAnalyses::all(); } // Otherwise create the dependences on-the-fly and print them Dependences D(S.getSharedIslCtx(), OptAnalysisLevel); D.calculateDependences(S); D.print(OS); return PreservedAnalyses::all(); } const Dependences & DependenceInfo::getDependences(Dependences::AnalysisLevel Level) { if (Dependences *d = D[Level].get()) return *d; return recomputeDependences(Level); } const Dependences & DependenceInfo::recomputeDependences(Dependences::AnalysisLevel Level) { D[Level].reset(new Dependences(S->getSharedIslCtx(), Level)); D[Level]->calculateDependences(*S); return *D[Level]; } bool DependenceInfo::runOnScop(Scop &ScopVar) { S = &ScopVar; return false; } /// Print the dependences for the given SCoP to @p OS. void polly::DependenceInfo::printScop(raw_ostream &OS, Scop &S) const { if (auto d = D[OptAnalysisLevel].get()) { d->print(OS); return; } // Otherwise create the dependences on-the-fly and print it Dependences D(S.getSharedIslCtx(), OptAnalysisLevel); D.calculateDependences(S); D.print(OS); } void DependenceInfo::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredTransitive(); AU.setPreservesAll(); } char DependenceInfo::ID = 0; Pass *polly::createDependenceInfoPass() { return new DependenceInfo(); } INITIALIZE_PASS_BEGIN(DependenceInfo, "polly-dependences", "Polly - Calculate dependences", false, false); INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass); INITIALIZE_PASS_END(DependenceInfo, "polly-dependences", "Polly - Calculate dependences", false, false) //===----------------------------------------------------------------------===// const Dependences & DependenceInfoWrapperPass::getDependences(Scop *S, Dependences::AnalysisLevel Level) { auto It = ScopToDepsMap.find(S); if (It != ScopToDepsMap.end()) if (It->second) { if (It->second->getDependenceLevel() == Level) return *It->second.get(); } return recomputeDependences(S, Level); } const Dependences &DependenceInfoWrapperPass::recomputeDependences( Scop *S, Dependences::AnalysisLevel Level) { std::unique_ptr D(new Dependences(S->getSharedIslCtx(), Level)); D->calculateDependences(*S); auto Inserted = ScopToDepsMap.insert(std::make_pair(S, std::move(D))); return *Inserted.first->second; } bool DependenceInfoWrapperPass::runOnFunction(Function &F) { auto &SI = *getAnalysis().getSI(); for (auto &It : SI) { assert(It.second && "Invalid SCoP object!"); recomputeDependences(It.second.get(), Dependences::AL_Access); } return false; } void DependenceInfoWrapperPass::print(raw_ostream &OS, const Module *M) const { for (auto &It : ScopToDepsMap) { assert((It.first && It.second) && "Invalid Scop or Dependence object!\n"); It.second->print(OS); } } void DependenceInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredTransitive(); AU.setPreservesAll(); } char DependenceInfoWrapperPass::ID = 0; Pass *polly::createDependenceInfoWrapperPassPass() { return new DependenceInfoWrapperPass(); } INITIALIZE_PASS_BEGIN( DependenceInfoWrapperPass, "polly-function-dependences", "Polly - Calculate dependences for all the SCoPs of a function", false, false) INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass); INITIALIZE_PASS_END( DependenceInfoWrapperPass, "polly-function-dependences", "Polly - Calculate dependences for all the SCoPs of a function", false, false)