/* * kmp_taskdeps.cpp * $Revision: 42539 $ * $Date: 2013-07-17 11:20:01 -0500 (Wed, 17 Jul 2013) $ */ //===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.txt for details. // //===----------------------------------------------------------------------===// //#define KMP_SUPPORT_GRAPH_OUTPUT 1 #include "kmp.h" #include "kmp_io.h" #if OMP_40_ENABLED //TODO: Improve memory allocation? keep a list of pre-allocated structures? allocate in blocks? re-use list finished list entries? //TODO: don't use atomic ref counters for stack-allocated nodes. //TODO: find an alternate to atomic refs for heap-allocated nodes? //TODO: Finish graph output support //TODO: kmp_lock_t seems a tad to big (and heavy weight) for this. Check other runtime locks //TODO: Any ITT support needed? #ifdef KMP_SUPPORT_GRAPH_OUTPUT static kmp_int32 kmp_node_id_seed = 0; #endif static void __kmp_init_node ( kmp_depnode_t *node ) { node->dn.task = NULL; // set to null initially, it will point to the right task once dependences have been processed node->dn.successors = NULL; __kmp_init_lock(&node->dn.lock); node->dn.nrefs = 1; // init creates the first reference to the node #ifdef KMP_SUPPORT_GRAPH_OUTPUT node->dn.id = KMP_TEST_THEN_INC32(&kmp_node_id_seed); #endif } static inline kmp_depnode_t * __kmp_node_ref ( kmp_depnode_t *node ) { KMP_TEST_THEN_INC32(&node->dn.nrefs); return node; } static inline void __kmp_node_deref ( kmp_info_t *thread, kmp_depnode_t *node ) { if (!node) return; kmp_int32 n = KMP_TEST_THEN_DEC32(&node->dn.nrefs) - 1; if ( n == 0 ) { KMP_ASSERT(node->dn.nrefs == 0); #if USE_FAST_MEMORY __kmp_fast_free(thread,node); #else __kmp_thread_free(thread,node); #endif } } #define KMP_ACQUIRE_DEPNODE(gtid,n) __kmp_acquire_lock(&(n)->dn.lock,(gtid)) #define KMP_RELEASE_DEPNODE(gtid,n) __kmp_release_lock(&(n)->dn.lock,(gtid)) static void __kmp_depnode_list_free ( kmp_info_t *thread, kmp_depnode_list *list ); static const kmp_int32 kmp_dephash_log2 = 6; static const kmp_int32 kmp_dephash_size = (1 << kmp_dephash_log2); static inline kmp_int32 __kmp_dephash_hash ( kmp_intptr_t addr ) { //TODO alternate to try: set = (((Addr64)(addrUsefulBits * 9.618)) % m_num_sets ); return ((addr >> kmp_dephash_log2) ^ addr) % kmp_dephash_size; } static kmp_dephash_t * __kmp_dephash_create ( kmp_info_t *thread ) { kmp_dephash_t *h; kmp_int32 size = kmp_dephash_size * sizeof(kmp_dephash_entry_t) + sizeof(kmp_dephash_t); #if USE_FAST_MEMORY h = (kmp_dephash_t *) __kmp_fast_allocate( thread, size ); #else h = (kmp_dephash_t *) __kmp_thread_malloc( thread, size ); #endif #ifdef KMP_DEBUG h->nelements = 0; #endif h->buckets = (kmp_dephash_entry **)(h+1); for ( kmp_int32 i = 0; i < kmp_dephash_size; i++ ) h->buckets[i] = 0; return h; } static void __kmp_dephash_free ( kmp_info_t *thread, kmp_dephash_t *h ) { for ( kmp_int32 i=0; i < kmp_dephash_size; i++ ) { if ( h->buckets[i] ) { kmp_dephash_entry_t *next; for ( kmp_dephash_entry_t *entry = h->buckets[i]; entry; entry = next ) { next = entry->next_in_bucket; __kmp_depnode_list_free(thread,entry->last_ins); __kmp_node_deref(thread,entry->last_out); #if USE_FAST_MEMORY __kmp_fast_free(thread,entry); #else __kmp_thread_free(thread,entry); #endif } } } #if USE_FAST_MEMORY __kmp_fast_free(thread,h); #else __kmp_thread_free(thread,h); #endif } static kmp_dephash_entry * __kmp_dephash_find ( kmp_info_t *thread, kmp_dephash_t *h, kmp_intptr_t addr ) { kmp_int32 bucket = __kmp_dephash_hash(addr); kmp_dephash_entry_t *entry; for ( entry = h->buckets[bucket]; entry; entry = entry->next_in_bucket ) if ( entry->addr == addr ) break; if ( entry == NULL ) { // create entry. This is only done by one thread so no locking required #if USE_FAST_MEMORY entry = (kmp_dephash_entry_t *) __kmp_fast_allocate( thread, sizeof(kmp_dephash_entry_t) ); #else entry = (kmp_dephash_entry_t *) __kmp_thread_malloc( thread, sizeof(kmp_dephash_entry_t) ); #endif entry->addr = addr; entry->last_out = NULL; entry->last_ins = NULL; entry->next_in_bucket = h->buckets[bucket]; h->buckets[bucket] = entry; #ifdef KMP_DEBUG h->nelements++; if ( entry->next_in_bucket ) h->nconflicts++; #endif } return entry; } static kmp_depnode_list_t * __kmp_add_node ( kmp_info_t *thread, kmp_depnode_list_t *list, kmp_depnode_t *node ) { kmp_depnode_list_t *new_head; #if USE_FAST_MEMORY new_head = (kmp_depnode_list_t *) __kmp_fast_allocate(thread,sizeof(kmp_depnode_list_t)); #else new_head = (kmp_depnode_list_t *) __kmp_thread_malloc(thread,sizeof(kmp_depnode_list_t)); #endif new_head->node = __kmp_node_ref(node); new_head->next = list; return new_head; } static void __kmp_depnode_list_free ( kmp_info_t *thread, kmp_depnode_list *list ) { kmp_depnode_list *next; for ( ; list ; list = next ) { next = list->next; __kmp_node_deref(thread,list->node); #if USE_FAST_MEMORY __kmp_fast_free(thread,list); #else __kmp_thread_free(thread,list); #endif } } static inline void __kmp_track_dependence ( kmp_depnode_t *source, kmp_depnode_t *sink ) { #ifdef KMP_SUPPORT_GRAPH_OUTPUT kmp_taskdata_t * task_source = KMP_TASK_TO_TASKDATA(source->dn.task); kmp_taskdata_t * task_sink = KMP_TASK_TO_TASKDATA(sink->dn.task); // this can be NULL when if(0) ... __kmp_printf("%d(%s) -> %d(%s)\n", source->dn.id, task_source->td_ident->psource, sink->dn.id, task_sink->td_ident->psource); #endif } template< bool filter > static inline kmp_int32 __kmp_process_deps ( kmp_int32 gtid, kmp_depnode_t *node, kmp_dephash_t *hash, bool dep_barrier,kmp_int32 ndeps, kmp_depend_info_t *dep_list) { kmp_info_t *thread = __kmp_threads[ gtid ]; kmp_int32 npredecessors=0; for ( kmp_int32 i = 0; i < ndeps ; i++ ) { const kmp_depend_info_t * dep = &dep_list[i]; KMP_DEBUG_ASSERT(dep->flags.in); if ( filter && dep->base_addr == 0 ) continue; // skip filtered entries kmp_dephash_entry_t *info = __kmp_dephash_find(thread,hash,dep->base_addr); kmp_depnode_t *last_out = info->last_out; if ( dep->flags.out && info->last_ins ) { for ( kmp_depnode_list_t * p = info->last_ins; p; p = p->next ) { kmp_depnode_t * indep = p->node; if ( indep->dn.task ) { KMP_ACQUIRE_DEPNODE(gtid,indep); if ( indep->dn.task ) { __kmp_track_dependence(indep,node); indep->dn.successors = __kmp_add_node(thread, indep->dn.successors, node); npredecessors++; } KMP_RELEASE_DEPNODE(gtid,indep); } } __kmp_depnode_list_free(thread,info->last_ins); info->last_ins = NULL; } else if ( last_out && last_out->dn.task ) { KMP_ACQUIRE_DEPNODE(gtid,last_out); if ( last_out->dn.task ) { __kmp_track_dependence(last_out,node); last_out->dn.successors = __kmp_add_node(thread, last_out->dn.successors, node); npredecessors++; } KMP_RELEASE_DEPNODE(gtid,last_out); } if ( dep_barrier ) { // if this is a sync point in the serial sequence and previous outputs are guaranteed to be completed after // the execution of this task so the previous output nodes can be cleared. __kmp_node_deref(thread,last_out); info->last_out = NULL; } else { if ( dep->flags.out ) { __kmp_node_deref(thread,last_out); info->last_out = __kmp_node_ref(node); } else info->last_ins = __kmp_add_node(thread, info->last_ins, node); } } return npredecessors; } #define NO_DEP_BARRIER (false) #define DEP_BARRIER (true) // returns true if the task has any outstanding dependence static bool __kmp_check_deps ( kmp_int32 gtid, kmp_depnode_t *node, kmp_task_t *task, kmp_dephash_t *hash, bool dep_barrier, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list ) { int i; // Filter deps in dep_list // TODO: Different algorithm for large dep_list ( > 10 ? ) for ( i = 0; i < ndeps; i ++ ) { if ( dep_list[i].base_addr != 0 ) for ( int j = i+1; j < ndeps; j++ ) if ( dep_list[i].base_addr == dep_list[j].base_addr ) { dep_list[i].flags.in |= dep_list[j].flags.in; dep_list[i].flags.out |= dep_list[j].flags.out; dep_list[j].base_addr = 0; // Mark j element as void } } // doesn't need to be atomic as no other thread is going to be accessing this node just yet // npredecessors is set 1 to ensure that none of the releasing tasks queues this task before we have finished processing all the dependencies node->dn.npredecessors = 1; // used to pack all npredecessors additions into a single atomic operation at the end int npredecessors; npredecessors = __kmp_process_deps(gtid, node, hash, dep_barrier, ndeps, dep_list); npredecessors += __kmp_process_deps(gtid, node, hash, dep_barrier, ndeps_noalias, noalias_dep_list); KMP_TEST_THEN_ADD32(&node->dn.npredecessors, npredecessors); // Remove the fake predecessor and find out if there's any outstanding dependence (some tasks may have finished while we processed the dependences) node->dn.task = task; KMP_MB(); npredecessors = KMP_TEST_THEN_DEC32(&node->dn.npredecessors) - 1; // beyond this point the task could be queued (and executed) by a releasing task... return npredecessors > 0 ? true : false; } void __kmp_release_deps ( kmp_int32 gtid, kmp_taskdata_t *task ) { kmp_info_t *thread = __kmp_threads[ gtid ]; kmp_depnode_t *node = task->td_depnode; if ( task->td_dephash ) __kmp_dephash_free(thread,task->td_dephash); if ( !node ) return; KMP_ACQUIRE_DEPNODE(gtid,node); node->dn.task = NULL; // mark this task as finished, so no new dependencies are generated KMP_RELEASE_DEPNODE(gtid,node); kmp_depnode_list_t *next; for ( kmp_depnode_list_t *p = node->dn.successors; p; p = next ) { kmp_depnode_t *successor = p->node; kmp_int32 npredecessors = KMP_TEST_THEN_DEC32(&successor->dn.npredecessors) - 1; // successor task can be NULL for wait_depends or because deps are still being processed if ( npredecessors == 0 ) { KMP_MB(); if ( successor->dn.task ) // loc_ref was already stored in successor's task_data __kmpc_omp_task(NULL,gtid,successor->dn.task); } next = p->next; __kmp_node_deref(thread,p->node); #if USE_FAST_MEMORY __kmp_fast_free(thread,p); #else __kmp_thread_free(thread,p); #endif } __kmp_node_deref(thread,node); } /*! @ingroup TASKING @param loc_ref location of the original task directive @param gtid Global Thread ID of encountering thread @param new_task task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' @param ndeps Number of depend items with possible aliasing @param dep_list List of depend items with possible aliasing @param ndeps_noalias Number of depend items with no aliasing @param noalias_dep_list List of depend items with no aliasing @return Returns either TASK_CURRENT_NOT_QUEUED if the current task was not suspendend and queued, or TASK_CURRENT_QUEUED if it was suspended and queued Schedule a non-thread-switchable task with dependences for execution */ kmp_int32 __kmpc_omp_task_with_deps( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list ) { kmp_info_t *thread = __kmp_threads[ gtid ]; kmp_taskdata_t * current_task = thread->th.th_current_task; bool serial = current_task->td_flags.team_serial || current_task->td_flags.tasking_ser || current_task->td_flags.final; if ( !serial && ( ndeps > 0 || ndeps_noalias > 0 )) { /* if no dependencies have been tracked yet, create the dependence hash */ if ( current_task->td_dephash == NULL ) current_task->td_dephash = __kmp_dephash_create(thread); #if USE_FAST_MEMORY kmp_depnode_t *node = (kmp_depnode_t *) __kmp_fast_allocate(thread,sizeof(kmp_depnode_t)); #else kmp_depnode_t *node = (kmp_depnode_t *) __kmp_thread_malloc(thread,sizeof(kmp_depnode_t)); #endif __kmp_init_node(node); KMP_TASK_TO_TASKDATA(new_task)->td_depnode = node; if ( __kmp_check_deps( gtid, node, new_task, current_task->td_dephash, NO_DEP_BARRIER, ndeps, dep_list, ndeps_noalias,noalias_dep_list ) ) return TASK_CURRENT_NOT_QUEUED; } return __kmpc_omp_task(loc_ref,gtid,new_task); } /*! @ingroup TASKING @param loc_ref location of the original task directive @param gtid Global Thread ID of encountering thread @param ndeps Number of depend items with possible aliasing @param dep_list List of depend items with possible aliasing @param ndeps_noalias Number of depend items with no aliasing @param noalias_dep_list List of depend items with no aliasing Blocks the current task until all specifies dependencies have been fulfilled. */ void __kmpc_omp_wait_deps ( ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list ) { if ( ndeps == 0 && ndeps_noalias == 0 ) return; kmp_info_t *thread = __kmp_threads[ gtid ]; kmp_taskdata_t * current_task = thread->th.th_current_task; // dependences are not computed in serial teams if ( current_task->td_flags.team_serial || current_task->td_flags.tasking_ser || current_task->td_flags.final) return; // if the dephash is not yet created it means we have nothing to wait for if ( current_task->td_dephash == NULL ) return; kmp_depnode_t node; __kmp_init_node(&node); if (!__kmp_check_deps( gtid, &node, NULL, current_task->td_dephash, DEP_BARRIER, ndeps, dep_list, ndeps_noalias, noalias_dep_list )) return; int thread_finished = FALSE; while ( node.dn.npredecessors > 0 ) { __kmp_execute_tasks( thread, gtid, (volatile kmp_uint32 *)&(node.dn.npredecessors), 0, FALSE, &thread_finished, #if USE_ITT_BUILD NULL, #endif __kmp_task_stealing_constraint ); } } #endif /* OMP_40_ENABLED */