/*! \file */ /* * kmp.h -- KPTS runtime header file. */ //===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.txt for details. // //===----------------------------------------------------------------------===// #ifndef KMP_H #define KMP_H #include "kmp_config.h" /* #define BUILD_PARALLEL_ORDERED 1 */ /* This fix replaces gettimeofday with clock_gettime for better scalability on the Altix. Requires user code to be linked with -lrt. */ //#define FIX_SGI_CLOCK /* Defines for OpenMP 3.0 tasking and auto scheduling */ # ifndef KMP_STATIC_STEAL_ENABLED # define KMP_STATIC_STEAL_ENABLED 1 # endif #define TASK_CURRENT_NOT_QUEUED 0 #define TASK_CURRENT_QUEUED 1 #define TASK_DEQUE_BITS 8 // Used solely to define TASK_DEQUE_SIZE and TASK_DEQUE_MASK. #define TASK_DEQUE_SIZE ( 1 << TASK_DEQUE_BITS ) #define TASK_DEQUE_MASK ( TASK_DEQUE_SIZE - 1 ) #ifdef BUILD_TIED_TASK_STACK #define TASK_STACK_EMPTY 0 // entries when the stack is empty #define TASK_STACK_BLOCK_BITS 5 // Used to define TASK_STACK_SIZE and TASK_STACK_MASK #define TASK_STACK_BLOCK_SIZE ( 1 << TASK_STACK_BLOCK_BITS ) // Number of entries in each task stack array #define TASK_STACK_INDEX_MASK ( TASK_STACK_BLOCK_SIZE - 1 ) // Mask for determining index into stack block #endif // BUILD_TIED_TASK_STACK #define TASK_NOT_PUSHED 1 #define TASK_SUCCESSFULLY_PUSHED 0 #define TASK_TIED 1 #define TASK_UNTIED 0 #define TASK_EXPLICIT 1 #define TASK_IMPLICIT 0 #define TASK_PROXY 1 #define TASK_FULL 0 #define KMP_CANCEL_THREADS #define KMP_THREAD_ATTR #include #include #include #include #include #include /* include don't use; problems with /MD on Windows* OS NT due to bad Microsoft library */ /* some macros provided below to replace some of these functions */ #ifndef __ABSOFT_WIN #include #endif #include #include #include #include "kmp_os.h" #include "kmp_safe_c_api.h" #if KMP_STATS_ENABLED class kmp_stats_list; #endif #if KMP_USE_HWLOC #include "hwloc.h" extern hwloc_topology_t __kmp_hwloc_topology; extern int __kmp_hwloc_error; #endif #if KMP_ARCH_X86 || KMP_ARCH_X86_64 #include #endif #include "kmp_version.h" #include "kmp_debug.h" #include "kmp_lock.h" #if USE_DEBUGGER #include "kmp_debugger.h" #endif #include "kmp_i18n.h" #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS) #include "kmp_wrapper_malloc.h" #if KMP_OS_UNIX # include # if !defined NSIG && defined _NSIG # define NSIG _NSIG # endif #endif #if KMP_OS_LINUX # pragma weak clock_gettime #endif #if OMPT_SUPPORT #include "ompt-internal.h" #endif /*Select data placement in NUMA memory */ #define NO_FIRST_TOUCH 0 #define FIRST_TOUCH 1 /* Exploit SGI's first touch page placement algo */ /* If not specified on compile command line, assume no first touch */ #ifndef BUILD_MEMORY #define BUILD_MEMORY NO_FIRST_TOUCH #endif // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64. // 3 - fast allocation using sync, non-sync free lists of any size, non-self free lists of limited size. #ifndef USE_FAST_MEMORY #define USE_FAST_MEMORY 3 #endif #ifndef KMP_NESTED_HOT_TEAMS # define KMP_NESTED_HOT_TEAMS 0 # define USE_NESTED_HOT_ARG(x) #else # if KMP_NESTED_HOT_TEAMS # if OMP_40_ENABLED # define USE_NESTED_HOT_ARG(x) ,x # else // Nested hot teams feature depends on omp 4.0, disable it for earlier versions # undef KMP_NESTED_HOT_TEAMS # define KMP_NESTED_HOT_TEAMS 0 # define USE_NESTED_HOT_ARG(x) # endif # else # define USE_NESTED_HOT_ARG(x) # endif #endif // Assume using BGET compare_exchange instruction instead of lock by default. #ifndef USE_CMP_XCHG_FOR_BGET #define USE_CMP_XCHG_FOR_BGET 1 #endif // Test to see if queuing lock is better than bootstrap lock for bget // #ifndef USE_QUEUING_LOCK_FOR_BGET // #define USE_QUEUING_LOCK_FOR_BGET // #endif #define KMP_NSEC_PER_SEC 1000000000L #define KMP_USEC_PER_SEC 1000000L /*! @ingroup BASIC_TYPES @{ */ // FIXME DOXYGEN... need to group these flags somehow (Making them an anonymous enum would do it...) /*! Values for bit flags used in the ident_t to describe the fields. */ /*! Use trampoline for internal microtasks */ #define KMP_IDENT_IMB 0x01 /*! Use c-style ident structure */ #define KMP_IDENT_KMPC 0x02 /* 0x04 is no longer used */ /*! Entry point generated by auto-parallelization */ #define KMP_IDENT_AUTOPAR 0x08 /*! Compiler generates atomic reduction option for kmpc_reduce* */ #define KMP_IDENT_ATOMIC_REDUCE 0x10 /*! To mark a 'barrier' directive in user code */ #define KMP_IDENT_BARRIER_EXPL 0x20 /*! To Mark implicit barriers. */ #define KMP_IDENT_BARRIER_IMPL 0x0040 #define KMP_IDENT_BARRIER_IMPL_MASK 0x01C0 #define KMP_IDENT_BARRIER_IMPL_FOR 0x0040 #define KMP_IDENT_BARRIER_IMPL_SECTIONS 0x00C0 #define KMP_IDENT_BARRIER_IMPL_SINGLE 0x0140 #define KMP_IDENT_BARRIER_IMPL_WORKSHARE 0x01C0 /*! * The ident structure that describes a source location. */ typedef struct ident { kmp_int32 reserved_1; /**< might be used in Fortran; see above */ kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC identifies this union member */ kmp_int32 reserved_2; /**< not really used in Fortran any more; see above */ #if USE_ITT_BUILD /* but currently used for storing region-specific ITT */ /* contextual information. */ #endif /* USE_ITT_BUILD */ kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++ */ char const *psource; /**< String describing the source location. The string is composed of semi-colon separated fields which describe the source file, the function and a pair of line numbers that delimit the construct. */ } ident_t; /*! @} */ // Some forward declarations. typedef union kmp_team kmp_team_t; typedef struct kmp_taskdata kmp_taskdata_t; typedef union kmp_task_team kmp_task_team_t; typedef union kmp_team kmp_team_p; typedef union kmp_info kmp_info_p; typedef union kmp_root kmp_root_p; #ifdef __cplusplus extern "C" { #endif /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ /* Pack two 32-bit signed integers into a 64-bit signed integer */ /* ToDo: Fix word ordering for big-endian machines. */ #define KMP_PACK_64(HIGH_32,LOW_32) \ ( (kmp_int64) ((((kmp_uint64)(HIGH_32))<<32) | (kmp_uint64)(LOW_32)) ) /* * Generic string manipulation macros. * Assume that _x is of type char * */ #define SKIP_WS(_x) { while (*(_x) == ' ' || *(_x) == '\t') (_x)++; } #define SKIP_DIGITS(_x) { while (*(_x) >= '0' && *(_x) <= '9') (_x)++; } #define SKIP_TO(_x,_c) { while (*(_x) != '\0' && *(_x) != (_c)) (_x)++; } /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ #define KMP_MAX( x, y ) ( (x) > (y) ? (x) : (y) ) #define KMP_MIN( x, y ) ( (x) < (y) ? (x) : (y) ) /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ /* Enumeration types */ enum kmp_state_timer { ts_stop, ts_start, ts_pause, ts_last_state }; enum dynamic_mode { dynamic_default, #ifdef USE_LOAD_BALANCE dynamic_load_balance, #endif /* USE_LOAD_BALANCE */ dynamic_random, dynamic_thread_limit, dynamic_max }; /* external schedule constants, duplicate enum omp_sched in omp.h in order to not include it here */ #ifndef KMP_SCHED_TYPE_DEFINED #define KMP_SCHED_TYPE_DEFINED typedef enum kmp_sched { kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check // Note: need to adjust __kmp_sch_map global array in case this enum is changed kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33) kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35) kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36) kmp_sched_auto = 4, // mapped to kmp_sch_auto (38) kmp_sched_upper_std = 5, // upper bound for standard schedules kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39) // kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44) kmp_sched_upper = 102, kmp_sched_default = kmp_sched_static // default scheduling } kmp_sched_t; #endif /*! @ingroup WORK_SHARING * Describes the loop schedule to be used for a parallel for loop. */ enum sched_type { kmp_sch_lower = 32, /**< lower bound for unordered values */ kmp_sch_static_chunked = 33, kmp_sch_static = 34, /**< static unspecialized */ kmp_sch_dynamic_chunked = 35, kmp_sch_guided_chunked = 36, /**< guided unspecialized */ kmp_sch_runtime = 37, kmp_sch_auto = 38, /**< auto */ kmp_sch_trapezoidal = 39, /* accessible only through KMP_SCHEDULE environment variable */ kmp_sch_static_greedy = 40, kmp_sch_static_balanced = 41, /* accessible only through KMP_SCHEDULE environment variable */ kmp_sch_guided_iterative_chunked = 42, kmp_sch_guided_analytical_chunked = 43, kmp_sch_static_steal = 44, /**< accessible only through KMP_SCHEDULE environment variable */ /* accessible only through KMP_SCHEDULE environment variable */ kmp_sch_upper = 45, /**< upper bound for unordered values */ kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */ kmp_ord_static_chunked = 65, kmp_ord_static = 66, /**< ordered static unspecialized */ kmp_ord_dynamic_chunked = 67, kmp_ord_guided_chunked = 68, kmp_ord_runtime = 69, kmp_ord_auto = 70, /**< ordered auto */ kmp_ord_trapezoidal = 71, kmp_ord_upper = 72, /**< upper bound for ordered values */ #if OMP_40_ENABLED /* Schedules for Distribute construct */ kmp_distribute_static_chunked = 91, /**< distribute static chunked */ kmp_distribute_static = 92, /**< distribute static unspecialized */ #endif /* * For the "nomerge" versions, kmp_dispatch_next*() will always return * a single iteration/chunk, even if the loop is serialized. For the * schedule types listed above, the entire iteration vector is returned * if the loop is serialized. This doesn't work for gcc/gcomp sections. */ kmp_nm_lower = 160, /**< lower bound for nomerge values */ kmp_nm_static_chunked = (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower), kmp_nm_static = 162, /**< static unspecialized */ kmp_nm_dynamic_chunked = 163, kmp_nm_guided_chunked = 164, /**< guided unspecialized */ kmp_nm_runtime = 165, kmp_nm_auto = 166, /**< auto */ kmp_nm_trapezoidal = 167, /* accessible only through KMP_SCHEDULE environment variable */ kmp_nm_static_greedy = 168, kmp_nm_static_balanced = 169, /* accessible only through KMP_SCHEDULE environment variable */ kmp_nm_guided_iterative_chunked = 170, kmp_nm_guided_analytical_chunked = 171, kmp_nm_static_steal = 172, /* accessible only through OMP_SCHEDULE environment variable */ kmp_nm_ord_static_chunked = 193, kmp_nm_ord_static = 194, /**< ordered static unspecialized */ kmp_nm_ord_dynamic_chunked = 195, kmp_nm_ord_guided_chunked = 196, kmp_nm_ord_runtime = 197, kmp_nm_ord_auto = 198, /**< auto */ kmp_nm_ord_trapezoidal = 199, kmp_nm_upper = 200, /**< upper bound for nomerge values */ kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */ }; /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */ typedef struct kmp_r_sched { enum sched_type r_sched_type; int chunk; } kmp_r_sched_t; extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our internal schedule types enum library_type { library_none, library_serial, library_turnaround, library_throughput }; #if KMP_OS_LINUX enum clock_function_type { clock_function_gettimeofday, clock_function_clock_gettime }; #endif /* KMP_OS_LINUX */ #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) enum mic_type { non_mic, mic1, mic2, mic3, dummy }; #endif /* ------------------------------------------------------------------------ */ /* -- fast reduction stuff ------------------------------------------------ */ #undef KMP_FAST_REDUCTION_BARRIER #define KMP_FAST_REDUCTION_BARRIER 1 #undef KMP_FAST_REDUCTION_CORE_DUO #if KMP_ARCH_X86 || KMP_ARCH_X86_64 #define KMP_FAST_REDUCTION_CORE_DUO 1 #endif enum _reduction_method { reduction_method_not_defined = 0, critical_reduce_block = ( 1 << 8 ), atomic_reduce_block = ( 2 << 8 ), tree_reduce_block = ( 3 << 8 ), empty_reduce_block = ( 4 << 8 ) }; // description of the packed_reduction_method variable // the packed_reduction_method variable consists of two enum types variables that are packed together into 0-th byte and 1-st byte: // 0: ( packed_reduction_method & 0x000000FF ) is a 'enum barrier_type' value of barrier that will be used in fast reduction: bs_plain_barrier or bs_reduction_barrier // 1: ( packed_reduction_method & 0x0000FF00 ) is a reduction method that will be used in fast reduction; // reduction method is of 'enum _reduction_method' type and it's defined the way so that the bits of 0-th byte are empty, // so no need to execute a shift instruction while packing/unpacking #if KMP_FAST_REDUCTION_BARRIER #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method,barrier_type) \ ( ( reduction_method ) | ( barrier_type ) ) #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \ ( ( enum _reduction_method )( ( packed_reduction_method ) & ( 0x0000FF00 ) ) ) #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \ ( ( enum barrier_type )( ( packed_reduction_method ) & ( 0x000000FF ) ) ) #else #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method,barrier_type) \ ( reduction_method ) #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \ ( packed_reduction_method ) #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \ ( bs_plain_barrier ) #endif #define TEST_REDUCTION_METHOD(packed_reduction_method,which_reduction_block) \ ( ( UNPACK_REDUCTION_METHOD( packed_reduction_method ) ) == ( which_reduction_block ) ) #if KMP_FAST_REDUCTION_BARRIER #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \ ( PACK_REDUCTION_METHOD_AND_BARRIER( tree_reduce_block, bs_reduction_barrier ) ) #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \ ( PACK_REDUCTION_METHOD_AND_BARRIER( tree_reduce_block, bs_plain_barrier ) ) #endif typedef int PACKED_REDUCTION_METHOD_T; /* -- end of fast reduction stuff ----------------------------------------- */ /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ #if KMP_OS_WINDOWS # define USE_CBLKDATA # pragma warning( push ) # pragma warning( disable: 271 310 ) # include # pragma warning( pop ) #endif #if KMP_OS_UNIX # include # include #endif /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ /* * Only Linux* OS and Windows* OS support thread affinity. */ #if KMP_AFFINITY_SUPPORTED extern size_t __kmp_affin_mask_size; # define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0) # define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0) # define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size) # define KMP_CPU_SETSIZE (__kmp_affin_mask_size * CHAR_BIT) #if KMP_USE_HWLOC typedef hwloc_cpuset_t kmp_affin_mask_t; # define KMP_CPU_SET(i,mask) hwloc_bitmap_set((hwloc_cpuset_t)mask, (unsigned)i) # define KMP_CPU_ISSET(i,mask) hwloc_bitmap_isset((hwloc_cpuset_t)mask, (unsigned)i) # define KMP_CPU_CLR(i,mask) hwloc_bitmap_clr((hwloc_cpuset_t)mask, (unsigned)i) # define KMP_CPU_ZERO(mask) hwloc_bitmap_zero((hwloc_cpuset_t)mask) # define KMP_CPU_COPY(dest, src) hwloc_bitmap_copy((hwloc_cpuset_t)dest, (hwloc_cpuset_t)src) # define KMP_CPU_COMPLEMENT(max_bit_number, mask) \ { \ unsigned i; \ for(i=0;i<(unsigned)max_bit_number+1;i++) { \ if(hwloc_bitmap_isset((hwloc_cpuset_t)mask, i)) { \ hwloc_bitmap_clr((hwloc_cpuset_t)mask, i); \ } else { \ hwloc_bitmap_set((hwloc_cpuset_t)mask, i); \ } \ } \ } \ # define KMP_CPU_UNION(dest, src) hwloc_bitmap_or((hwloc_cpuset_t)dest, (hwloc_cpuset_t)dest, (hwloc_cpuset_t)src) # define KMP_CPU_SET_ITERATE(i,mask) \ for(i = hwloc_bitmap_first((hwloc_cpuset_t)mask); (int)i != -1; i = hwloc_bitmap_next((hwloc_cpuset_t)mask, i)) # define KMP_CPU_ALLOC(ptr) ptr = (kmp_affin_mask_t*)hwloc_bitmap_alloc() # define KMP_CPU_FREE(ptr) hwloc_bitmap_free((hwloc_bitmap_t)ptr); # define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr) # define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr) # define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr) # define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr) // // The following macro should be used to index an array of masks. // The array should be declared as "kmp_affinity_t *" and allocated with // size "__kmp_affinity_mask_size * len". The macro takes care of the fact // that on Windows* OS, sizeof(kmp_affin_t) is really the size of the mask, but // on Linux* OS, sizeof(kmp_affin_t) is 1. // # define KMP_CPU_INDEX(array,i) ((kmp_affin_mask_t*)(array[i])) # define KMP_CPU_ALLOC_ARRAY(arr, n) { \ arr = (kmp_affin_mask_t *)__kmp_allocate(n*sizeof(kmp_affin_mask_t)); \ unsigned i; \ for(i=0;i<(unsigned)n;i++) { \ arr[i] = hwloc_bitmap_alloc(); \ } \ } # define KMP_CPU_FREE_ARRAY(arr, n) { \ unsigned i; \ for(i=0;i<(unsigned)n;i++) { \ hwloc_bitmap_free(arr[i]); \ } \ __kmp_free(arr); \ } # define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) { \ arr = (kmp_affin_mask_t *)KMP_INTERNAL_MALLOC(n*sizeof(kmp_affin_mask_t)); \ unsigned i; \ for(i=0;i<(unsigned)n;i++) { \ arr[i] = hwloc_bitmap_alloc(); \ } \ } # define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) { \ unsigned i; \ for(i=0;i<(unsigned)n;i++) { \ hwloc_bitmap_free(arr[i]); \ } \ KMP_INTERNAL_FREE(arr); \ } #else /* KMP_USE_HWLOC */ # define KMP_CPU_SET_ITERATE(i,mask) \ for(i = 0; (size_t)i < KMP_CPU_SETSIZE; ++i) # if KMP_OS_LINUX // // On Linux* OS, the mask is actually a vector of length __kmp_affin_mask_size // (in bytes). It should be allocated on a word boundary. // // WARNING!!! We have made the base type of the affinity mask unsigned char, // in order to eliminate a lot of checks that the true system mask size is // really a multiple of 4 bytes (on Linux* OS). // // THESE MACROS WON'T WORK PROPERLY ON BIG ENDIAN MACHINES!!! // typedef unsigned char kmp_affin_mask_t; # define _KMP_CPU_SET(i,mask) (mask[i/CHAR_BIT] |= (((kmp_affin_mask_t)1) << (i % CHAR_BIT))) # define KMP_CPU_SET(i,mask) _KMP_CPU_SET((i), ((kmp_affin_mask_t *)(mask))) # define _KMP_CPU_ISSET(i,mask) (!!(mask[i/CHAR_BIT] & (((kmp_affin_mask_t)1) << (i % CHAR_BIT)))) # define KMP_CPU_ISSET(i,mask) _KMP_CPU_ISSET((i), ((kmp_affin_mask_t *)(mask))) # define _KMP_CPU_CLR(i,mask) (mask[i/CHAR_BIT] &= ~(((kmp_affin_mask_t)1) << (i % CHAR_BIT))) # define KMP_CPU_CLR(i,mask) _KMP_CPU_CLR((i), ((kmp_affin_mask_t *)(mask))) # define KMP_CPU_ZERO(mask) \ { \ size_t __i; \ for (__i = 0; __i < __kmp_affin_mask_size; __i++) { \ ((kmp_affin_mask_t *)(mask))[__i] = 0; \ } \ } # define KMP_CPU_COPY(dest, src) \ { \ size_t __i; \ for (__i = 0; __i < __kmp_affin_mask_size; __i++) { \ ((kmp_affin_mask_t *)(dest))[__i] \ = ((kmp_affin_mask_t *)(src))[__i]; \ } \ } # define KMP_CPU_COMPLEMENT(max_bit_number, mask) \ { \ size_t __i; \ for (__i = 0; __i < __kmp_affin_mask_size; __i++) { \ ((kmp_affin_mask_t *)(mask))[__i] \ = ~((kmp_affin_mask_t *)(mask))[__i]; \ } \ } # define KMP_CPU_UNION(dest, src) \ { \ size_t __i; \ for (__i = 0; __i < __kmp_affin_mask_size; __i++) { \ ((kmp_affin_mask_t *)(dest))[__i] \ |= ((kmp_affin_mask_t *)(src))[__i]; \ } \ } # endif /* KMP_OS_LINUX */ # if KMP_OS_WINDOWS // // On Windows* OS, the mask size is 4 bytes for IA-32 architecture, and on // Intel(R) 64 it is 8 bytes times the number of processor groups. // # if KMP_GROUP_AFFINITY // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later). # if _MSC_VER < 1600 typedef struct GROUP_AFFINITY { KAFFINITY Mask; WORD Group; WORD Reserved[3]; } GROUP_AFFINITY; # endif typedef DWORD_PTR kmp_affin_mask_t; extern int __kmp_num_proc_groups; # define _KMP_CPU_SET(i,mask) \ (mask[i/(CHAR_BIT * sizeof(kmp_affin_mask_t))] |= \ (((kmp_affin_mask_t)1) << (i % (CHAR_BIT * sizeof(kmp_affin_mask_t))))) # define KMP_CPU_SET(i,mask) \ _KMP_CPU_SET((i), ((kmp_affin_mask_t *)(mask))) # define _KMP_CPU_ISSET(i,mask) \ (!!(mask[i/(CHAR_BIT * sizeof(kmp_affin_mask_t))] & \ (((kmp_affin_mask_t)1) << (i % (CHAR_BIT * sizeof(kmp_affin_mask_t)))))) # define KMP_CPU_ISSET(i,mask) \ _KMP_CPU_ISSET((i), ((kmp_affin_mask_t *)(mask))) # define _KMP_CPU_CLR(i,mask) \ (mask[i/(CHAR_BIT * sizeof(kmp_affin_mask_t))] &= \ ~(((kmp_affin_mask_t)1) << (i % (CHAR_BIT * sizeof(kmp_affin_mask_t))))) # define KMP_CPU_CLR(i,mask) \ _KMP_CPU_CLR((i), ((kmp_affin_mask_t *)(mask))) # define KMP_CPU_ZERO(mask) \ { \ int __i; \ for (__i = 0; __i < __kmp_num_proc_groups; __i++) { \ ((kmp_affin_mask_t *)(mask))[__i] = 0; \ } \ } # define KMP_CPU_COPY(dest, src) \ { \ int __i; \ for (__i = 0; __i < __kmp_num_proc_groups; __i++) { \ ((kmp_affin_mask_t *)(dest))[__i] \ = ((kmp_affin_mask_t *)(src))[__i]; \ } \ } # define KMP_CPU_COMPLEMENT(max_bit_number, mask) \ { \ int __i; \ for (__i = 0; __i < __kmp_num_proc_groups; __i++) { \ ((kmp_affin_mask_t *)(mask))[__i] \ = ~((kmp_affin_mask_t *)(mask))[__i]; \ } \ } # define KMP_CPU_UNION(dest, src) \ { \ int __i; \ for (__i = 0; __i < __kmp_num_proc_groups; __i++) { \ ((kmp_affin_mask_t *)(dest))[__i] \ |= ((kmp_affin_mask_t *)(src))[__i]; \ } \ } typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD); extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount; typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void); extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount; typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *); extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity; typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *, GROUP_AFFINITY *); extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity; extern int __kmp_get_proc_group(kmp_affin_mask_t const *mask); # else /* KMP_GROUP_AFFINITY */ typedef DWORD kmp_affin_mask_t; /* for compatibility with older winbase.h */ # define KMP_CPU_SET(i,mask) (*(mask) |= (((kmp_affin_mask_t)1) << (i))) # define KMP_CPU_ISSET(i,mask) (!!(*(mask) & (((kmp_affin_mask_t)1) << (i)))) # define KMP_CPU_CLR(i,mask) (*(mask) &= ~(((kmp_affin_mask_t)1) << (i))) # define KMP_CPU_ZERO(mask) (*(mask) = 0) # define KMP_CPU_COPY(dest, src) (*(dest) = *(src)) # define KMP_CPU_COMPLEMENT(max_bit_number, mask) (*(mask) = ~*(mask)) # define KMP_CPU_UNION(dest, src) (*(dest) |= *(src)) # endif /* KMP_GROUP_AFFINITY */ # endif /* KMP_OS_WINDOWS */ // // __kmp_allocate() will return memory allocated on a 4-bytes boundary. // after zeroing it - it takes care of those assumptions stated above. // # define KMP_CPU_ALLOC(ptr) \ (ptr = ((kmp_affin_mask_t *)__kmp_allocate(__kmp_affin_mask_size))) # define KMP_CPU_FREE(ptr) __kmp_free(ptr) # define KMP_CPU_ALLOC_ON_STACK(ptr) (ptr = ((kmp_affin_mask_t *)KMP_ALLOCA(__kmp_affin_mask_size))) # define KMP_CPU_FREE_FROM_STACK(ptr) /* Nothing */ # define KMP_CPU_INTERNAL_ALLOC(ptr) (ptr = ((kmp_affin_mask_t *)KMP_INTERNAL_MALLOC(__kmp_affin_mask_size))) # define KMP_CPU_INTERNAL_FREE(ptr) KMP_INTERNAL_FREE(ptr) // // The following macro should be used to index an array of masks. // The array should be declared as "kmp_affinity_t *" and allocated with // size "__kmp_affinity_mask_size * len". The macro takes care of the fact // that on Windows* OS, sizeof(kmp_affin_t) is really the size of the mask, but // on Linux* OS, sizeof(kmp_affin_t) is 1. // # define KMP_CPU_INDEX(array,i) \ ((kmp_affin_mask_t *)(((char *)(array)) + (i) * __kmp_affin_mask_size)) # define KMP_CPU_ALLOC_ARRAY(arr, n) arr = (kmp_affin_mask_t *)__kmp_allocate(n * __kmp_affin_mask_size) # define KMP_CPU_FREE_ARRAY(arr, n) __kmp_free(arr); # define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) arr = (kmp_affin_mask_t *)KMP_INTERNAL_MALLOC(n * __kmp_affin_mask_size) # define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_INTERNAL_FREE(arr); #endif /* KMP_USE_HWLOC */ // // Declare local char buffers with this size for printing debug and info // messages, using __kmp_affinity_print_mask(). // #define KMP_AFFIN_MASK_PRINT_LEN 1024 enum affinity_type { affinity_none = 0, affinity_physical, affinity_logical, affinity_compact, affinity_scatter, affinity_explicit, affinity_balanced, affinity_disabled, // not used outsize the env var parser affinity_default }; enum affinity_gran { affinity_gran_fine = 0, affinity_gran_thread, affinity_gran_core, affinity_gran_package, affinity_gran_node, #if KMP_GROUP_AFFINITY // // The "group" granularity isn't necesssarily coarser than all of the // other levels, but we put it last in the enum. // affinity_gran_group, #endif /* KMP_GROUP_AFFINITY */ affinity_gran_default }; enum affinity_top_method { affinity_top_method_all = 0, // try all (supported) methods, in order #if KMP_ARCH_X86 || KMP_ARCH_X86_64 affinity_top_method_apicid, affinity_top_method_x2apicid, #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too #if KMP_GROUP_AFFINITY affinity_top_method_group, #endif /* KMP_GROUP_AFFINITY */ affinity_top_method_flat, #if KMP_USE_HWLOC affinity_top_method_hwloc, #endif affinity_top_method_default }; #define affinity_respect_mask_default (-1) extern enum affinity_type __kmp_affinity_type; /* Affinity type */ extern enum affinity_gran __kmp_affinity_gran; /* Affinity granularity */ extern int __kmp_affinity_gran_levels; /* corresponding int value */ extern int __kmp_affinity_dups; /* Affinity duplicate masks */ extern enum affinity_top_method __kmp_affinity_top_method; extern int __kmp_affinity_compact; /* Affinity 'compact' value */ extern int __kmp_affinity_offset; /* Affinity offset value */ extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */ extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */ extern int __kmp_affinity_respect_mask; /* Respect process' initial affinity mask? */ extern char * __kmp_affinity_proclist; /* proc ID list */ extern kmp_affin_mask_t *__kmp_affinity_masks; extern unsigned __kmp_affinity_num_masks; extern int __kmp_get_system_affinity(kmp_affin_mask_t *mask, int abort_on_error); extern int __kmp_set_system_affinity(kmp_affin_mask_t const *mask, int abort_on_error); extern void __kmp_affinity_bind_thread(int which); # if KMP_OS_LINUX extern kmp_affin_mask_t *__kmp_affinity_get_fullMask(); # endif /* KMP_OS_LINUX */ extern char const * __kmp_cpuinfo_file; #endif /* KMP_AFFINITY_SUPPORTED */ #if OMP_40_ENABLED // // This needs to be kept in sync with the values in omp.h !!! // typedef enum kmp_proc_bind_t { proc_bind_false = 0, proc_bind_true, proc_bind_master, proc_bind_close, proc_bind_spread, proc_bind_intel, // use KMP_AFFINITY interface proc_bind_default } kmp_proc_bind_t; typedef struct kmp_nested_proc_bind_t { kmp_proc_bind_t *bind_types; int size; int used; } kmp_nested_proc_bind_t; extern kmp_nested_proc_bind_t __kmp_nested_proc_bind; #endif /* OMP_40_ENABLED */ # if KMP_AFFINITY_SUPPORTED # define KMP_PLACE_ALL (-1) # define KMP_PLACE_UNDEFINED (-2) # endif /* KMP_AFFINITY_SUPPORTED */ extern int __kmp_affinity_num_places; #if OMP_40_ENABLED typedef enum kmp_cancel_kind_t { cancel_noreq = 0, cancel_parallel = 1, cancel_loop = 2, cancel_sections = 3, cancel_taskgroup = 4 } kmp_cancel_kind_t; #endif // OMP_40_ENABLED extern int __kmp_place_num_sockets; extern int __kmp_place_socket_offset; extern int __kmp_place_num_cores; extern int __kmp_place_core_offset; extern int __kmp_place_num_threads_per_core; /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ #define KMP_PAD(type, sz) (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1)) // // We need to avoid using -1 as a GTID as +1 is added to the gtid // when storing it in a lock, and the value 0 is reserved. // #define KMP_GTID_DNE (-2) /* Does not exist */ #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */ #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */ #define KMP_GTID_UNKNOWN (-5) /* Is not known */ #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */ #define __kmp_get_gtid() __kmp_get_global_thread_id() #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg() #define __kmp_tid_from_gtid(gtid) ( KMP_DEBUG_ASSERT( (gtid) >= 0 ), \ __kmp_threads[ (gtid) ]->th.th_info.ds.ds_tid ) #define __kmp_get_tid() ( __kmp_tid_from_gtid( __kmp_get_gtid() ) ) #define __kmp_gtid_from_tid(tid,team) ( KMP_DEBUG_ASSERT( (tid) >= 0 && (team) != NULL ), \ team -> t.t_threads[ (tid) ] -> th.th_info .ds.ds_gtid ) #define __kmp_get_team() ( __kmp_threads[ (__kmp_get_gtid()) ]-> th.th_team ) #define __kmp_team_from_gtid(gtid) ( KMP_DEBUG_ASSERT( (gtid) >= 0 ), \ __kmp_threads[ (gtid) ]-> th.th_team ) #define __kmp_thread_from_gtid(gtid) ( KMP_DEBUG_ASSERT( (gtid) >= 0 ), __kmp_threads[ (gtid) ] ) #define __kmp_get_thread() ( __kmp_thread_from_gtid( __kmp_get_gtid() ) ) // Returns current thread (pointer to kmp_info_t). In contrast to __kmp_get_thread(), it works // with registered and not-yet-registered threads. #define __kmp_gtid_from_thread(thr) ( KMP_DEBUG_ASSERT( (thr) != NULL ), \ (thr)->th.th_info.ds.ds_gtid ) // AT: Which way is correct? // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc; // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc; #define __kmp_get_team_num_threads(gtid) ( __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc ) /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ #define KMP_UINT64_MAX (~((kmp_uint64)1<<((sizeof(kmp_uint64)*(1<<3))-1))) #define KMP_MIN_NTH 1 #ifndef KMP_MAX_NTH # if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX # define KMP_MAX_NTH PTHREAD_THREADS_MAX # else # define KMP_MAX_NTH INT_MAX # endif #endif /* KMP_MAX_NTH */ #ifdef PTHREAD_STACK_MIN # define KMP_MIN_STKSIZE PTHREAD_STACK_MIN #else # define KMP_MIN_STKSIZE ((size_t)(32 * 1024)) #endif #define KMP_MAX_STKSIZE (~((size_t)1<<((sizeof(size_t)*(1<<3))-1))) #if KMP_ARCH_X86 # define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024)) #elif KMP_ARCH_X86_64 # define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024)) # define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024)) #else # define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024)) #endif #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024)) #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t) (1024 * 1024)) #define KMP_MIN_MALLOC_POOL_INCR ((size_t) (4 * 1024)) #define KMP_MAX_MALLOC_POOL_INCR (~((size_t)1<<((sizeof(size_t)*(1<<3))-1))) #define KMP_MIN_STKOFFSET (0) #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE #if KMP_OS_DARWIN # define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET #else # define KMP_DEFAULT_STKOFFSET CACHE_LINE #endif #define KMP_MIN_STKPADDING (0) #define KMP_MAX_STKPADDING (2 * 1024 * 1024) #define KMP_MIN_MONITOR_WAKEUPS (1) /* min number of times monitor wakes up per second */ #define KMP_MAX_MONITOR_WAKEUPS (1000) /* maximum number of times monitor can wake up per second */ #define KMP_BLOCKTIME_MULTIPLIER (1000) /* number of blocktime units per second */ #define KMP_MIN_BLOCKTIME (0) #define KMP_MAX_BLOCKTIME (INT_MAX) /* Must be this for "infinite" setting the work */ #define KMP_DEFAULT_BLOCKTIME (200) /* __kmp_blocktime is in milliseconds */ /* Calculate new number of monitor wakeups for a specific block time based on previous monitor_wakeups */ /* Only allow increasing number of wakeups */ #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \ ( ((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) : \ ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS : \ ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) ? (monitor_wakeups) : \ (KMP_BLOCKTIME_MULTIPLIER) / (blocktime) ) /* Calculate number of intervals for a specific block time based on monitor_wakeups */ #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \ ( ( (blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1 ) / \ (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) ) #define KMP_MIN_STATSCOLS 40 #define KMP_MAX_STATSCOLS 4096 #define KMP_DEFAULT_STATSCOLS 80 #define KMP_MIN_INTERVAL 0 #define KMP_MAX_INTERVAL (INT_MAX-1) #define KMP_DEFAULT_INTERVAL 0 #define KMP_MIN_CHUNK 1 #define KMP_MAX_CHUNK (INT_MAX-1) #define KMP_DEFAULT_CHUNK 1 #define KMP_MIN_INIT_WAIT 1 #define KMP_MAX_INIT_WAIT (INT_MAX/2) #define KMP_DEFAULT_INIT_WAIT 2048U #define KMP_MIN_NEXT_WAIT 1 #define KMP_MAX_NEXT_WAIT (INT_MAX/2) #define KMP_DEFAULT_NEXT_WAIT 1024U // max possible dynamic loops in concurrent execution per team #define KMP_MAX_DISP_BUF 7 #define KMP_MAX_ORDERED 8 #define KMP_MAX_FIELDS 32 #define KMP_MAX_BRANCH_BITS 31 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX /* Minimum number of threads before switch to TLS gtid (experimentally determined) */ /* josh TODO: what about OS X* tuning? */ #if KMP_ARCH_X86 || KMP_ARCH_X86_64 # define KMP_TLS_GTID_MIN 5 #else # define KMP_TLS_GTID_MIN INT_MAX #endif #define KMP_MASTER_TID(tid) ( (tid) == 0 ) #define KMP_WORKER_TID(tid) ( (tid) != 0 ) #define KMP_MASTER_GTID(gtid) ( __kmp_tid_from_gtid((gtid)) == 0 ) #define KMP_WORKER_GTID(gtid) ( __kmp_tid_from_gtid((gtid)) != 0 ) #define KMP_UBER_GTID(gtid) \ ( \ KMP_DEBUG_ASSERT( (gtid) >= KMP_GTID_MIN ), \ KMP_DEBUG_ASSERT( (gtid) < __kmp_threads_capacity ), \ (gtid) >= 0 && __kmp_root[(gtid)] && __kmp_threads[(gtid)] && \ (__kmp_threads[(gtid)] == __kmp_root[(gtid)]->r.r_uber_thread)\ ) #define KMP_INITIAL_GTID(gtid) ( (gtid) == 0 ) #ifndef TRUE #define FALSE 0 #define TRUE (! FALSE) #endif /* NOTE: all of the following constants must be even */ #if KMP_OS_WINDOWS # define KMP_INIT_WAIT 64U /* initial number of spin-tests */ # define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */ #elif KMP_OS_CNK # define KMP_INIT_WAIT 16U /* initial number of spin-tests */ # define KMP_NEXT_WAIT 8U /* susequent number of spin-tests */ #elif KMP_OS_LINUX # define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ # define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ #elif KMP_OS_DARWIN /* TODO: tune for KMP_OS_DARWIN */ # define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ # define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ #elif KMP_OS_FREEBSD /* TODO: tune for KMP_OS_FREEBSD */ # define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ # define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ #elif KMP_OS_NETBSD /* TODO: tune for KMP_OS_NETBSD */ # define KMP_INIT_WAIT 1024U /* initial number of spin-tests */ # define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */ #endif #if KMP_ARCH_X86 || KMP_ARCH_X86_64 typedef struct kmp_cpuid { kmp_uint32 eax; kmp_uint32 ebx; kmp_uint32 ecx; kmp_uint32 edx; } kmp_cpuid_t; extern void __kmp_x86_cpuid( int mode, int mode2, struct kmp_cpuid *p ); # if KMP_ARCH_X86 extern void __kmp_x86_pause( void ); # elif KMP_MIC static void __kmp_x86_pause( void ) { _mm_delay_32( 100 ); }; # else static void __kmp_x86_pause( void ) { _mm_pause(); }; # endif # define KMP_CPU_PAUSE() __kmp_x86_pause() #elif KMP_ARCH_PPC64 # define KMP_PPC64_PRI_LOW() __asm__ volatile ("or 1, 1, 1") # define KMP_PPC64_PRI_MED() __asm__ volatile ("or 2, 2, 2") # define KMP_PPC64_PRI_LOC_MB() __asm__ volatile ("" : : : "memory") # define KMP_CPU_PAUSE() do { KMP_PPC64_PRI_LOW(); KMP_PPC64_PRI_MED(); KMP_PPC64_PRI_LOC_MB(); } while (0) #else # define KMP_CPU_PAUSE() /* nothing to do */ #endif #define KMP_INIT_YIELD(count) { (count) = __kmp_yield_init; } #define KMP_YIELD(cond) { KMP_CPU_PAUSE(); __kmp_yield( (cond) ); } // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround, // there should be no yielding since the starting value from KMP_INIT_YIELD() is odd. #define KMP_YIELD_WHEN(cond,count) { KMP_CPU_PAUSE(); (count) -= 2; \ if (!(count)) { KMP_YIELD(cond); (count) = __kmp_yield_next; } } #define KMP_YIELD_SPIN(count) { KMP_CPU_PAUSE(); (count) -=2; \ if (!(count)) { KMP_YIELD(1); (count) = __kmp_yield_next; } } /* ------------------------------------------------------------------------ */ /* Support datatypes for the orphaned construct nesting checks. */ /* ------------------------------------------------------------------------ */ enum cons_type { ct_none, ct_parallel, ct_pdo, ct_pdo_ordered, ct_psections, ct_psingle, /* the following must be left in order and not split up */ ct_taskq, ct_task, /* really task inside non-ordered taskq, considered a worksharing type */ ct_task_ordered, /* really task inside ordered taskq, considered a worksharing type */ /* the preceding must be left in order and not split up */ ct_critical, ct_ordered_in_parallel, ct_ordered_in_pdo, ct_ordered_in_taskq, ct_master, ct_reduce, ct_barrier }; /* test to see if we are in a taskq construct */ # define IS_CONS_TYPE_TASKQ( ct ) ( ((int)(ct)) >= ((int)ct_taskq) && ((int)(ct)) <= ((int)ct_task_ordered) ) # define IS_CONS_TYPE_ORDERED( ct ) ((ct) == ct_pdo_ordered || (ct) == ct_task_ordered) struct cons_data { ident_t const *ident; enum cons_type type; int prev; kmp_user_lock_p name; /* address exclusively for critical section name comparison */ }; struct cons_header { int p_top, w_top, s_top; int stack_size, stack_top; struct cons_data *stack_data; }; struct kmp_region_info { char *text; int offset[KMP_MAX_FIELDS]; int length[KMP_MAX_FIELDS]; }; /* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */ #if KMP_OS_WINDOWS typedef HANDLE kmp_thread_t; typedef DWORD kmp_key_t; #endif /* KMP_OS_WINDOWS */ #if KMP_OS_UNIX typedef pthread_t kmp_thread_t; typedef pthread_key_t kmp_key_t; #endif extern kmp_key_t __kmp_gtid_threadprivate_key; typedef struct kmp_sys_info { long maxrss; /* the maximum resident set size utilized (in kilobytes) */ long minflt; /* the number of page faults serviced without any I/O */ long majflt; /* the number of page faults serviced that required I/O */ long nswap; /* the number of times a process was "swapped" out of memory */ long inblock; /* the number of times the file system had to perform input */ long oublock; /* the number of times the file system had to perform output */ long nvcsw; /* the number of times a context switch was voluntarily */ long nivcsw; /* the number of times a context switch was forced */ } kmp_sys_info_t; typedef struct kmp_cpuinfo { int initialized; // If 0, other fields are not initialized. int signature; // CPUID(1).EAX int family; // CPUID(1).EAX[27:20] + CPUID(1).EAX[11:8] ( Extended Family + Family ) int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended Model << 4 ) + Model) int stepping; // CPUID(1).EAX[3:0] ( Stepping ) int sse2; // 0 if SSE2 instructions are not supported, 1 otherwise. int rtm; // 0 if RTM instructions are not supported, 1 otherwise. int cpu_stackoffset; int apic_id; int physical_id; int logical_id; kmp_uint64 frequency; // Nominal CPU frequency in Hz. } kmp_cpuinfo_t; #ifdef BUILD_TV struct tv_threadprivate { /* Record type #1 */ void *global_addr; void *thread_addr; }; struct tv_data { struct tv_data *next; void *type; union tv_union { struct tv_threadprivate tp; } u; }; extern kmp_key_t __kmp_tv_key; #endif /* BUILD_TV */ /* ------------------------------------------------------------------------ */ #if USE_ITT_BUILD // We cannot include "kmp_itt.h" due to circular dependency. Declare the only required type here. // Later we will check the type meets requirements. typedef int kmp_itt_mark_t; #define KMP_ITT_DEBUG 0 #endif /* USE_ITT_BUILD */ /* ------------------------------------------------------------------------ */ /* * Taskq data structures */ #define HIGH_WATER_MARK(nslots) (((nslots) * 3) / 4) #define __KMP_TASKQ_THUNKS_PER_TH 1 /* num thunks that each thread can simultaneously execute from a task queue */ /* flags for taskq_global_flags, kmp_task_queue_t tq_flags, kmpc_thunk_t th_flags */ #define TQF_IS_ORDERED 0x0001 /* __kmpc_taskq interface, taskq ordered */ #define TQF_IS_LASTPRIVATE 0x0002 /* __kmpc_taskq interface, taskq with lastprivate list */ #define TQF_IS_NOWAIT 0x0004 /* __kmpc_taskq interface, end taskq nowait */ #define TQF_HEURISTICS 0x0008 /* __kmpc_taskq interface, use heuristics to decide task queue size */ #define TQF_INTERFACE_RESERVED1 0x0010 /* __kmpc_taskq interface, reserved for future use */ #define TQF_INTERFACE_RESERVED2 0x0020 /* __kmpc_taskq interface, reserved for future use */ #define TQF_INTERFACE_RESERVED3 0x0040 /* __kmpc_taskq interface, reserved for future use */ #define TQF_INTERFACE_RESERVED4 0x0080 /* __kmpc_taskq interface, reserved for future use */ #define TQF_INTERFACE_FLAGS 0x00ff /* all the __kmpc_taskq interface flags */ #define TQF_IS_LAST_TASK 0x0100 /* internal/read by instrumentation; only used with TQF_IS_LASTPRIVATE */ #define TQF_TASKQ_TASK 0x0200 /* internal use only; this thunk->th_task is the taskq_task */ #define TQF_RELEASE_WORKERS 0x0400 /* internal use only; must release worker threads once ANY queued task exists (global) */ #define TQF_ALL_TASKS_QUEUED 0x0800 /* internal use only; notify workers that master has finished enqueuing tasks */ #define TQF_PARALLEL_CONTEXT 0x1000 /* internal use only: this queue encountered in a parallel context: not serialized */ #define TQF_DEALLOCATED 0x2000 /* internal use only; this queue is on the freelist and not in use */ #define TQF_INTERNAL_FLAGS 0x3f00 /* all the internal use only flags */ typedef struct KMP_ALIGN_CACHE kmpc_aligned_int32_t { kmp_int32 ai_data; } kmpc_aligned_int32_t; typedef struct KMP_ALIGN_CACHE kmpc_aligned_queue_slot_t { struct kmpc_thunk_t *qs_thunk; } kmpc_aligned_queue_slot_t; typedef struct kmpc_task_queue_t { /* task queue linkage fields for n-ary tree of queues (locked with global taskq_tree_lck) */ kmp_lock_t tq_link_lck; /* lock for child link, child next/prev links and child ref counts */ union { struct kmpc_task_queue_t *tq_parent; /* pointer to parent taskq, not locked */ struct kmpc_task_queue_t *tq_next_free; /* for taskq internal freelists, locked with global taskq_freelist_lck */ } tq; volatile struct kmpc_task_queue_t *tq_first_child; /* pointer to linked-list of children, locked by tq's tq_link_lck */ struct kmpc_task_queue_t *tq_next_child; /* next child in linked-list, locked by parent tq's tq_link_lck */ struct kmpc_task_queue_t *tq_prev_child; /* previous child in linked-list, locked by parent tq's tq_link_lck */ volatile kmp_int32 tq_ref_count; /* reference count of threads with access to this task queue */ /* (other than the thread executing the kmpc_end_taskq call) */ /* locked by parent tq's tq_link_lck */ /* shared data for task queue */ struct kmpc_aligned_shared_vars_t *tq_shareds; /* per-thread array of pointers to shared variable structures */ /* only one array element exists for all but outermost taskq */ /* bookkeeping for ordered task queue */ kmp_uint32 tq_tasknum_queuing; /* ordered task number assigned while queuing tasks */ volatile kmp_uint32 tq_tasknum_serving; /* ordered number of next task to be served (executed) */ /* thunk storage management for task queue */ kmp_lock_t tq_free_thunks_lck; /* lock for thunk freelist manipulation */ struct kmpc_thunk_t *tq_free_thunks; /* thunk freelist, chained via th.th_next_free */ struct kmpc_thunk_t *tq_thunk_space; /* space allocated for thunks for this task queue */ /* data fields for queue itself */ kmp_lock_t tq_queue_lck; /* lock for [de]enqueue operations: tq_queue, tq_head, tq_tail, tq_nfull */ kmpc_aligned_queue_slot_t *tq_queue; /* array of queue slots to hold thunks for tasks */ volatile struct kmpc_thunk_t *tq_taskq_slot; /* special slot for taskq task thunk, occupied if not NULL */ kmp_int32 tq_nslots; /* # of tq_thunk_space thunks alloc'd (not incl. tq_taskq_slot space) */ kmp_int32 tq_head; /* enqueue puts next item in here (index into tq_queue array) */ kmp_int32 tq_tail; /* dequeue takes next item out of here (index into tq_queue array) */ volatile kmp_int32 tq_nfull; /* # of occupied entries in task queue right now */ kmp_int32 tq_hiwat; /* high-water mark for tq_nfull and queue scheduling */ volatile kmp_int32 tq_flags; /* TQF_xxx */ /* bookkeeping for outstanding thunks */ struct kmpc_aligned_int32_t *tq_th_thunks; /* per-thread array for # of regular thunks currently being executed */ kmp_int32 tq_nproc; /* number of thunks in the th_thunks array */ /* statistics library bookkeeping */ ident_t *tq_loc; /* source location information for taskq directive */ } kmpc_task_queue_t; typedef void (*kmpc_task_t) (kmp_int32 global_tid, struct kmpc_thunk_t *thunk); /* sizeof_shareds passed as arg to __kmpc_taskq call */ typedef struct kmpc_shared_vars_t { /* aligned during dynamic allocation */ kmpc_task_queue_t *sv_queue; /* (pointers to) shared vars */ } kmpc_shared_vars_t; typedef struct KMP_ALIGN_CACHE kmpc_aligned_shared_vars_t { volatile struct kmpc_shared_vars_t *ai_data; } kmpc_aligned_shared_vars_t; /* sizeof_thunk passed as arg to kmpc_taskq call */ typedef struct kmpc_thunk_t { /* aligned during dynamic allocation */ union { /* field used for internal freelists too */ kmpc_shared_vars_t *th_shareds; struct kmpc_thunk_t *th_next_free; /* freelist of individual thunks within queue, head at tq_free_thunks */ } th; kmpc_task_t th_task; /* taskq_task if flags & TQF_TASKQ_TASK */ struct kmpc_thunk_t *th_encl_thunk; /* pointer to dynamically enclosing thunk on this thread's call stack */ kmp_int32 th_flags; /* TQF_xxx (tq_flags interface plus possible internal flags) */ kmp_int32 th_status; kmp_uint32 th_tasknum; /* task number assigned in order of queuing, used for ordered sections */ /* private vars */ } kmpc_thunk_t; typedef struct KMP_ALIGN_CACHE kmp_taskq { int tq_curr_thunk_capacity; kmpc_task_queue_t *tq_root; kmp_int32 tq_global_flags; kmp_lock_t tq_freelist_lck; kmpc_task_queue_t *tq_freelist; kmpc_thunk_t **tq_curr_thunk; } kmp_taskq_t; /* END Taskq data structures */ /* --------------------------------------------------------------------------- */ typedef kmp_int32 kmp_critical_name[8]; /*! @ingroup PARALLEL The type for a microtask which gets passed to @ref __kmpc_fork_call(). The arguments to the outlined function are @param global_tid the global thread identity of the thread executing the function. @param bound_tid the local identitiy of the thread executing the function @param ... pointers to shared variables accessed by the function. */ typedef void (*kmpc_micro) ( kmp_int32 * global_tid, kmp_int32 * bound_tid, ... ); typedef void (*kmpc_micro_bound) ( kmp_int32 * bound_tid, kmp_int32 * bound_nth, ... ); /*! @ingroup THREADPRIVATE @{ */ /* --------------------------------------------------------------------------- */ /* Threadprivate initialization/finalization function declarations */ /* for non-array objects: __kmpc_threadprivate_register() */ /*! Pointer to the constructor function. The first argument is the this pointer */ typedef void *(*kmpc_ctor) (void *); /*! Pointer to the destructor function. The first argument is the this pointer */ typedef void (*kmpc_dtor) (void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel compiler */ /*! Pointer to an alternate constructor. The first argument is the this pointer. */ typedef void *(*kmpc_cctor) (void *, void *); /* for array objects: __kmpc_threadprivate_register_vec() */ /* First arg: "this" pointer */ /* Last arg: number of array elements */ /*! Array constructor. First argument is the this pointer Second argument the number of array elements. */ typedef void *(*kmpc_ctor_vec) (void *, size_t); /*! Pointer to the array destructor function. The first argument is the this pointer Second argument the number of array elements. */ typedef void (*kmpc_dtor_vec) (void *, size_t); /*! Array constructor. First argument is the this pointer Third argument the number of array elements. */ typedef void *(*kmpc_cctor_vec) (void *, void *, size_t); /* function unused by compiler */ /*! @} */ /* ------------------------------------------------------------------------ */ /* keeps tracked of threadprivate cache allocations for cleanup later */ typedef struct kmp_cached_addr { void **addr; /* address of allocated cache */ struct kmp_cached_addr *next; /* pointer to next cached address */ } kmp_cached_addr_t; struct private_data { struct private_data *next; /* The next descriptor in the list */ void *data; /* The data buffer for this descriptor */ int more; /* The repeat count for this descriptor */ size_t size; /* The data size for this descriptor */ }; struct private_common { struct private_common *next; struct private_common *link; void *gbl_addr; void *par_addr; /* par_addr == gbl_addr for MASTER thread */ size_t cmn_size; }; struct shared_common { struct shared_common *next; struct private_data *pod_init; void *obj_init; void *gbl_addr; union { kmpc_ctor ctor; kmpc_ctor_vec ctorv; } ct; union { kmpc_cctor cctor; kmpc_cctor_vec cctorv; } cct; union { kmpc_dtor dtor; kmpc_dtor_vec dtorv; } dt; size_t vec_len; int is_vec; size_t cmn_size; }; #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */ #define KMP_HASH_TABLE_SIZE (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */ #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */ #define KMP_HASH(x) ((((kmp_uintptr_t) x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE-1)) struct common_table { struct private_common *data[ KMP_HASH_TABLE_SIZE ]; }; struct shared_table { struct shared_common *data[ KMP_HASH_TABLE_SIZE ]; }; /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ #ifdef KMP_STATIC_STEAL_ENABLED typedef struct KMP_ALIGN_CACHE dispatch_private_info32 { kmp_int32 count; kmp_int32 ub; /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */ kmp_int32 lb; kmp_int32 st; kmp_int32 tc; kmp_int32 static_steal_counter; /* for static_steal only; maybe better to put after ub */ // KMP_ALIGN( 16 ) ensures ( if the KMP_ALIGN macro is turned on ) // a) parm3 is properly aligned and // b) all parm1-4 are in the same cache line. // Because of parm1-4 are used together, performance seems to be better // if they are in the same line (not measured though). struct KMP_ALIGN( 32 ) { // AC: changed 16 to 32 in order to simplify template kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should kmp_int32 parm2; // make no real change at least while padding is off. kmp_int32 parm3; kmp_int32 parm4; }; kmp_uint32 ordered_lower; kmp_uint32 ordered_upper; #if KMP_OS_WINDOWS // This var can be placed in the hole between 'tc' and 'parm1', instead of 'static_steal_counter'. // It would be nice to measure execution times. // Conditional if/endif can be removed at all. kmp_int32 last_upper; #endif /* KMP_OS_WINDOWS */ } dispatch_private_info32_t; typedef struct KMP_ALIGN_CACHE dispatch_private_info64 { kmp_int64 count; /* current chunk number for static and static-steal scheduling*/ kmp_int64 ub; /* upper-bound */ /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */ kmp_int64 lb; /* lower-bound */ kmp_int64 st; /* stride */ kmp_int64 tc; /* trip count (number of iterations) */ kmp_int64 static_steal_counter; /* for static_steal only; maybe better to put after ub */ /* parm[1-4] are used in different ways by different scheduling algorithms */ // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on ) // a) parm3 is properly aligned and // b) all parm1-4 are in the same cache line. // Because of parm1-4 are used together, performance seems to be better // if they are in the same line (not measured though). struct KMP_ALIGN( 32 ) { kmp_int64 parm1; kmp_int64 parm2; kmp_int64 parm3; kmp_int64 parm4; }; kmp_uint64 ordered_lower; kmp_uint64 ordered_upper; #if KMP_OS_WINDOWS // This var can be placed in the hole between 'tc' and 'parm1', instead of 'static_steal_counter'. // It would be nice to measure execution times. // Conditional if/endif can be removed at all. kmp_int64 last_upper; #endif /* KMP_OS_WINDOWS */ } dispatch_private_info64_t; #else /* KMP_STATIC_STEAL_ENABLED */ typedef struct KMP_ALIGN_CACHE dispatch_private_info32 { kmp_int32 lb; kmp_int32 ub; kmp_int32 st; kmp_int32 tc; kmp_int32 parm1; kmp_int32 parm2; kmp_int32 parm3; kmp_int32 parm4; kmp_int32 count; kmp_uint32 ordered_lower; kmp_uint32 ordered_upper; #if KMP_OS_WINDOWS kmp_int32 last_upper; #endif /* KMP_OS_WINDOWS */ } dispatch_private_info32_t; typedef struct KMP_ALIGN_CACHE dispatch_private_info64 { kmp_int64 lb; /* lower-bound */ kmp_int64 ub; /* upper-bound */ kmp_int64 st; /* stride */ kmp_int64 tc; /* trip count (number of iterations) */ /* parm[1-4] are used in different ways by different scheduling algorithms */ kmp_int64 parm1; kmp_int64 parm2; kmp_int64 parm3; kmp_int64 parm4; kmp_int64 count; /* current chunk number for static scheduling */ kmp_uint64 ordered_lower; kmp_uint64 ordered_upper; #if KMP_OS_WINDOWS kmp_int64 last_upper; #endif /* KMP_OS_WINDOWS */ } dispatch_private_info64_t; #endif /* KMP_STATIC_STEAL_ENABLED */ typedef struct KMP_ALIGN_CACHE dispatch_private_info { union private_info { dispatch_private_info32_t p32; dispatch_private_info64_t p64; } u; enum sched_type schedule; /* scheduling algorithm */ kmp_int32 ordered; /* ordered clause specified */ kmp_int32 ordered_bumped; kmp_int32 ordered_dummy[KMP_MAX_ORDERED-3]; // to retain the structure size after making ordered_iteration scalar struct dispatch_private_info * next; /* stack of buffers for nest of serial regions */ kmp_int32 nomerge; /* don't merge iters if serialized */ kmp_int32 type_size; /* the size of types in private_info */ enum cons_type pushed_ws; } dispatch_private_info_t; typedef struct dispatch_shared_info32 { /* chunk index under dynamic, number of idle threads under static-steal; iteration index otherwise */ volatile kmp_uint32 iteration; volatile kmp_uint32 num_done; volatile kmp_uint32 ordered_iteration; kmp_int32 ordered_dummy[KMP_MAX_ORDERED-1]; // to retain the structure size after making ordered_iteration scalar } dispatch_shared_info32_t; typedef struct dispatch_shared_info64 { /* chunk index under dynamic, number of idle threads under static-steal; iteration index otherwise */ volatile kmp_uint64 iteration; volatile kmp_uint64 num_done; volatile kmp_uint64 ordered_iteration; kmp_int64 ordered_dummy[KMP_MAX_ORDERED-1]; // to retain the structure size after making ordered_iteration scalar } dispatch_shared_info64_t; typedef struct dispatch_shared_info { union shared_info { dispatch_shared_info32_t s32; dispatch_shared_info64_t s64; } u; /* volatile kmp_int32 dispatch_abort; depricated */ volatile kmp_uint32 buffer_index; } dispatch_shared_info_t; typedef struct kmp_disp { /* Vector for ORDERED SECTION */ void (*th_deo_fcn)( int * gtid, int * cid, ident_t *); /* Vector for END ORDERED SECTION */ void (*th_dxo_fcn)( int * gtid, int * cid, ident_t *); dispatch_shared_info_t *th_dispatch_sh_current; dispatch_private_info_t *th_dispatch_pr_current; dispatch_private_info_t *th_disp_buffer; kmp_int32 th_disp_index; void* dummy_padding[2]; // make it 64 bytes on Intel(R) 64 #if KMP_USE_INTERNODE_ALIGNMENT char more_padding[INTERNODE_CACHE_LINE]; #endif } kmp_disp_t; /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ /* Barrier stuff */ /* constants for barrier state update */ #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */ #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */ #define KMP_BARRIER_UNUSED_BIT 1 /* bit that must never be set for valid state */ #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */ #define KMP_BARRIER_SLEEP_STATE ((kmp_uint) (1 << KMP_BARRIER_SLEEP_BIT)) #define KMP_BARRIER_UNUSED_STATE ((kmp_uint) (1 << KMP_BARRIER_UNUSED_BIT)) #define KMP_BARRIER_STATE_BUMP ((kmp_uint) (1 << KMP_BARRIER_BUMP_BIT)) #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT) # error "Barrier sleep bit must be smaller than barrier bump bit" #endif #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT) # error "Barrier unused bit must be smaller than barrier bump bit" #endif // Constants for release barrier wait state: currently, hierarchical only #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep #define KMP_BARRIER_OWN_FLAG 1 // Normal state; worker waiting on own b_go flag in release #define KMP_BARRIER_PARENT_FLAG 2 // Special state; worker waiting on parent's b_go flag in release #define KMP_BARRIER_SWITCH_TO_OWN_FLAG 3 // Special state; tells worker to shift from parent to own b_go #define KMP_BARRIER_SWITCHING 4 // Special state; worker resets appropriate flag on wake-up enum barrier_type { bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction barriers if enabled) */ bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */ #if KMP_FAST_REDUCTION_BARRIER bs_reduction_barrier, /* 2, All barriers that are used in reduction */ #endif // KMP_FAST_REDUCTION_BARRIER bs_last_barrier /* Just a placeholder to mark the end */ }; // to work with reduction barriers just like with plain barriers #if !KMP_FAST_REDUCTION_BARRIER #define bs_reduction_barrier bs_plain_barrier #endif // KMP_FAST_REDUCTION_BARRIER typedef enum kmp_bar_pat { /* Barrier communication patterns */ bp_linear_bar = 0, /* Single level (degenerate) tree */ bp_tree_bar = 1, /* Balanced tree with branching factor 2^n */ bp_hyper_bar = 2, /* Hypercube-embedded tree with min branching factor 2^n */ bp_hierarchical_bar = 3, /* Machine hierarchy tree */ bp_last_bar = 4 /* Placeholder to mark the end */ } kmp_bar_pat_e; # define KMP_BARRIER_ICV_PUSH 1 /* Record for holding the values of the internal controls stack records */ typedef struct kmp_internal_control { int serial_nesting_level; /* corresponds to the value of the th_team_serialized field */ kmp_int8 nested; /* internal control for nested parallelism (per thread) */ kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per thread) */ kmp_int8 bt_set; /* internal control for whether blocktime is explicitly set */ int blocktime; /* internal control for blocktime */ int bt_intervals; /* internal control for blocktime intervals */ int nproc; /* internal control for #threads for next parallel region (per thread) */ int max_active_levels; /* internal control for max_active_levels */ kmp_r_sched_t sched; /* internal control for runtime schedule {sched,chunk} pair */ #if OMP_40_ENABLED kmp_proc_bind_t proc_bind; /* internal control for affinity */ #endif // OMP_40_ENABLED struct kmp_internal_control *next; } kmp_internal_control_t; static inline void copy_icvs( kmp_internal_control_t *dst, kmp_internal_control_t *src ) { *dst = *src; } /* Thread barrier needs volatile barrier fields */ typedef struct KMP_ALIGN_CACHE kmp_bstate { // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all uses of it). // It is not explicitly aligned below, because we *don't* want it to be padded -- instead, // we fit b_go into the same cache line with th_fixed_icvs, enabling NGO cache lines // stores in the hierarchical barrier. kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with same NGO store volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical) KMP_ALIGN_CACHE volatile kmp_uint64 b_arrived; // STATE => task reached synch point. kmp_uint32 *skip_per_level; kmp_uint32 my_level; kmp_int32 parent_tid; kmp_int32 old_tid; kmp_uint32 depth; struct kmp_bstate *parent_bar; kmp_team_t *team; kmp_uint64 leaf_state; kmp_uint32 nproc; kmp_uint8 base_leaf_kids; kmp_uint8 leaf_kids; kmp_uint8 offset; kmp_uint8 wait_flag; kmp_uint8 use_oncore_barrier; #if USE_DEBUGGER // The following field is intended for the debugger solely. Only the worker thread itself accesses this // field: the worker increases it by 1 when it arrives to a barrier. KMP_ALIGN_CACHE kmp_uint b_worker_arrived; #endif /* USE_DEBUGGER */ } kmp_bstate_t; union KMP_ALIGN_CACHE kmp_barrier_union { double b_align; /* use worst case alignment */ char b_pad[ KMP_PAD(kmp_bstate_t, CACHE_LINE) ]; kmp_bstate_t bb; }; typedef union kmp_barrier_union kmp_balign_t; /* Team barrier needs only non-volatile arrived counter */ union KMP_ALIGN_CACHE kmp_barrier_team_union { double b_align; /* use worst case alignment */ char b_pad[ CACHE_LINE ]; struct { kmp_uint64 b_arrived; /* STATE => task reached synch point. */ #if USE_DEBUGGER // The following two fields are indended for the debugger solely. Only master of the team accesses // these fields: the first one is increased by 1 when master arrives to a barrier, the // second one is increased by one when all the threads arrived. kmp_uint b_master_arrived; kmp_uint b_team_arrived; #endif }; }; typedef union kmp_barrier_team_union kmp_balign_team_t; /* * Padding for Linux* OS pthreads condition variables and mutexes used to signal * threads when a condition changes. This is to workaround an NPTL bug * where padding was added to pthread_cond_t which caused the initialization * routine to write outside of the structure if compiled on pre-NPTL threads. */ #if KMP_OS_WINDOWS typedef struct kmp_win32_mutex { /* The Lock */ CRITICAL_SECTION cs; } kmp_win32_mutex_t; typedef struct kmp_win32_cond { /* Count of the number of waiters. */ int waiters_count_; /* Serialize access to */ kmp_win32_mutex_t waiters_count_lock_; /* Number of threads to release via a or a */ /* */ int release_count_; /* Keeps track of the current "generation" so that we don't allow */ /* one thread to steal all the "releases" from the broadcast. */ int wait_generation_count_; /* A manual-reset event that's used to block and release waiting */ /* threads. */ HANDLE event_; } kmp_win32_cond_t; #endif #if KMP_OS_UNIX union KMP_ALIGN_CACHE kmp_cond_union { double c_align; char c_pad[ CACHE_LINE ]; pthread_cond_t c_cond; }; typedef union kmp_cond_union kmp_cond_align_t; union KMP_ALIGN_CACHE kmp_mutex_union { double m_align; char m_pad[ CACHE_LINE ]; pthread_mutex_t m_mutex; }; typedef union kmp_mutex_union kmp_mutex_align_t; #endif /* KMP_OS_UNIX */ typedef struct kmp_desc_base { void *ds_stackbase; size_t ds_stacksize; int ds_stackgrow; kmp_thread_t ds_thread; volatile int ds_tid; int ds_gtid; #if KMP_OS_WINDOWS volatile int ds_alive; DWORD ds_thread_id; /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes. However, debugger support (libomp_db) cannot work with handles, because they uncomparable. For example, debugger requests info about thread with handle h. h is valid within debugger process, and meaningless within debugee process. Even if h is duped by call to DuplicateHandle(), so the result h' is valid within debugee process, but it is a *new* handle which does *not* equal to any other handle in debugee... The only way to compare handles is convert them to system-wide ids. GetThreadId() function is available only in Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available on all Windows* OS flavours (including Windows* 95). Thus, we have to get thread id by call to GetCurrentThreadId() from within the thread and save it to let libomp_db identify threads. */ #endif /* KMP_OS_WINDOWS */ } kmp_desc_base_t; typedef union KMP_ALIGN_CACHE kmp_desc { double ds_align; /* use worst case alignment */ char ds_pad[ KMP_PAD(kmp_desc_base_t, CACHE_LINE) ]; kmp_desc_base_t ds; } kmp_desc_t; typedef struct kmp_local { volatile int this_construct; /* count of single's encountered by thread */ void *reduce_data; #if KMP_USE_BGET void *bget_data; void *bget_list; #if ! USE_CMP_XCHG_FOR_BGET #ifdef USE_QUEUING_LOCK_FOR_BGET kmp_lock_t bget_lock; /* Lock for accessing bget free list */ #else kmp_bootstrap_lock_t bget_lock; /* Lock for accessing bget free list */ /* Must be bootstrap lock so we can use it at library shutdown */ #endif /* USE_LOCK_FOR_BGET */ #endif /* ! USE_CMP_XCHG_FOR_BGET */ #endif /* KMP_USE_BGET */ #ifdef BUILD_TV struct tv_data *tv_data; #endif PACKED_REDUCTION_METHOD_T packed_reduction_method; /* stored by __kmpc_reduce*(), used by __kmpc_end_reduce*() */ } kmp_local_t; #define get__blocktime( xteam, xtid ) ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) #define get__bt_set( xteam, xtid ) ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) #define get__bt_intervals( xteam, xtid ) ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) #define get__nested_2(xteam,xtid) ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nested) #define get__dynamic_2(xteam,xtid) ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic) #define get__nproc_2(xteam,xtid) ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc) #define get__sched_2(xteam,xtid) ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched) #define set__blocktime_team( xteam, xtid, xval ) \ ( ( (xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime ) = (xval) ) #define set__bt_intervals_team( xteam, xtid, xval ) \ ( ( (xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals ) = (xval) ) #define set__bt_set_team( xteam, xtid, xval ) \ ( ( (xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set ) = (xval) ) #define set__nested( xthread, xval ) \ ( ( (xthread)->th.th_current_task->td_icvs.nested ) = (xval) ) #define get__nested( xthread ) \ ( ( (xthread)->th.th_current_task->td_icvs.nested ) ? (FTN_TRUE) : (FTN_FALSE) ) #define set__dynamic( xthread, xval ) \ ( ( (xthread)->th.th_current_task->td_icvs.dynamic ) = (xval) ) #define get__dynamic( xthread ) \ ( ( (xthread)->th.th_current_task->td_icvs.dynamic ) ? (FTN_TRUE) : (FTN_FALSE) ) #define set__nproc( xthread, xval ) \ ( ( (xthread)->th.th_current_task->td_icvs.nproc ) = (xval) ) #define set__max_active_levels( xthread, xval ) \ ( ( (xthread)->th.th_current_task->td_icvs.max_active_levels ) = (xval) ) #define set__sched( xthread, xval ) \ ( ( (xthread)->th.th_current_task->td_icvs.sched ) = (xval) ) #if OMP_40_ENABLED #define set__proc_bind( xthread, xval ) \ ( ( (xthread)->th.th_current_task->td_icvs.proc_bind ) = (xval) ) #define get__proc_bind( xthread ) \ ( (xthread)->th.th_current_task->td_icvs.proc_bind ) #endif /* OMP_40_ENABLED */ /* ------------------------------------------------------------------------ */ // OpenMP tasking data structures // typedef enum kmp_tasking_mode { tskm_immediate_exec = 0, tskm_extra_barrier = 1, tskm_task_teams = 2, tskm_max = 2 } kmp_tasking_mode_t; extern kmp_tasking_mode_t __kmp_tasking_mode; /* determines how/when to execute tasks */ extern kmp_int32 __kmp_task_stealing_constraint; /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with taskdata first */ #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *) task) - 1) #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *) (taskdata + 1) // The tt_found_tasks flag is a signal to all threads in the team that tasks were spawned and // queued since the previous barrier release. #define KMP_TASKING_ENABLED(task_team) \ (TCR_SYNC_4((task_team)->tt.tt_found_tasks) == TRUE) /*! @ingroup BASIC_TYPES @{ */ /*! */ typedef kmp_int32 (* kmp_routine_entry_t)( kmp_int32, void * ); /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */ /*! */ typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */ void * shareds; /**< pointer to block of pointers to shared vars */ kmp_routine_entry_t routine; /**< pointer to routine to call for executing task */ kmp_int32 part_id; /**< part id for the task */ #if OMP_40_ENABLED kmp_routine_entry_t destructors; /* pointer to function to invoke deconstructors of firstprivate C++ objects */ #endif // OMP_40_ENABLED /* private vars */ } kmp_task_t; /*! @} */ #if OMP_40_ENABLED typedef struct kmp_taskgroup { kmp_uint32 count; // number of allocated and not yet complete tasks kmp_int32 cancel_request; // request for cancellation of this taskgroup struct kmp_taskgroup *parent; // parent taskgroup } kmp_taskgroup_t; // forward declarations typedef union kmp_depnode kmp_depnode_t; typedef struct kmp_depnode_list kmp_depnode_list_t; typedef struct kmp_dephash_entry kmp_dephash_entry_t; typedef struct kmp_depend_info { kmp_intptr_t base_addr; size_t len; struct { bool in:1; bool out:1; } flags; } kmp_depend_info_t; struct kmp_depnode_list { kmp_depnode_t * node; kmp_depnode_list_t * next; }; typedef struct kmp_base_depnode { kmp_depnode_list_t * successors; kmp_task_t * task; kmp_lock_t lock; #if KMP_SUPPORT_GRAPH_OUTPUT kmp_uint32 id; #endif volatile kmp_int32 npredecessors; volatile kmp_int32 nrefs; } kmp_base_depnode_t; union KMP_ALIGN_CACHE kmp_depnode { double dn_align; /* use worst case alignment */ char dn_pad[ KMP_PAD(kmp_base_depnode_t, CACHE_LINE) ]; kmp_base_depnode_t dn; }; struct kmp_dephash_entry { kmp_intptr_t addr; kmp_depnode_t * last_out; kmp_depnode_list_t * last_ins; kmp_dephash_entry_t * next_in_bucket; }; typedef struct kmp_dephash { kmp_dephash_entry_t ** buckets; #ifdef KMP_DEBUG kmp_uint32 nelements; kmp_uint32 nconflicts; #endif } kmp_dephash_t; #endif #ifdef BUILD_TIED_TASK_STACK /* Tied Task stack definitions */ typedef struct kmp_stack_block { kmp_taskdata_t * sb_block[ TASK_STACK_BLOCK_SIZE ]; struct kmp_stack_block * sb_next; struct kmp_stack_block * sb_prev; } kmp_stack_block_t; typedef struct kmp_task_stack { kmp_stack_block_t ts_first_block; // first block of stack entries kmp_taskdata_t ** ts_top; // pointer to the top of stack kmp_int32 ts_entries; // number of entries on the stack } kmp_task_stack_t; #endif // BUILD_TIED_TASK_STACK typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */ /* Compiler flags */ /* Total compiler flags must be 16 bits */ unsigned tiedness : 1; /* task is either tied (1) or untied (0) */ unsigned final : 1; /* task is final(1) so execute immediately */ unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0 code path */ #if OMP_40_ENABLED unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to invoke destructors from the runtime */ #if OMP_41_ENABLED unsigned proxy : 1; /* task is a proxy task (it will be executed outside the context of the RTL) */ unsigned reserved : 11; /* reserved for compiler use */ #else unsigned reserved : 12; /* reserved for compiler use */ #endif #else // OMP_40_ENABLED unsigned reserved : 13; /* reserved for compiler use */ #endif // OMP_40_ENABLED /* Library flags */ /* Total library flags must be 16 bits */ unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */ unsigned task_serial : 1; /* this task is executed immediately (1) or deferred (0) */ unsigned tasking_ser : 1; /* all tasks in team are either executed immediately (1) or may be deferred (0) */ unsigned team_serial : 1; /* entire team is serial (1) [1 thread] or parallel (0) [>= 2 threads] */ /* If either team_serial or tasking_ser is set, task team may be NULL */ /* Task State Flags: */ unsigned started : 1; /* 1==started, 0==not started */ unsigned executing : 1; /* 1==executing, 0==not executing */ unsigned complete : 1; /* 1==complete, 0==not complete */ unsigned freed : 1; /* 1==freed, 0==allocateed */ unsigned native : 1; /* 1==gcc-compiled task, 0==intel */ unsigned reserved31 : 7; /* reserved for library use */ } kmp_tasking_flags_t; struct kmp_taskdata { /* aligned during dynamic allocation */ kmp_int32 td_task_id; /* id, assigned by debugger */ kmp_tasking_flags_t td_flags; /* task flags */ kmp_team_t * td_team; /* team for this task */ kmp_info_p * td_alloc_thread; /* thread that allocated data structures */ /* Currently not used except for perhaps IDB */ kmp_taskdata_t * td_parent; /* parent task */ kmp_int32 td_level; /* task nesting level */ ident_t * td_ident; /* task identifier */ // Taskwait data. ident_t * td_taskwait_ident; kmp_uint32 td_taskwait_counter; kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */ KMP_ALIGN_CACHE kmp_internal_control_t td_icvs; /* Internal control variables for the task */ volatile kmp_uint32 td_allocated_child_tasks; /* Child tasks (+ current task) not yet deallocated */ volatile kmp_uint32 td_incomplete_child_tasks; /* Child tasks not yet complete */ #if OMP_40_ENABLED kmp_taskgroup_t * td_taskgroup; // Each task keeps pointer to its current taskgroup kmp_dephash_t * td_dephash; // Dependencies for children tasks are tracked from here kmp_depnode_t * td_depnode; // Pointer to graph node if this task has dependencies #endif #if OMPT_SUPPORT ompt_task_info_t ompt_task_info; #endif #if KMP_HAVE_QUAD _Quad td_dummy; // Align structure 16-byte size since allocated just before kmp_task_t #else kmp_uint32 td_dummy[2]; #endif }; // struct kmp_taskdata // Make sure padding above worked KMP_BUILD_ASSERT( sizeof(kmp_taskdata_t) % sizeof(void *) == 0 ); // Data for task team but per thread typedef struct kmp_base_thread_data { kmp_info_p * td_thr; // Pointer back to thread info // Used only in __kmp_execute_tasks_template, maybe not avail until task is queued? kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque kmp_taskdata_t ** td_deque; // Deque of tasks encountered by td_thr, dynamically allocated kmp_uint32 td_deque_head; // Head of deque (will wrap) kmp_uint32 td_deque_tail; // Tail of deque (will wrap) kmp_int32 td_deque_ntasks; // Number of tasks in deque // GEH: shouldn't this be volatile since used in while-spin? kmp_int32 td_deque_last_stolen; // Thread number of last successful steal #ifdef BUILD_TIED_TASK_STACK kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task scheduling constraint #endif // BUILD_TIED_TASK_STACK } kmp_base_thread_data_t; typedef union KMP_ALIGN_CACHE kmp_thread_data { kmp_base_thread_data_t td; double td_align; /* use worst case alignment */ char td_pad[ KMP_PAD(kmp_base_thread_data_t, CACHE_LINE) ]; } kmp_thread_data_t; // Data for task teams which are used when tasking is enabled for the team typedef struct kmp_base_task_team { kmp_bootstrap_lock_t tt_threads_lock; /* Lock used to allocate per-thread part of task team */ /* must be bootstrap lock since used at library shutdown*/ kmp_task_team_t * tt_next; /* For linking the task team free list */ kmp_thread_data_t * tt_threads_data; /* Array of per-thread structures for task team */ /* Data survives task team deallocation */ kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while executing this team? */ /* TRUE means tt_threads_data is set up and initialized */ kmp_int32 tt_nproc; /* #threads in team */ kmp_int32 tt_max_threads; /* number of entries allocated for threads_data array */ #if OMP_41_ENABLED kmp_int32 tt_found_proxy_tasks; /* Have we found proxy tasks since last barrier */ #endif KMP_ALIGN_CACHE volatile kmp_uint32 tt_unfinished_threads; /* #threads still active */ KMP_ALIGN_CACHE volatile kmp_uint32 tt_active; /* is the team still actively executing tasks */ } kmp_base_task_team_t; union KMP_ALIGN_CACHE kmp_task_team { kmp_base_task_team_t tt; double tt_align; /* use worst case alignment */ char tt_pad[ KMP_PAD(kmp_base_task_team_t, CACHE_LINE) ]; }; #if ( USE_FAST_MEMORY == 3 ) || ( USE_FAST_MEMORY == 5 ) // Free lists keep same-size free memory slots for fast memory allocation routines typedef struct kmp_free_list { void *th_free_list_self; // Self-allocated tasks free list void *th_free_list_sync; // Self-allocated tasks stolen/returned by other threads void *th_free_list_other; // Non-self free list (to be returned to owner's sync list) } kmp_free_list_t; #endif #if KMP_NESTED_HOT_TEAMS // Hot teams array keeps hot teams and their sizes for given thread. // Hot teams are not put in teams pool, and they don't put threads in threads pool. typedef struct kmp_hot_team_ptr { kmp_team_p *hot_team; // pointer to hot_team of given nesting level kmp_int32 hot_team_nth; // number of threads allocated for the hot_team } kmp_hot_team_ptr_t; #endif #if OMP_40_ENABLED typedef struct kmp_teams_size { kmp_int32 nteams; // number of teams in a league kmp_int32 nth; // number of threads in each team of the league } kmp_teams_size_t; #endif /* ------------------------------------------------------------------------ */ // OpenMP thread data structures // typedef struct KMP_ALIGN_CACHE kmp_base_info { /* * Start with the readonly data which is cache aligned and padded. * this is written before the thread starts working by the master. * (uber masters may update themselves later) * (usage does not consider serialized regions) */ kmp_desc_t th_info; kmp_team_p *th_team; /* team we belong to */ kmp_root_p *th_root; /* pointer to root of task hierarchy */ kmp_info_p *th_next_pool; /* next available thread in the pool */ kmp_disp_t *th_dispatch; /* thread's dispatch data */ int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */ /* The following are cached from the team info structure */ /* TODO use these in more places as determined to be needed via profiling */ int th_team_nproc; /* number of threads in a team */ kmp_info_p *th_team_master; /* the team's master thread */ int th_team_serialized; /* team is serialized */ #if OMP_40_ENABLED microtask_t th_teams_microtask; /* save entry address for teams construct */ int th_teams_level; /* save initial level of teams construct */ /* it is 0 on device but may be any on host */ #endif /* The blocktime info is copied from the team struct to the thread sruct */ /* at the start of a barrier, and the values stored in the team are used */ /* at points in the code where the team struct is no longer guaranteed */ /* to exist (from the POV of worker threads). */ int th_team_bt_intervals; int th_team_bt_set; #if KMP_AFFINITY_SUPPORTED kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */ #endif /* * The data set by the master at reinit, then R/W by the worker */ KMP_ALIGN_CACHE int th_set_nproc; /* if > 0, then only use this request for the next fork */ #if KMP_NESTED_HOT_TEAMS kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */ #endif #if OMP_40_ENABLED kmp_proc_bind_t th_set_proc_bind; /* if != proc_bind_default, use request for next fork */ kmp_teams_size_t th_teams_size; /* number of teams/threads in teams construct */ # if KMP_AFFINITY_SUPPORTED int th_current_place; /* place currently bound to */ int th_new_place; /* place to bind to in par reg */ int th_first_place; /* first place in partition */ int th_last_place; /* last place in partition */ # endif #endif #if USE_ITT_BUILD kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */ kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */ kmp_uint64 th_frame_time; /* frame timestamp */ kmp_uint64 th_frame_time_serialized; /* frame timestamp in serialized parallel */ #endif /* USE_ITT_BUILD */ kmp_local_t th_local; struct private_common *th_pri_head; /* * Now the data only used by the worker (after initial allocation) */ /* TODO the first serial team should actually be stored in the info_t * structure. this will help reduce initial allocation overhead */ KMP_ALIGN_CACHE kmp_team_p *th_serial_team; /*serialized team held in reserve*/ #if OMPT_SUPPORT ompt_thread_info_t ompt_thread_info; #endif /* The following are also read by the master during reinit */ struct common_table *th_pri_common; volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */ /* while awaiting queuing lock acquire */ volatile void *th_sleep_loc; // this points at a kmp_flag ident_t *th_ident; unsigned th_x; // Random number generator data unsigned th_a; // Random number generator data /* * Tasking-related data for the thread */ kmp_task_team_t * th_task_team; // Task team struct kmp_taskdata_t * th_current_task; // Innermost Task being executed kmp_uint8 th_task_state; // alternating 0/1 for task team identification kmp_uint8 * th_task_state_memo_stack; // Stack holding memos of th_task_state at nested levels kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack /* * More stuff for keeping track of active/sleeping threads * (this part is written by the worker thread) */ kmp_uint8 th_active_in_pool; // included in count of // #active threads in pool int th_active; // ! sleeping // 32 bits for TCR/TCW struct cons_header * th_cons; // used for consistency check /* * Add the syncronizing data which is cache aligned and padded. */ KMP_ALIGN_CACHE kmp_balign_t th_bar[ bs_last_barrier ]; KMP_ALIGN_CACHE volatile kmp_int32 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */ #if ( USE_FAST_MEMORY == 3 ) || ( USE_FAST_MEMORY == 5 ) #define NUM_LISTS 4 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory allocation routines #endif #if KMP_OS_WINDOWS kmp_win32_cond_t th_suspend_cv; kmp_win32_mutex_t th_suspend_mx; int th_suspend_init; #endif #if KMP_OS_UNIX kmp_cond_align_t th_suspend_cv; kmp_mutex_align_t th_suspend_mx; int th_suspend_init_count; #endif #if USE_ITT_BUILD kmp_itt_mark_t th_itt_mark_single; // alignment ??? #endif /* USE_ITT_BUILD */ #if KMP_STATS_ENABLED kmp_stats_list* th_stats; #endif } kmp_base_info_t; typedef union KMP_ALIGN_CACHE kmp_info { double th_align; /* use worst case alignment */ char th_pad[ KMP_PAD(kmp_base_info_t, CACHE_LINE) ]; kmp_base_info_t th; } kmp_info_t; /* ------------------------------------------------------------------------ */ // OpenMP thread team data structures // typedef struct kmp_base_data { volatile kmp_uint32 t_value; } kmp_base_data_t; typedef union KMP_ALIGN_CACHE kmp_sleep_team { double dt_align; /* use worst case alignment */ char dt_pad[ KMP_PAD(kmp_base_data_t, CACHE_LINE) ]; kmp_base_data_t dt; } kmp_sleep_team_t; typedef union KMP_ALIGN_CACHE kmp_ordered_team { double dt_align; /* use worst case alignment */ char dt_pad[ KMP_PAD(kmp_base_data_t, CACHE_LINE) ]; kmp_base_data_t dt; } kmp_ordered_team_t; typedef int (*launch_t)( int gtid ); /* Minimum number of ARGV entries to malloc if necessary */ #define KMP_MIN_MALLOC_ARGV_ENTRIES 100 // Set up how many argv pointers will fit in cache lines containing t_inline_argv. Historically, we // have supported at least 96 bytes. Using a larger value for more space between the master write/worker // read section and read/write by all section seems to buy more performance on EPCC PARALLEL. #if KMP_ARCH_X86 || KMP_ARCH_X86_64 # define KMP_INLINE_ARGV_BYTES ( 4 * CACHE_LINE - ( ( 3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + sizeof(kmp_int16) + sizeof(kmp_uint32) ) % CACHE_LINE ) ) #else # define KMP_INLINE_ARGV_BYTES ( 2 * CACHE_LINE - ( ( 3 * KMP_PTR_SKIP + 2 * sizeof(int) ) % CACHE_LINE ) ) #endif #define KMP_INLINE_ARGV_ENTRIES (int)( KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP ) typedef struct KMP_ALIGN_CACHE kmp_base_team { // Synchronization Data --------------------------------------------------------------------------------- KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered; kmp_balign_team_t t_bar[ bs_last_barrier ]; volatile int t_construct; // count of single directive encountered by team kmp_lock_t t_single_lock; // team specific lock // Master only ----------------------------------------------------------------------------------------- KMP_ALIGN_CACHE int t_master_tid; // tid of master in parent team int t_master_this_cons; // "this_construct" single counter of master in parent team ident_t *t_ident; // if volatile, have to change too much other crud to volatile too kmp_team_p *t_parent; // parent team kmp_team_p *t_next_pool; // next free team in the team pool kmp_disp_t *t_dispatch; // thread's dispatch data kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2 #if OMP_40_ENABLED kmp_proc_bind_t t_proc_bind; // bind type for par region #endif // OMP_40_ENABLED #if USE_ITT_BUILD kmp_uint64 t_region_time; // region begin timestamp #endif /* USE_ITT_BUILD */ // Master write, workers read -------------------------------------------------------------------------- KMP_ALIGN_CACHE void **t_argv; int t_argc; int t_nproc; // number of threads in team microtask_t t_pkfn; launch_t t_invoke; // procedure to launch the microtask #if OMPT_SUPPORT ompt_team_info_t ompt_team_info; ompt_lw_taskteam_t *ompt_serialized_team_info; #endif #if KMP_ARCH_X86 || KMP_ARCH_X86_64 kmp_int8 t_fp_control_saved; kmp_int8 t_pad2b; kmp_int16 t_x87_fpu_control_word; // FP control regs kmp_uint32 t_mxcsr; #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ void *t_inline_argv[ KMP_INLINE_ARGV_ENTRIES ]; KMP_ALIGN_CACHE kmp_info_t **t_threads; int t_max_argc; int t_max_nproc; // maximum threads this team can handle (dynamicly expandable) int t_serialized; // levels deep of serialized teams dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system int t_id; // team's id, assigned by debugger. int t_level; // nested parallel level int t_active_level; // nested active parallel level kmp_r_sched_t t_sched; // run-time schedule for the team #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED int t_first_place; // first & last place in parent thread's partition. int t_last_place; // Restore these values to master after par region. #endif // OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via omp_set_num_threads() call // Read/write by workers as well ----------------------------------------------------------------------- #if KMP_ARCH_X86 || KMP_ARCH_X86_64 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf regression of epcc 'parallel' // and 'barrier' on fxe256lin01. This extra padding serves to fix the performance of epcc 'parallel' // and 'barrier' when CACHE_LINE=64. TODO: investigate more and get rid if this padding. char dummy_padding[1024]; #endif KMP_ALIGN_CACHE kmp_taskdata_t *t_implicit_task_taskdata; // Taskdata for the thread's implicit task kmp_internal_control_t *t_control_stack_top; // internal control stack for additional nested teams. // for SERIALIZED teams nested 2 or more levels deep #if OMP_40_ENABLED kmp_int32 t_cancel_request; // typed flag to store request state of cancellation #endif int t_master_active; // save on fork, restore on join kmp_taskq_t t_taskq; // this team's task queue void *t_copypriv_data; // team specific pointer to copyprivate data array kmp_uint32 t_copyin_counter; #if USE_ITT_BUILD void *t_stack_id; // team specific stack stitching id (for ittnotify) #endif /* USE_ITT_BUILD */ } kmp_base_team_t; union KMP_ALIGN_CACHE kmp_team { kmp_base_team_t t; double t_align; /* use worst case alignment */ char t_pad[ KMP_PAD(kmp_base_team_t, CACHE_LINE) ]; }; typedef union KMP_ALIGN_CACHE kmp_time_global { double dt_align; /* use worst case alignment */ char dt_pad[ KMP_PAD(kmp_base_data_t, CACHE_LINE) ]; kmp_base_data_t dt; } kmp_time_global_t; typedef struct kmp_base_global { /* cache-aligned */ kmp_time_global_t g_time; /* non cache-aligned */ volatile int g_abort; volatile int g_done; int g_dynamic; enum dynamic_mode g_dynamic_mode; } kmp_base_global_t; typedef union KMP_ALIGN_CACHE kmp_global { kmp_base_global_t g; double g_align; /* use worst case alignment */ char g_pad[ KMP_PAD(kmp_base_global_t, CACHE_LINE) ]; } kmp_global_t; typedef struct kmp_base_root { // TODO: GEH - combine r_active with r_in_parallel then r_active == (r_in_parallel>= 0) // TODO: GEH - then replace r_active with t_active_levels if we can to reduce the synch // overhead or keeping r_active volatile int r_active; /* TRUE if some region in a nest has > 1 thread */ // GEH: This is misnamed, should be r_in_parallel volatile int r_nested; // TODO: GEH - This is unused, just remove it entirely. int r_in_parallel; /* keeps a count of active parallel regions per root */ // GEH: This is misnamed, should be r_active_levels kmp_team_t *r_root_team; kmp_team_t *r_hot_team; kmp_info_t *r_uber_thread; kmp_lock_t r_begin_lock; volatile int r_begin; int r_blocktime; /* blocktime for this root and descendants */ } kmp_base_root_t; typedef union KMP_ALIGN_CACHE kmp_root { kmp_base_root_t r; double r_align; /* use worst case alignment */ char r_pad[ KMP_PAD(kmp_base_root_t, CACHE_LINE) ]; } kmp_root_t; struct fortran_inx_info { kmp_int32 data; }; /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ extern int __kmp_settings; extern int __kmp_duplicate_library_ok; #if USE_ITT_BUILD extern int __kmp_forkjoin_frames; extern int __kmp_forkjoin_frames_mode; #endif extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method; extern int __kmp_determ_red; #ifdef KMP_DEBUG extern int kmp_a_debug; extern int kmp_b_debug; extern int kmp_c_debug; extern int kmp_d_debug; extern int kmp_e_debug; extern int kmp_f_debug; #endif /* KMP_DEBUG */ /* For debug information logging using rotating buffer */ #define KMP_DEBUG_BUF_LINES_INIT 512 #define KMP_DEBUG_BUF_LINES_MIN 1 #define KMP_DEBUG_BUF_CHARS_INIT 128 #define KMP_DEBUG_BUF_CHARS_MIN 2 extern int __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */ extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */ extern int __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */ extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer entry pointer */ extern char *__kmp_debug_buffer; /* Debug buffer itself */ extern int __kmp_debug_count; /* Counter for number of lines printed in buffer so far */ extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase recommended in warnings */ /* end rotating debug buffer */ #ifdef KMP_DEBUG extern int __kmp_par_range; /* +1 => only go par for constructs in range */ #define KMP_PAR_RANGE_ROUTINE_LEN 1024 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN]; #define KMP_PAR_RANGE_FILENAME_LEN 1024 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN]; extern int __kmp_par_range_lb; extern int __kmp_par_range_ub; #endif /* For printing out dynamic storage map for threads and teams */ extern int __kmp_storage_map; /* True means print storage map for threads and teams */ extern int __kmp_storage_map_verbose; /* True means storage map includes placement info */ extern int __kmp_storage_map_verbose_specified; extern kmp_cpuinfo_t __kmp_cpuinfo; extern volatile int __kmp_init_serial; extern volatile int __kmp_init_gtid; extern volatile int __kmp_init_common; extern volatile int __kmp_init_middle; extern volatile int __kmp_init_parallel; extern volatile int __kmp_init_monitor; extern volatile int __kmp_init_user_locks; extern int __kmp_init_counter; extern int __kmp_root_counter; extern int __kmp_version; /* list of address of allocated caches for commons */ extern kmp_cached_addr_t *__kmp_threadpriv_cache_list; /* Barrier algorithm types and options */ extern kmp_uint32 __kmp_barrier_gather_bb_dflt; extern kmp_uint32 __kmp_barrier_release_bb_dflt; extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt; extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt; extern kmp_uint32 __kmp_barrier_gather_branch_bits [ bs_last_barrier ]; extern kmp_uint32 __kmp_barrier_release_branch_bits [ bs_last_barrier ]; extern kmp_bar_pat_e __kmp_barrier_gather_pattern [ bs_last_barrier ]; extern kmp_bar_pat_e __kmp_barrier_release_pattern [ bs_last_barrier ]; extern char const *__kmp_barrier_branch_bit_env_name [ bs_last_barrier ]; extern char const *__kmp_barrier_pattern_env_name [ bs_last_barrier ]; extern char const *__kmp_barrier_type_name [ bs_last_barrier ]; extern char const *__kmp_barrier_pattern_name [ bp_last_bar ]; /* Global Locks */ extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */ extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */ extern kmp_bootstrap_lock_t __kmp_exit_lock; /* exit() is not always thread-safe */ extern kmp_bootstrap_lock_t __kmp_monitor_lock; /* control monitor thread creation */ extern kmp_bootstrap_lock_t __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and __kmp_threads expansion to co-exist */ extern kmp_lock_t __kmp_global_lock; /* control OS/global access */ extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */ extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */ /* used for yielding spin-waits */ extern unsigned int __kmp_init_wait; /* initial number of spin-tests */ extern unsigned int __kmp_next_wait; /* susequent number of spin-tests */ extern enum library_type __kmp_library; extern enum sched_type __kmp_sched; /* default runtime scheduling */ extern enum sched_type __kmp_static; /* default static scheduling method */ extern enum sched_type __kmp_guided; /* default guided scheduling method */ extern enum sched_type __kmp_auto; /* default auto scheduling method */ extern int __kmp_chunk; /* default runtime chunk size */ extern size_t __kmp_stksize; /* stack size per thread */ extern size_t __kmp_monitor_stksize;/* stack size for monitor thread */ extern size_t __kmp_stkoffset; /* stack offset per thread */ extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */ extern size_t __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */ extern int __kmp_env_chunk; /* was KMP_CHUNK specified? */ extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */ extern int __kmp_env_omp_stksize;/* was OMP_STACKSIZE specified? */ extern int __kmp_env_all_threads; /* was KMP_ALL_THREADS or KMP_MAX_THREADS specified? */ extern int __kmp_env_omp_all_threads;/* was OMP_THREAD_LIMIT specified? */ extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */ extern int __kmp_env_checks; /* was KMP_CHECKS specified? */ extern int __kmp_env_consistency_check; /* was KMP_CONSISTENCY_CHECK specified? */ extern int __kmp_generate_warnings; /* should we issue warnings? */ extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */ #ifdef DEBUG_SUSPEND extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */ #endif extern kmp_uint32 __kmp_yield_init; extern kmp_uint32 __kmp_yield_next; extern kmp_uint32 __kmp_yielding_on; extern kmp_uint32 __kmp_yield_cycle; extern kmp_int32 __kmp_yield_on_count; extern kmp_int32 __kmp_yield_off_count; /* ------------------------------------------------------------------------- */ extern int __kmp_allThreadsSpecified; extern size_t __kmp_align_alloc; /* following data protected by initialization routines */ extern int __kmp_xproc; /* number of processors in the system */ extern int __kmp_avail_proc; /* number of processors available to the process */ extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */ extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */ extern int __kmp_max_nth; /* maximum total number of concurrently-existing threads */ extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and __kmp_root */ extern int __kmp_dflt_team_nth; /* default number of threads in a parallel region a la OMP_NUM_THREADS */ extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial initialization */ extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is used (fixed) */ extern int __kmp_tp_cached; /* whether threadprivate cache has been created (__kmpc_threadprivate_cached()) */ extern int __kmp_dflt_nested; /* nested parallelism enabled by default a la OMP_NESTED */ extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before blocking (env setting) */ extern int __kmp_monitor_wakeups;/* number of times monitor wakes up per second */ extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before blocking */ #ifdef KMP_ADJUST_BLOCKTIME extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */ #endif /* KMP_ADJUST_BLOCKTIME */ #ifdef KMP_DFLT_NTH_CORES extern int __kmp_ncores; /* Total number of cores for threads placement */ #endif extern int __kmp_abort_delay; /* Number of millisecs to delay on abort for VTune */ extern int __kmp_need_register_atfork_specified; extern int __kmp_need_register_atfork;/* At initialization, call pthread_atfork to install fork handler */ extern int __kmp_gtid_mode; /* Method of getting gtid, values: 0 - not set, will be set at runtime 1 - using stack search 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS X*) or TlsGetValue(Windows* OS)) 3 - static TLS (__declspec(thread) __kmp_gtid), Linux* OS .so only. */ extern int __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */ #ifdef KMP_TDATA_GTID #if KMP_OS_WINDOWS extern __declspec(thread) int __kmp_gtid; /* This thread's gtid, if __kmp_gtid_mode == 3 */ #else extern __thread int __kmp_gtid; #endif /* KMP_OS_WINDOWS - workaround because Intel(R) Many Integrated Core compiler 20110316 doesn't accept __declspec */ #endif extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */ extern int __kmp_foreign_tp; /* If true, separate TP var for each foreign thread */ #if KMP_ARCH_X86 || KMP_ARCH_X86_64 extern int __kmp_inherit_fp_control; /* copy fp creg(s) parent->workers at fork */ extern kmp_int16 __kmp_init_x87_fpu_control_word; /* init thread's FP control reg */ extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */ #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ extern int __kmp_dflt_max_active_levels; /* max_active_levels for nested parallelism enabled by default a la OMP_MAX_ACTIVE_LEVELS */ #if KMP_NESTED_HOT_TEAMS extern int __kmp_hot_teams_mode; extern int __kmp_hot_teams_max_level; #endif # if KMP_OS_LINUX extern enum clock_function_type __kmp_clock_function; extern int __kmp_clock_function_param; # endif /* KMP_OS_LINUX */ #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) extern enum mic_type __kmp_mic_type; #endif # ifdef USE_LOAD_BALANCE extern double __kmp_load_balance_interval; /* Interval for the load balance algorithm */ # endif /* USE_LOAD_BALANCE */ // OpenMP 3.1 - Nested num threads array typedef struct kmp_nested_nthreads_t { int * nth; int size; int used; } kmp_nested_nthreads_t; extern kmp_nested_nthreads_t __kmp_nested_nth; #if KMP_USE_ADAPTIVE_LOCKS // Parameters for the speculative lock backoff system. struct kmp_adaptive_backoff_params_t { // Number of soft retries before it counts as a hard retry. kmp_uint32 max_soft_retries; // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to the right kmp_uint32 max_badness; }; extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params; #if KMP_DEBUG_ADAPTIVE_LOCKS extern char * __kmp_speculative_statsfile; #endif #endif // KMP_USE_ADAPTIVE_LOCKS #if OMP_40_ENABLED extern int __kmp_display_env; /* TRUE or FALSE */ extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */ extern int __kmp_omp_cancellation; /* TRUE or FALSE */ #endif /* ------------------------------------------------------------------------- */ /* --------------------------------------------------------------------------- */ /* the following are protected by the fork/join lock */ /* write: lock read: anytime */ extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */ /* read/write: lock */ extern volatile kmp_team_t * __kmp_team_pool; extern volatile kmp_info_t * __kmp_thread_pool; /* total number of threads reachable from some root thread including all root threads*/ extern volatile int __kmp_nth; /* total number of threads reachable from some root thread including all root threads, and those in the thread pool */ extern volatile int __kmp_all_nth; extern int __kmp_thread_pool_nth; extern volatile int __kmp_thread_pool_active_nth; extern kmp_root_t **__kmp_root; /* root of thread hierarchy */ /* end data protected by fork/join lock */ /* --------------------------------------------------------------------------- */ extern kmp_global_t __kmp_global; /* global status */ extern kmp_info_t __kmp_monitor; extern volatile kmp_uint32 __kmp_team_counter; // Used by Debugging Support Library. extern volatile kmp_uint32 __kmp_task_counter; // Used by Debugging Support Library. #if USE_DEBUGGER #define _KMP_GEN_ID( counter ) \ ( \ __kmp_debugging \ ? \ KMP_TEST_THEN_INC32( (volatile kmp_int32 *) & counter ) + 1 \ : \ ~ 0 \ ) #else #define _KMP_GEN_ID( counter ) \ ( \ ~ 0 \ ) #endif /* USE_DEBUGGER */ #define KMP_GEN_TASK_ID() _KMP_GEN_ID( __kmp_task_counter ) #define KMP_GEN_TEAM_ID() _KMP_GEN_ID( __kmp_team_counter ) /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ extern void __kmp_print_storage_map_gtid( int gtid, void *p1, void* p2, size_t size, char const *format, ... ); extern void __kmp_serial_initialize( void ); extern void __kmp_middle_initialize( void ); extern void __kmp_parallel_initialize( void ); extern void __kmp_internal_begin( void ); extern void __kmp_internal_end_library( int gtid ); extern void __kmp_internal_end_thread( int gtid ); extern void __kmp_internal_end_atexit( void ); extern void __kmp_internal_end_fini( void ); extern void __kmp_internal_end_dtor( void ); extern void __kmp_internal_end_dest( void* ); extern int __kmp_register_root( int initial_thread ); extern void __kmp_unregister_root( int gtid ); extern int __kmp_ignore_mppbeg( void ); extern int __kmp_ignore_mppend( void ); extern int __kmp_enter_single( int gtid, ident_t *id_ref, int push_ws ); extern void __kmp_exit_single( int gtid ); extern void __kmp_parallel_deo( int *gtid_ref, int *cid_ref, ident_t *loc_ref ); extern void __kmp_parallel_dxo( int *gtid_ref, int *cid_ref, ident_t *loc_ref ); #ifdef USE_LOAD_BALANCE extern int __kmp_get_load_balance( int ); #endif #ifdef BUILD_TV extern void __kmp_tv_threadprivate_store( kmp_info_t *th, void *global_addr, void *thread_addr ); #endif extern int __kmp_get_global_thread_id( void ); extern int __kmp_get_global_thread_id_reg( void ); extern void __kmp_exit_thread( int exit_status ); extern void __kmp_abort( char const * format, ... ); extern void __kmp_abort_thread( void ); extern void __kmp_abort_process( void ); extern void __kmp_warn( char const * format, ... ); extern void __kmp_set_num_threads( int new_nth, int gtid ); // Returns current thread (pointer to kmp_info_t). Current thread *must* be registered. static inline kmp_info_t * __kmp_entry_thread() { int gtid = __kmp_entry_gtid(); return __kmp_threads[gtid]; } extern void __kmp_set_max_active_levels( int gtid, int new_max_active_levels ); extern int __kmp_get_max_active_levels( int gtid ); extern int __kmp_get_ancestor_thread_num( int gtid, int level ); extern int __kmp_get_team_size( int gtid, int level ); extern void __kmp_set_schedule( int gtid, kmp_sched_t new_sched, int chunk ); extern void __kmp_get_schedule( int gtid, kmp_sched_t * sched, int * chunk ); extern unsigned short __kmp_get_random( kmp_info_t * thread ); extern void __kmp_init_random( kmp_info_t * thread ); extern kmp_r_sched_t __kmp_get_schedule_global( void ); extern void __kmp_adjust_num_threads( int new_nproc ); extern void * ___kmp_allocate( size_t size KMP_SRC_LOC_DECL ); extern void * ___kmp_page_allocate( size_t size KMP_SRC_LOC_DECL ); extern void ___kmp_free( void * ptr KMP_SRC_LOC_DECL ); #define __kmp_allocate( size ) ___kmp_allocate( (size) KMP_SRC_LOC_CURR ) #define __kmp_page_allocate( size ) ___kmp_page_allocate( (size) KMP_SRC_LOC_CURR ) #define __kmp_free( ptr ) ___kmp_free( (ptr) KMP_SRC_LOC_CURR ) #if USE_FAST_MEMORY extern void * ___kmp_fast_allocate( kmp_info_t *this_thr, size_t size KMP_SRC_LOC_DECL ); extern void ___kmp_fast_free( kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL ); extern void __kmp_free_fast_memory( kmp_info_t *this_thr ); extern void __kmp_initialize_fast_memory( kmp_info_t *this_thr ); #define __kmp_fast_allocate( this_thr, size ) ___kmp_fast_allocate( (this_thr), (size) KMP_SRC_LOC_CURR ) #define __kmp_fast_free( this_thr, ptr ) ___kmp_fast_free( (this_thr), (ptr) KMP_SRC_LOC_CURR ) #endif extern void * ___kmp_thread_malloc( kmp_info_t *th, size_t size KMP_SRC_LOC_DECL ); extern void * ___kmp_thread_calloc( kmp_info_t *th, size_t nelem, size_t elsize KMP_SRC_LOC_DECL ); extern void * ___kmp_thread_realloc( kmp_info_t *th, void *ptr, size_t size KMP_SRC_LOC_DECL ); extern void ___kmp_thread_free( kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL ); #define __kmp_thread_malloc( th, size ) ___kmp_thread_malloc( (th), (size) KMP_SRC_LOC_CURR ) #define __kmp_thread_calloc( th, nelem, elsize ) ___kmp_thread_calloc( (th), (nelem), (elsize) KMP_SRC_LOC_CURR ) #define __kmp_thread_realloc( th, ptr, size ) ___kmp_thread_realloc( (th), (ptr), (size) KMP_SRC_LOC_CURR ) #define __kmp_thread_free( th, ptr ) ___kmp_thread_free( (th), (ptr) KMP_SRC_LOC_CURR ) #define KMP_INTERNAL_MALLOC(sz) malloc(sz) #define KMP_INTERNAL_FREE(p) free(p) #define KMP_INTERNAL_REALLOC(p,sz) realloc((p),(sz)) #define KMP_INTERNAL_CALLOC(n,sz) calloc((n),(sz)) extern void __kmp_push_num_threads( ident_t *loc, int gtid, int num_threads ); #if OMP_40_ENABLED extern void __kmp_push_proc_bind( ident_t *loc, int gtid, kmp_proc_bind_t proc_bind ); extern void __kmp_push_num_teams( ident_t *loc, int gtid, int num_teams, int num_threads ); #endif extern void __kmp_yield( int cond ); extern void __kmpc_dispatch_init_4( ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk ); extern void __kmpc_dispatch_init_4u( ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk ); extern void __kmpc_dispatch_init_8( ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk ); extern void __kmpc_dispatch_init_8u( ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk ); extern int __kmpc_dispatch_next_4( ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st ); extern int __kmpc_dispatch_next_4u( ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st ); extern int __kmpc_dispatch_next_8( ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st ); extern int __kmpc_dispatch_next_8u( ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st ); extern void __kmpc_dispatch_fini_4( ident_t *loc, kmp_int32 gtid ); extern void __kmpc_dispatch_fini_8( ident_t *loc, kmp_int32 gtid ); extern void __kmpc_dispatch_fini_4u( ident_t *loc, kmp_int32 gtid ); extern void __kmpc_dispatch_fini_8u( ident_t *loc, kmp_int32 gtid ); #ifdef KMP_GOMP_COMPAT extern void __kmp_aux_dispatch_init_4( ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk, int push_ws ); extern void __kmp_aux_dispatch_init_4u( ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk, int push_ws ); extern void __kmp_aux_dispatch_init_8( ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk, int push_ws ); extern void __kmp_aux_dispatch_init_8u( ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk, int push_ws ); extern void __kmp_aux_dispatch_fini_chunk_4( ident_t *loc, kmp_int32 gtid ); extern void __kmp_aux_dispatch_fini_chunk_8( ident_t *loc, kmp_int32 gtid ); extern void __kmp_aux_dispatch_fini_chunk_4u( ident_t *loc, kmp_int32 gtid ); extern void __kmp_aux_dispatch_fini_chunk_8u( ident_t *loc, kmp_int32 gtid ); #endif /* KMP_GOMP_COMPAT */ extern kmp_uint32 __kmp_eq_4( kmp_uint32 value, kmp_uint32 checker ); extern kmp_uint32 __kmp_neq_4( kmp_uint32 value, kmp_uint32 checker ); extern kmp_uint32 __kmp_lt_4( kmp_uint32 value, kmp_uint32 checker ); extern kmp_uint32 __kmp_ge_4( kmp_uint32 value, kmp_uint32 checker ); extern kmp_uint32 __kmp_le_4( kmp_uint32 value, kmp_uint32 checker ); extern kmp_uint32 __kmp_eq_8( kmp_uint64 value, kmp_uint64 checker ); extern kmp_uint32 __kmp_neq_8( kmp_uint64 value, kmp_uint64 checker ); extern kmp_uint32 __kmp_lt_8( kmp_uint64 value, kmp_uint64 checker ); extern kmp_uint32 __kmp_ge_8( kmp_uint64 value, kmp_uint64 checker ); extern kmp_uint32 __kmp_le_8( kmp_uint64 value, kmp_uint64 checker ); extern kmp_uint32 __kmp_wait_yield_4( kmp_uint32 volatile * spinner, kmp_uint32 checker, kmp_uint32 (*pred) (kmp_uint32, kmp_uint32), void * obj ); extern kmp_uint64 __kmp_wait_yield_8( kmp_uint64 volatile * spinner, kmp_uint64 checker, kmp_uint32 (*pred) (kmp_uint64, kmp_uint64), void * obj ); class kmp_flag_32; class kmp_flag_64; class kmp_flag_oncore; extern void __kmp_wait_32(kmp_info_t *this_thr, kmp_flag_32 *flag, int final_spin #if USE_ITT_BUILD , void * itt_sync_obj #endif ); extern void __kmp_release_32(kmp_flag_32 *flag); extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64 *flag, int final_spin #if USE_ITT_BUILD , void * itt_sync_obj #endif ); extern void __kmp_release_64(kmp_flag_64 *flag); extern void __kmp_wait_oncore(kmp_info_t *this_thr, kmp_flag_oncore *flag, int final_spin #if USE_ITT_BUILD , void * itt_sync_obj #endif ); extern void __kmp_release_oncore(kmp_flag_oncore *flag); extern void __kmp_infinite_loop( void ); extern void __kmp_cleanup( void ); #if KMP_HANDLE_SIGNALS extern int __kmp_handle_signals; extern void __kmp_install_signals( int parallel_init ); extern void __kmp_remove_signals( void ); #endif extern void __kmp_clear_system_time( void ); extern void __kmp_read_system_time( double *delta ); extern void __kmp_check_stack_overlap( kmp_info_t *thr ); extern void __kmp_expand_host_name( char *buffer, size_t size ); extern void __kmp_expand_file_name( char *result, size_t rlen, char *pattern ); #if KMP_OS_WINDOWS extern void __kmp_initialize_system_tick( void ); /* Initialize timer tick value */ #endif extern void __kmp_runtime_initialize( void ); /* machine specific initialization */ extern void __kmp_runtime_destroy( void ); #if KMP_AFFINITY_SUPPORTED extern char *__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask); extern void __kmp_affinity_initialize(void); extern void __kmp_affinity_uninitialize(void); extern void __kmp_affinity_set_init_mask(int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */ #if OMP_40_ENABLED extern void __kmp_affinity_set_place(int gtid); #endif extern void __kmp_affinity_determine_capable( const char *env_var ); extern int __kmp_aux_set_affinity(void **mask); extern int __kmp_aux_get_affinity(void **mask); extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask); extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask); extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask); extern void __kmp_balanced_affinity( int tid, int team_size ); #endif /* KMP_AFFINITY_SUPPORTED */ extern void __kmp_cleanup_hierarchy(); extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar); #if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) extern int __kmp_futex_determine_capable( void ); #endif // KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) extern void __kmp_gtid_set_specific( int gtid ); extern int __kmp_gtid_get_specific( void ); extern double __kmp_read_cpu_time( void ); extern int __kmp_read_system_info( struct kmp_sys_info *info ); extern void __kmp_create_monitor( kmp_info_t *th ); extern void *__kmp_launch_thread( kmp_info_t *thr ); extern void __kmp_create_worker( int gtid, kmp_info_t *th, size_t stack_size ); #if KMP_OS_WINDOWS extern int __kmp_still_running(kmp_info_t *th); extern int __kmp_is_thread_alive( kmp_info_t * th, DWORD *exit_val ); extern void __kmp_free_handle( kmp_thread_t tHandle ); #endif extern void __kmp_reap_monitor( kmp_info_t *th ); extern void __kmp_reap_worker( kmp_info_t *th ); extern void __kmp_terminate_thread( int gtid ); extern void __kmp_suspend_32( int th_gtid, kmp_flag_32 *flag ); extern void __kmp_suspend_64( int th_gtid, kmp_flag_64 *flag ); extern void __kmp_suspend_oncore( int th_gtid, kmp_flag_oncore *flag ); extern void __kmp_resume_32( int target_gtid, kmp_flag_32 *flag ); extern void __kmp_resume_64( int target_gtid, kmp_flag_64 *flag ); extern void __kmp_resume_oncore( int target_gtid, kmp_flag_oncore *flag ); extern void __kmp_elapsed( double * ); extern void __kmp_elapsed_tick( double * ); extern void __kmp_enable( int old_state ); extern void __kmp_disable( int *old_state ); extern void __kmp_thread_sleep( int millis ); extern void __kmp_common_initialize( void ); extern void __kmp_common_destroy( void ); extern void __kmp_common_destroy_gtid( int gtid ); #if KMP_OS_UNIX extern void __kmp_register_atfork( void ); #endif extern void __kmp_suspend_initialize( void ); extern void __kmp_suspend_uninitialize_thread( kmp_info_t *th ); extern kmp_info_t * __kmp_allocate_thread( kmp_root_t *root, kmp_team_t *team, int tid); #if OMP_40_ENABLED extern kmp_team_t * __kmp_allocate_team( kmp_root_t *root, int new_nproc, int max_nproc, #if OMPT_SUPPORT ompt_parallel_id_t ompt_parallel_id, #endif kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs, int argc USE_NESTED_HOT_ARG(kmp_info_t *thr) ); #else extern kmp_team_t * __kmp_allocate_team( kmp_root_t *root, int new_nproc, int max_nproc, #if OMPT_SUPPORT ompt_parallel_id_t ompt_parallel_id, #endif kmp_internal_control_t *new_icvs, int argc USE_NESTED_HOT_ARG(kmp_info_t *thr) ); #endif // OMP_40_ENABLED extern void __kmp_free_thread( kmp_info_t * ); extern void __kmp_free_team( kmp_root_t *, kmp_team_t * USE_NESTED_HOT_ARG(kmp_info_t *) ); extern kmp_team_t * __kmp_reap_team( kmp_team_t * ); /* ------------------------------------------------------------------------ */ extern void __kmp_initialize_bget( kmp_info_t *th ); extern void __kmp_finalize_bget( kmp_info_t *th ); KMP_EXPORT void *kmpc_malloc( size_t size ); KMP_EXPORT void *kmpc_calloc( size_t nelem, size_t elsize ); KMP_EXPORT void *kmpc_realloc( void *ptr, size_t size ); KMP_EXPORT void kmpc_free( void *ptr ); /* ------------------------------------------------------------------------ */ /* declarations for internal use */ extern int __kmp_barrier( enum barrier_type bt, int gtid, int is_split, size_t reduce_size, void *reduce_data, void (*reduce)(void *, void *) ); extern void __kmp_end_split_barrier ( enum barrier_type bt, int gtid ); /*! * Tell the fork call which compiler generated the fork call, and therefore how to deal with the call. */ enum fork_context_e { fork_context_gnu, /**< Called from GNU generated code, so must not invoke the microtask internally. */ fork_context_intel, /**< Called from Intel generated code. */ fork_context_last }; extern int __kmp_fork_call( ident_t *loc, int gtid, enum fork_context_e fork_context, kmp_int32 argc, #if OMPT_SUPPORT void *unwrapped_task, #endif microtask_t microtask, launch_t invoker, /* TODO: revert workaround for Intel(R) 64 tracker #96 */ #if (KMP_ARCH_ARM || KMP_ARCH_X86_64 || KMP_ARCH_AARCH64) && KMP_OS_LINUX va_list *ap #else va_list ap #endif ); extern void __kmp_join_call( ident_t *loc, int gtid #if OMPT_SUPPORT , enum fork_context_e fork_context #endif #if OMP_40_ENABLED , int exit_teams = 0 #endif ); extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid); extern void __kmp_internal_fork( ident_t *id, int gtid, kmp_team_t *team ); extern void __kmp_internal_join( ident_t *id, int gtid, kmp_team_t *team ); extern int __kmp_invoke_task_func( int gtid ); extern void __kmp_run_before_invoked_task( int gtid, int tid, kmp_info_t *this_thr, kmp_team_t *team ); extern void __kmp_run_after_invoked_task( int gtid, int tid, kmp_info_t *this_thr, kmp_team_t *team ); // should never have been exported KMP_EXPORT int __kmpc_invoke_task_func( int gtid ); #if OMP_40_ENABLED extern int __kmp_invoke_teams_master( int gtid ); extern void __kmp_teams_master( int gtid ); #endif extern void __kmp_save_internal_controls( kmp_info_t * thread ); extern void __kmp_user_set_library (enum library_type arg); extern void __kmp_aux_set_library (enum library_type arg); extern void __kmp_aux_set_stacksize( size_t arg); extern void __kmp_aux_set_blocktime (int arg, kmp_info_t *thread, int tid); extern void __kmp_aux_set_defaults( char const * str, int len ); /* Functions below put here to call them from __kmp_aux_env_initialize() in kmp_settings.c */ void kmpc_set_blocktime (int arg); void ompc_set_nested( int flag ); void ompc_set_dynamic( int flag ); void ompc_set_num_threads( int arg ); extern void __kmp_push_current_task_to_thread( kmp_info_t *this_thr, kmp_team_t *team, int tid ); extern void __kmp_pop_current_task_from_thread( kmp_info_t *this_thr ); extern kmp_task_t* __kmp_task_alloc( ident_t *loc_ref, kmp_int32 gtid, kmp_tasking_flags_t *flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t task_entry ); extern void __kmp_init_implicit_task( ident_t *loc_ref, kmp_info_t *this_thr, kmp_team_t *team, int tid, int set_curr_task ); int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32 *flag, int final_spin, int *thread_finished, #if USE_ITT_BUILD void * itt_sync_obj, #endif /* USE_ITT_BUILD */ kmp_int32 is_constrained); int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64 *flag, int final_spin, int *thread_finished, #if USE_ITT_BUILD void * itt_sync_obj, #endif /* USE_ITT_BUILD */ kmp_int32 is_constrained); int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin, int *thread_finished, #if USE_ITT_BUILD void * itt_sync_obj, #endif /* USE_ITT_BUILD */ kmp_int32 is_constrained); extern void __kmp_free_task_team( kmp_info_t *thread, kmp_task_team_t *task_team ); extern void __kmp_reap_task_teams( void ); extern void __kmp_wait_to_unref_task_teams( void ); extern void __kmp_task_team_setup ( kmp_info_t *this_thr, kmp_team_t *team, int always ); extern void __kmp_task_team_sync ( kmp_info_t *this_thr, kmp_team_t *team ); extern void __kmp_task_team_wait ( kmp_info_t *this_thr, kmp_team_t *team #if USE_ITT_BUILD , void * itt_sync_obj #endif /* USE_ITT_BUILD */ , int wait=1 ); extern void __kmp_tasking_barrier( kmp_team_t *team, kmp_info_t *thread, int gtid ); extern int __kmp_is_address_mapped( void *addr ); extern kmp_uint64 __kmp_hardware_timestamp(void); #if KMP_OS_UNIX extern int __kmp_read_from_file( char const *path, char const *format, ... ); #endif /* ------------------------------------------------------------------------ */ // // Assembly routines that have no compiler intrinsic replacement // #if KMP_ARCH_X86 || KMP_ARCH_X86_64 extern void __kmp_query_cpuid( kmp_cpuinfo_t *p ); #define __kmp_load_mxcsr(p) _mm_setcsr(*(p)) static inline void __kmp_store_mxcsr( kmp_uint32 *p ) { *p = _mm_getcsr(); } extern void __kmp_load_x87_fpu_control_word( kmp_int16 *p ); extern void __kmp_store_x87_fpu_control_word( kmp_int16 *p ); extern void __kmp_clear_x87_fpu_status_word(); # define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */ #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ extern int __kmp_invoke_microtask( microtask_t pkfn, int gtid, int npr, int argc, void *argv[] #if OMPT_SUPPORT , void **exit_frame_ptr #endif ); /* ------------------------------------------------------------------------ */ KMP_EXPORT void __kmpc_begin ( ident_t *, kmp_int32 flags ); KMP_EXPORT void __kmpc_end ( ident_t * ); KMP_EXPORT void __kmpc_threadprivate_register_vec ( ident_t *, void * data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length ); KMP_EXPORT void __kmpc_threadprivate_register ( ident_t *, void * data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor ); KMP_EXPORT void * __kmpc_threadprivate ( ident_t *, kmp_int32 global_tid, void * data, size_t size ); KMP_EXPORT kmp_int32 __kmpc_global_thread_num ( ident_t * ); KMP_EXPORT kmp_int32 __kmpc_global_num_threads ( ident_t * ); KMP_EXPORT kmp_int32 __kmpc_bound_thread_num ( ident_t * ); KMP_EXPORT kmp_int32 __kmpc_bound_num_threads ( ident_t * ); KMP_EXPORT kmp_int32 __kmpc_ok_to_fork ( ident_t * ); KMP_EXPORT void __kmpc_fork_call ( ident_t *, kmp_int32 nargs, kmpc_micro microtask, ... ); KMP_EXPORT void __kmpc_serialized_parallel ( ident_t *, kmp_int32 global_tid ); KMP_EXPORT void __kmpc_end_serialized_parallel ( ident_t *, kmp_int32 global_tid ); KMP_EXPORT void __kmpc_flush ( ident_t *); KMP_EXPORT void __kmpc_barrier ( ident_t *, kmp_int32 global_tid ); KMP_EXPORT kmp_int32 __kmpc_master ( ident_t *, kmp_int32 global_tid ); KMP_EXPORT void __kmpc_end_master ( ident_t *, kmp_int32 global_tid ); KMP_EXPORT void __kmpc_ordered ( ident_t *, kmp_int32 global_tid ); KMP_EXPORT void __kmpc_end_ordered ( ident_t *, kmp_int32 global_tid ); KMP_EXPORT void __kmpc_critical ( ident_t *, kmp_int32 global_tid, kmp_critical_name * ); KMP_EXPORT void __kmpc_end_critical ( ident_t *, kmp_int32 global_tid, kmp_critical_name * ); KMP_EXPORT kmp_int32 __kmpc_barrier_master ( ident_t *, kmp_int32 global_tid ); KMP_EXPORT void __kmpc_end_barrier_master ( ident_t *, kmp_int32 global_tid ); KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait ( ident_t *, kmp_int32 global_tid ); KMP_EXPORT kmp_int32 __kmpc_single ( ident_t *, kmp_int32 global_tid ); KMP_EXPORT void __kmpc_end_single ( ident_t *, kmp_int32 global_tid ); KMP_EXPORT void KMPC_FOR_STATIC_INIT ( ident_t *loc, kmp_int32 global_tid, kmp_int32 schedtype, kmp_int32 *plastiter, kmp_int *plower, kmp_int *pupper, kmp_int *pstride, kmp_int incr, kmp_int chunk ); KMP_EXPORT void __kmpc_for_static_fini ( ident_t *loc, kmp_int32 global_tid ); KMP_EXPORT void __kmpc_copyprivate( ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void*,void*), kmp_int32 didit ); extern void KMPC_SET_NUM_THREADS ( int arg ); extern void KMPC_SET_DYNAMIC ( int flag ); extern void KMPC_SET_NESTED ( int flag ); /* --------------------------------------------------------------------------- */ /* * Taskq interface routines */ KMP_EXPORT kmpc_thunk_t * __kmpc_taskq (ident_t *loc, kmp_int32 global_tid, kmpc_task_t taskq_task, size_t sizeof_thunk, size_t sizeof_shareds, kmp_int32 flags, kmpc_shared_vars_t **shareds); KMP_EXPORT void __kmpc_end_taskq (ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk); KMP_EXPORT kmp_int32 __kmpc_task (ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk); KMP_EXPORT void __kmpc_taskq_task (ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk, kmp_int32 status); KMP_EXPORT void __kmpc_end_taskq_task (ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk); KMP_EXPORT kmpc_thunk_t * __kmpc_task_buffer (ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *taskq_thunk, kmpc_task_t task); /* ------------------------------------------------------------------------ */ /* * OMP 3.0 tasking interface routines */ KMP_EXPORT kmp_int32 __kmpc_omp_task( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task ); KMP_EXPORT kmp_task_t* __kmpc_omp_task_alloc( ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t task_entry ); KMP_EXPORT void __kmpc_omp_task_begin_if0( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * task ); KMP_EXPORT void __kmpc_omp_task_complete_if0( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task ); KMP_EXPORT kmp_int32 __kmpc_omp_task_parts( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task ); KMP_EXPORT kmp_int32 __kmpc_omp_taskwait( ident_t *loc_ref, kmp_int32 gtid ); KMP_EXPORT kmp_int32 __kmpc_omp_taskyield( ident_t *loc_ref, kmp_int32 gtid, int end_part ); #if TASK_UNUSED void __kmpc_omp_task_begin( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * task ); void __kmpc_omp_task_complete( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task ); #endif // TASK_UNUSED /* ------------------------------------------------------------------------ */ #if OMP_40_ENABLED KMP_EXPORT void __kmpc_taskgroup( ident_t * loc, int gtid ); KMP_EXPORT void __kmpc_end_taskgroup( ident_t * loc, int gtid ); KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps ( ident_t *loc_ref, kmp_int32 gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list ); KMP_EXPORT void __kmpc_omp_wait_deps ( ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list ); extern void __kmp_release_deps ( kmp_int32 gtid, kmp_taskdata_t *task ); extern kmp_int32 __kmp_omp_task( kmp_int32 gtid, kmp_task_t * new_task, bool serialize_immediate ); KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t* loc_ref, kmp_int32 gtid, kmp_int32 cncl_kind); KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t* loc_ref, kmp_int32 gtid, kmp_int32 cncl_kind); KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t* loc_ref, kmp_int32 gtid); KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind); #if OMP_41_ENABLED KMP_EXPORT void __kmpc_proxy_task_completed( kmp_int32 gtid, kmp_task_t *ptask ); KMP_EXPORT void __kmpc_proxy_task_completed_ooo ( kmp_task_t *ptask ); #endif #endif /* * Lock interface routines (fast versions with gtid passed in) */ KMP_EXPORT void __kmpc_init_lock( ident_t *loc, kmp_int32 gtid, void **user_lock ); KMP_EXPORT void __kmpc_init_nest_lock( ident_t *loc, kmp_int32 gtid, void **user_lock ); KMP_EXPORT void __kmpc_destroy_lock( ident_t *loc, kmp_int32 gtid, void **user_lock ); KMP_EXPORT void __kmpc_destroy_nest_lock( ident_t *loc, kmp_int32 gtid, void **user_lock ); KMP_EXPORT void __kmpc_set_lock( ident_t *loc, kmp_int32 gtid, void **user_lock ); KMP_EXPORT void __kmpc_set_nest_lock( ident_t *loc, kmp_int32 gtid, void **user_lock ); KMP_EXPORT void __kmpc_unset_lock( ident_t *loc, kmp_int32 gtid, void **user_lock ); KMP_EXPORT void __kmpc_unset_nest_lock( ident_t *loc, kmp_int32 gtid, void **user_lock ); KMP_EXPORT int __kmpc_test_lock( ident_t *loc, kmp_int32 gtid, void **user_lock ); KMP_EXPORT int __kmpc_test_nest_lock( ident_t *loc, kmp_int32 gtid, void **user_lock ); /* ------------------------------------------------------------------------ */ /* * Interface to fast scalable reduce methods routines */ KMP_EXPORT kmp_int32 __kmpc_reduce_nowait( ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck ); KMP_EXPORT void __kmpc_end_reduce_nowait( ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck ); KMP_EXPORT kmp_int32 __kmpc_reduce( ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck ); KMP_EXPORT void __kmpc_end_reduce( ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck ); /* * internal fast reduction routines */ extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method( ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck ); // this function is for testing set/get/determine reduce method KMP_EXPORT kmp_int32 __kmp_get_reduce_method( void ); KMP_EXPORT kmp_uint64 __kmpc_get_taskid(); KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid(); // this function exported for testing of KMP_PLACE_THREADS functionality KMP_EXPORT void __kmpc_place_threads(int,int,int,int,int); /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ // C++ port // missing 'extern "C"' declarations KMP_EXPORT kmp_int32 __kmpc_in_parallel( ident_t *loc ); KMP_EXPORT void __kmpc_pop_num_threads( ident_t *loc, kmp_int32 global_tid ); KMP_EXPORT void __kmpc_push_num_threads( ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads ); #if OMP_40_ENABLED KMP_EXPORT void __kmpc_push_proc_bind( ident_t *loc, kmp_int32 global_tid, int proc_bind ); KMP_EXPORT void __kmpc_push_num_teams( ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads ); KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask, ...); #endif KMP_EXPORT void* __kmpc_threadprivate_cached( ident_t * loc, kmp_int32 global_tid, void * data, size_t size, void *** cache ); // Symbols for MS mutual detection. extern int _You_must_link_with_exactly_one_OpenMP_library; extern int _You_must_link_with_Intel_OpenMP_library; #if KMP_OS_WINDOWS && ( KMP_VERSION_MAJOR > 4 ) extern int _You_must_link_with_Microsoft_OpenMP_library; #endif // The routines below are not exported. // Consider making them 'static' in corresponding source files. void kmp_threadprivate_insert_private_data( int gtid, void *pc_addr, void *data_addr, size_t pc_size ); struct private_common * kmp_threadprivate_insert( int gtid, void *pc_addr, void *data_addr, size_t pc_size ); // // ompc_, kmpc_ entries moved from omp.h. // #if KMP_OS_WINDOWS # define KMPC_CONVENTION __cdecl #else # define KMPC_CONVENTION #endif #ifndef __OMP_H typedef enum omp_sched_t { omp_sched_static = 1, omp_sched_dynamic = 2, omp_sched_guided = 3, omp_sched_auto = 4 } omp_sched_t; typedef void * kmp_affinity_mask_t; #endif KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int); KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int); KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int); KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int); KMP_EXPORT int KMPC_CONVENTION kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *); KMP_EXPORT int KMPC_CONVENTION kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *); KMP_EXPORT int KMPC_CONVENTION kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *); KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int); KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t); KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int); KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *); #ifdef __cplusplus } #endif #endif /* KMP_H */