//===- RewriterGen.cpp - MLIR pattern rewriter generator ------------------===// // // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // RewriterGen uses pattern rewrite definitions to generate rewriter matchers. // //===----------------------------------------------------------------------===// #include "mlir/Support/STLExtras.h" #include "mlir/TableGen/Attribute.h" #include "mlir/TableGen/Format.h" #include "mlir/TableGen/GenInfo.h" #include "mlir/TableGen/Operator.h" #include "mlir/TableGen/Pattern.h" #include "mlir/TableGen/Predicate.h" #include "mlir/TableGen/Type.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSet.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FormatAdapters.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/Signals.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Main.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" using namespace mlir; using namespace mlir::tblgen; using llvm::formatv; using llvm::Record; using llvm::RecordKeeper; #define DEBUG_TYPE "mlir-tblgen-rewritergen" namespace llvm { template <> struct format_provider { static void format(const mlir::tblgen::Pattern::IdentifierLine &v, raw_ostream &os, StringRef style) { os << v.first << ":" << v.second; } }; } // end namespace llvm //===----------------------------------------------------------------------===// // PatternEmitter //===----------------------------------------------------------------------===// namespace { class PatternEmitter { public: PatternEmitter(Record *pat, RecordOperatorMap *mapper, raw_ostream &os); // Emits the mlir::RewritePattern struct named `rewriteName`. void emit(StringRef rewriteName); private: // Emits the code for matching ops. void emitMatchLogic(DagNode tree); // Emits the code for rewriting ops. void emitRewriteLogic(); //===--------------------------------------------------------------------===// // Match utilities //===--------------------------------------------------------------------===// // Emits C++ statements for matching the op constrained by the given DAG // `tree`. void emitOpMatch(DagNode tree, int depth); // Emits C++ statements for matching the `argIndex`-th argument of the given // DAG `tree` as an operand. void emitOperandMatch(DagNode tree, int argIndex, int depth, int indent); // Emits C++ statements for matching the `argIndex`-th argument of the given // DAG `tree` as an attribute. void emitAttributeMatch(DagNode tree, int argIndex, int depth, int indent); //===--------------------------------------------------------------------===// // Rewrite utilities //===--------------------------------------------------------------------===// // The entry point for handling a result pattern rooted at `resultTree`. This // method dispatches to concrete handlers according to `resultTree`'s kind and // returns a symbol representing the whole value pack. Callers are expected to // further resolve the symbol according to the specific use case. // // `depth` is the nesting level of `resultTree`; 0 means top-level result // pattern. For top-level result pattern, `resultIndex` indicates which result // of the matched root op this pattern is intended to replace, which can be // used to deduce the result type of the op generated from this result // pattern. std::string handleResultPattern(DagNode resultTree, int resultIndex, int depth); // Emits the C++ statement to replace the matched DAG with a value built via // calling native C++ code. std::string handleReplaceWithNativeCodeCall(DagNode resultTree); // Returns the C++ expression referencing the old value serving as the // replacement. std::string handleReplaceWithValue(DagNode tree); // Emits the C++ statement to build a new op out of the given DAG `tree` and // returns the variable name that this op is assigned to. If the root op in // DAG `tree` has a specified name, the created op will be assigned to a // variable of the given name. Otherwise, a unique name will be used as the // result value name. std::string handleOpCreation(DagNode tree, int resultIndex, int depth); using ChildNodeIndexNameMap = DenseMap; // Emits a local variable for each value and attribute to be used for creating // an op. void createSeparateLocalVarsForOpArgs(DagNode node, ChildNodeIndexNameMap &childNodeNames); // Emits the concrete arguments used to call a op's builder. void supplyValuesForOpArgs(DagNode node, const ChildNodeIndexNameMap &childNodeNames); // Emits the local variables for holding all values as a whole and all named // attributes as a whole to be used for creating an op. void createAggregateLocalVarsForOpArgs( DagNode node, const ChildNodeIndexNameMap &childNodeNames); // Returns the C++ expression to construct a constant attribute of the given // `value` for the given attribute kind `attr`. std::string handleConstantAttr(Attribute attr, StringRef value); // Returns the C++ expression to build an argument from the given DAG `leaf`. // `patArgName` is used to bound the argument to the source pattern. std::string handleOpArgument(DagLeaf leaf, StringRef patArgName); //===--------------------------------------------------------------------===// // General utilities //===--------------------------------------------------------------------===// // Collects all of the operations within the given dag tree. void collectOps(DagNode tree, llvm::SmallPtrSetImpl &ops); // Returns a unique symbol for a local variable of the given `op`. std::string getUniqueSymbol(const Operator *op); //===--------------------------------------------------------------------===// // Symbol utilities //===--------------------------------------------------------------------===// // Returns how many static values the given DAG `node` correspond to. int getNodeValueCount(DagNode node); private: // Pattern instantiation location followed by the location of multiclass // prototypes used. This is intended to be used as a whole to // PrintFatalError() on errors. ArrayRef loc; // Op's TableGen Record to wrapper object. RecordOperatorMap *opMap; // Handy wrapper for pattern being emitted. Pattern pattern; // Map for all bound symbols' info. SymbolInfoMap symbolInfoMap; // The next unused ID for newly created values. unsigned nextValueId; raw_ostream &os; // Format contexts containing placeholder substitutions. FmtContext fmtCtx; // Number of op processed. int opCounter = 0; }; } // end anonymous namespace PatternEmitter::PatternEmitter(Record *pat, RecordOperatorMap *mapper, raw_ostream &os) : loc(pat->getLoc()), opMap(mapper), pattern(pat, mapper), symbolInfoMap(pat->getLoc()), nextValueId(0), os(os) { fmtCtx.withBuilder("rewriter"); } std::string PatternEmitter::handleConstantAttr(Attribute attr, StringRef value) { if (!attr.isConstBuildable()) PrintFatalError(loc, "Attribute " + attr.getAttrDefName() + " does not have the 'constBuilderCall' field"); // TODO(jpienaar): Verify the constants here return tgfmt(attr.getConstBuilderTemplate(), &fmtCtx, value); } // Helper function to match patterns. void PatternEmitter::emitOpMatch(DagNode tree, int depth) { Operator &op = tree.getDialectOp(opMap); LLVM_DEBUG(llvm::dbgs() << "start emitting match for op '" << op.getOperationName() << "' at depth " << depth << '\n'); int indent = 4 + 2 * depth; os.indent(indent) << formatv( "auto castedOp{0} = dyn_cast_or_null<{1}>(op{0}); (void)castedOp{0};\n", depth, op.getQualCppClassName()); // Skip the operand matching at depth 0 as the pattern rewriter already does. if (depth != 0) { // Skip if there is no defining operation (e.g., arguments to function). os.indent(indent) << formatv("if (!castedOp{0}) return matchFailure();\n", depth); } if (tree.getNumArgs() != op.getNumArgs()) { PrintFatalError(loc, formatv("op '{0}' argument number mismatch: {1} in " "pattern vs. {2} in definition", op.getOperationName(), tree.getNumArgs(), op.getNumArgs())); } // If the operand's name is set, set to that variable. auto name = tree.getSymbol(); if (!name.empty()) os.indent(indent) << formatv("{0} = castedOp{1};\n", name, depth); for (int i = 0, e = tree.getNumArgs(); i != e; ++i) { auto opArg = op.getArg(i); // Handle nested DAG construct first if (DagNode argTree = tree.getArgAsNestedDag(i)) { if (auto *operand = opArg.dyn_cast()) { if (operand->isVariadic()) { auto error = formatv("use nested DAG construct to match op {0}'s " "variadic operand #{1} unsupported now", op.getOperationName(), i); PrintFatalError(loc, error); } } os.indent(indent) << "{\n"; os.indent(indent + 2) << formatv( "auto *op{0} = " "(*castedOp{1}.getODSOperands({2}).begin()).getDefiningOp();\n", depth + 1, depth, i); emitOpMatch(argTree, depth + 1); os.indent(indent + 2) << formatv("tblgen_ops[{0}] = op{1};\n", ++opCounter, depth + 1); os.indent(indent) << "}\n"; continue; } // Next handle DAG leaf: operand or attribute if (opArg.is()) { emitOperandMatch(tree, i, depth, indent); } else if (opArg.is()) { emitAttributeMatch(tree, i, depth, indent); } else { PrintFatalError(loc, "unhandled case when matching op"); } } LLVM_DEBUG(llvm::dbgs() << "done emitting match for op '" << op.getOperationName() << "' at depth " << depth << '\n'); } void PatternEmitter::emitOperandMatch(DagNode tree, int argIndex, int depth, int indent) { Operator &op = tree.getDialectOp(opMap); auto *operand = op.getArg(argIndex).get(); auto matcher = tree.getArgAsLeaf(argIndex); // If a constraint is specified, we need to generate C++ statements to // check the constraint. if (!matcher.isUnspecified()) { if (!matcher.isOperandMatcher()) { PrintFatalError( loc, formatv("the {1}-th argument of op '{0}' should be an operand", op.getOperationName(), argIndex + 1)); } // Only need to verify if the matcher's type is different from the one // of op definition. if (operand->constraint != matcher.getAsConstraint()) { if (operand->isVariadic()) { auto error = formatv( "further constrain op {0}'s variadic operand #{1} unsupported now", op.getOperationName(), argIndex); PrintFatalError(loc, error); } auto self = formatv("(*castedOp{0}.getODSOperands({1}).begin()).getType()", depth, argIndex); os.indent(indent) << "if (!(" << tgfmt(matcher.getConditionTemplate(), &fmtCtx.withSelf(self)) << ")) return matchFailure();\n"; } } // Capture the value auto name = tree.getArgName(argIndex); // `$_` is a special symbol to ignore op argument matching. if (!name.empty() && name != "_") { // We need to subtract the number of attributes before this operand to get // the index in the operand list. auto numPrevAttrs = std::count_if( op.arg_begin(), op.arg_begin() + argIndex, [](const Argument &arg) { return arg.is(); }); os.indent(indent) << formatv("{0} = castedOp{1}.getODSOperands({2});\n", name, depth, argIndex - numPrevAttrs); } } void PatternEmitter::emitAttributeMatch(DagNode tree, int argIndex, int depth, int indent) { Operator &op = tree.getDialectOp(opMap); auto *namedAttr = op.getArg(argIndex).get(); const auto &attr = namedAttr->attr; os.indent(indent) << "{\n"; indent += 2; os.indent(indent) << formatv( "auto tblgen_attr = op{0}->getAttrOfType<{1}>(\"{2}\");" "(void)tblgen_attr;\n", depth, attr.getStorageType(), namedAttr->name); // TODO(antiagainst): This should use getter method to avoid duplication. if (attr.hasDefaultValue()) { os.indent(indent) << "if (!tblgen_attr) tblgen_attr = " << tgfmt(attr.getConstBuilderTemplate(), &fmtCtx, attr.getDefaultValue()) << ";\n"; } else if (attr.isOptional()) { // For a missing attribute that is optional according to definition, we // should just capture a mlir::Attribute() to signal the missing state. // That is precisely what getAttr() returns on missing attributes. } else { os.indent(indent) << "if (!tblgen_attr) return matchFailure();\n"; } auto matcher = tree.getArgAsLeaf(argIndex); if (!matcher.isUnspecified()) { if (!matcher.isAttrMatcher()) { PrintFatalError( loc, formatv("the {1}-th argument of op '{0}' should be an attribute", op.getOperationName(), argIndex + 1)); } // If a constraint is specified, we need to generate C++ statements to // check the constraint. os.indent(indent) << "if (!(" << tgfmt(matcher.getConditionTemplate(), &fmtCtx.withSelf("tblgen_attr")) << ")) return matchFailure();\n"; } // Capture the value auto name = tree.getArgName(argIndex); // `$_` is a special symbol to ignore op argument matching. if (!name.empty() && name != "_") { os.indent(indent) << formatv("{0} = tblgen_attr;\n", name); } indent -= 2; os.indent(indent) << "}\n"; } void PatternEmitter::emitMatchLogic(DagNode tree) { LLVM_DEBUG(llvm::dbgs() << "--- start emitting match logic ---\n"); emitOpMatch(tree, 0); for (auto &appliedConstraint : pattern.getConstraints()) { auto &constraint = appliedConstraint.constraint; auto &entities = appliedConstraint.entities; auto condition = constraint.getConditionTemplate(); auto cmd = "if (!({0})) return matchFailure();\n"; if (isa(constraint)) { auto self = formatv("({0}.getType())", symbolInfoMap.getValueAndRangeUse(entities.front())); os.indent(4) << formatv(cmd, tgfmt(condition, &fmtCtx.withSelf(self.str()))); } else if (isa(constraint)) { PrintFatalError( loc, "cannot use AttrConstraint in Pattern multi-entity constraints"); } else { // TODO(b/138794486): replace formatv arguments with the exact specified // args. if (entities.size() > 4) { PrintFatalError(loc, "only support up to 4-entity constraints now"); } SmallVector names; int i = 0; for (int e = entities.size(); i < e; ++i) names.push_back(symbolInfoMap.getValueAndRangeUse(entities[i])); std::string self = appliedConstraint.self; if (!self.empty()) self = symbolInfoMap.getValueAndRangeUse(self); for (; i < 4; ++i) names.push_back(""); os.indent(4) << formatv(cmd, tgfmt(condition, &fmtCtx.withSelf(self), names[0], names[1], names[2], names[3])); } } LLVM_DEBUG(llvm::dbgs() << "--- done emitting match logic ---\n"); } void PatternEmitter::collectOps(DagNode tree, llvm::SmallPtrSetImpl &ops) { // Check if this tree is an operation. if (tree.isOperation()) { const Operator &op = tree.getDialectOp(opMap); LLVM_DEBUG(llvm::dbgs() << "found operation " << op.getOperationName() << '\n'); ops.insert(&op); } // Recurse the arguments of the tree. for (unsigned i = 0, e = tree.getNumArgs(); i != e; ++i) if (auto child = tree.getArgAsNestedDag(i)) collectOps(child, ops); } void PatternEmitter::emit(StringRef rewriteName) { // Get the DAG tree for the source pattern. DagNode sourceTree = pattern.getSourcePattern(); const Operator &rootOp = pattern.getSourceRootOp(); auto rootName = rootOp.getOperationName(); // Collect the set of result operations. llvm::SmallPtrSet resultOps; LLVM_DEBUG(llvm::dbgs() << "start collecting ops used in result patterns\n"); for (unsigned i = 0, e = pattern.getNumResultPatterns(); i != e; ++i) { collectOps(pattern.getResultPattern(i), resultOps); } LLVM_DEBUG(llvm::dbgs() << "done collecting ops used in result patterns\n"); // Emit RewritePattern for Pattern. auto locs = pattern.getLocation(); os << formatv("/* Generated from:\n\t{0:$[ instantiating\n\t]}\n*/\n", make_range(locs.rbegin(), locs.rend())); os << formatv(R"(struct {0} : public RewritePattern { {0}(MLIRContext *context) : RewritePattern("{1}", {{)", rewriteName, rootName); // Sort result operators by name. llvm::SmallVector sortedResultOps(resultOps.begin(), resultOps.end()); llvm::sort(sortedResultOps, [&](const Operator *lhs, const Operator *rhs) { return lhs->getOperationName() < rhs->getOperationName(); }); interleaveComma(sortedResultOps, os, [&](const Operator *op) { os << '"' << op->getOperationName() << '"'; }); os << formatv(R"(}, {0}, context) {{})", pattern.getBenefit()) << "\n"; // Emit matchAndRewrite() function. os << R"( PatternMatchResult matchAndRewrite(Operation *op0, PatternRewriter &rewriter) const override { )"; // Register all symbols bound in the source pattern. pattern.collectSourcePatternBoundSymbols(symbolInfoMap); LLVM_DEBUG( llvm::dbgs() << "start creating local variables for capturing matches\n"); os.indent(4) << "// Variables for capturing values and attributes used for " "creating ops\n"; // Create local variables for storing the arguments and results bound // to symbols. for (const auto &symbolInfoPair : symbolInfoMap) { StringRef symbol = symbolInfoPair.getKey(); auto &info = symbolInfoPair.getValue(); os.indent(4) << info.getVarDecl(symbol); } // TODO(jpienaar): capture ops with consistent numbering so that it can be // reused for fused loc. os.indent(4) << formatv("Operation *tblgen_ops[{0}];\n\n", pattern.getSourcePattern().getNumOps()); LLVM_DEBUG( llvm::dbgs() << "done creating local variables for capturing matches\n"); os.indent(4) << "// Match\n"; os.indent(4) << "tblgen_ops[0] = op0;\n"; emitMatchLogic(sourceTree); os << "\n"; os.indent(4) << "// Rewrite\n"; emitRewriteLogic(); os.indent(4) << "return matchSuccess();\n"; os << " };\n"; os << "};\n"; } void PatternEmitter::emitRewriteLogic() { LLVM_DEBUG(llvm::dbgs() << "--- start emitting rewrite logic ---\n"); const Operator &rootOp = pattern.getSourceRootOp(); int numExpectedResults = rootOp.getNumResults(); int numResultPatterns = pattern.getNumResultPatterns(); // First register all symbols bound to ops generated in result patterns. pattern.collectResultPatternBoundSymbols(symbolInfoMap); // Only the last N static values generated are used to replace the matched // root N-result op. We need to calculate the starting index (of the results // of the matched op) each result pattern is to replace. SmallVector offsets(numResultPatterns + 1, numExpectedResults); // If we don't need to replace any value at all, set the replacement starting // index as the number of result patterns so we skip all of them when trying // to replace the matched op's results. int replStartIndex = numExpectedResults == 0 ? numResultPatterns : -1; for (int i = numResultPatterns - 1; i >= 0; --i) { auto numValues = getNodeValueCount(pattern.getResultPattern(i)); offsets[i] = offsets[i + 1] - numValues; if (offsets[i] == 0) { if (replStartIndex == -1) replStartIndex = i; } else if (offsets[i] < 0 && offsets[i + 1] > 0) { auto error = formatv( "cannot use the same multi-result op '{0}' to generate both " "auxiliary values and values to be used for replacing the matched op", pattern.getResultPattern(i).getSymbol()); PrintFatalError(loc, error); } } if (offsets.front() > 0) { const char error[] = "no enough values generated to replace the matched op"; PrintFatalError(loc, error); } os.indent(4) << "auto loc = rewriter.getFusedLoc({"; for (int i = 0, e = pattern.getSourcePattern().getNumOps(); i != e; ++i) { os << (i ? ", " : "") << "tblgen_ops[" << i << "]->getLoc()"; } os << "}); (void)loc;\n"; // Process auxiliary result patterns. for (int i = 0; i < replStartIndex; ++i) { DagNode resultTree = pattern.getResultPattern(i); auto val = handleResultPattern(resultTree, offsets[i], 0); // Normal op creation will be streamed to `os` by the above call; but // NativeCodeCall will only be materialized to `os` if it is used. Here // we are handling auxiliary patterns so we want the side effect even if // NativeCodeCall is not replacing matched root op's results. if (resultTree.isNativeCodeCall()) os.indent(4) << val << ";\n"; } if (numExpectedResults == 0) { assert(replStartIndex >= numResultPatterns && "invalid auxiliary vs. replacement pattern division!"); // No result to replace. Just erase the op. os.indent(4) << "rewriter.eraseOp(op0);\n"; } else { // Process replacement result patterns. os.indent(4) << "SmallVector tblgen_repl_values;\n"; for (int i = replStartIndex; i < numResultPatterns; ++i) { DagNode resultTree = pattern.getResultPattern(i); auto val = handleResultPattern(resultTree, offsets[i], 0); os.indent(4) << "\n"; // Resolve each symbol for all range use so that we can loop over them. // We need an explicit cast to `SmallVector` to capture the cases where // `{0}` resolves to an `Operation::result_range` as well as cases that // are not iterable (e.g. vector that gets wrapped in additional braces by // RewriterGen). // TODO(b/147096809): Revisit the need for materializing a vector. os << symbolInfoMap.getAllRangeUse( val, " for (auto v : SmallVector{ {0} }) {{ " "tblgen_repl_values.push_back(v); }", "\n"); } os.indent(4) << "\n"; os.indent(4) << "rewriter.replaceOp(op0, tblgen_repl_values);\n"; } LLVM_DEBUG(llvm::dbgs() << "--- done emitting rewrite logic ---\n"); } std::string PatternEmitter::getUniqueSymbol(const Operator *op) { return formatv("tblgen_{0}_{1}", op->getCppClassName(), nextValueId++); } std::string PatternEmitter::handleResultPattern(DagNode resultTree, int resultIndex, int depth) { LLVM_DEBUG(llvm::dbgs() << "handle result pattern: "); LLVM_DEBUG(resultTree.print(llvm::dbgs())); LLVM_DEBUG(llvm::dbgs() << '\n'); if (resultTree.isNativeCodeCall()) { auto symbol = handleReplaceWithNativeCodeCall(resultTree); symbolInfoMap.bindValue(symbol); return symbol; } if (resultTree.isReplaceWithValue()) { return handleReplaceWithValue(resultTree); } // Normal op creation. auto symbol = handleOpCreation(resultTree, resultIndex, depth); if (resultTree.getSymbol().empty()) { // This is an op not explicitly bound to a symbol in the rewrite rule. // Register the auto-generated symbol for it. symbolInfoMap.bindOpResult(symbol, pattern.getDialectOp(resultTree)); } return symbol; } std::string PatternEmitter::handleReplaceWithValue(DagNode tree) { assert(tree.isReplaceWithValue()); if (tree.getNumArgs() != 1) { PrintFatalError( loc, "replaceWithValue directive must take exactly one argument"); } if (!tree.getSymbol().empty()) { PrintFatalError(loc, "cannot bind symbol to replaceWithValue"); } return tree.getArgName(0); } std::string PatternEmitter::handleOpArgument(DagLeaf leaf, StringRef patArgName) { if (leaf.isConstantAttr()) { auto constAttr = leaf.getAsConstantAttr(); return handleConstantAttr(constAttr.getAttribute(), constAttr.getConstantValue()); } if (leaf.isEnumAttrCase()) { auto enumCase = leaf.getAsEnumAttrCase(); if (enumCase.isStrCase()) return handleConstantAttr(enumCase, enumCase.getSymbol()); // This is an enum case backed by an IntegerAttr. We need to get its value // to build the constant. std::string val = std::to_string(enumCase.getValue()); return handleConstantAttr(enumCase, val); } LLVM_DEBUG(llvm::dbgs() << "handle argument '" << patArgName << "'\n"); auto argName = symbolInfoMap.getValueAndRangeUse(patArgName); if (leaf.isUnspecified() || leaf.isOperandMatcher()) { LLVM_DEBUG(llvm::dbgs() << "replace " << patArgName << " with '" << argName << "' (via symbol ref)\n"); return argName; } if (leaf.isNativeCodeCall()) { auto repl = tgfmt(leaf.getNativeCodeTemplate(), &fmtCtx.withSelf(argName)); LLVM_DEBUG(llvm::dbgs() << "replace " << patArgName << " with '" << repl << "' (via NativeCodeCall)\n"); return repl; } PrintFatalError(loc, "unhandled case when rewriting op"); } std::string PatternEmitter::handleReplaceWithNativeCodeCall(DagNode tree) { LLVM_DEBUG(llvm::dbgs() << "handle NativeCodeCall pattern: "); LLVM_DEBUG(tree.print(llvm::dbgs())); LLVM_DEBUG(llvm::dbgs() << '\n'); auto fmt = tree.getNativeCodeTemplate(); // TODO(b/138794486): replace formatv arguments with the exact specified args. SmallVector attrs(8); if (tree.getNumArgs() > 8) { PrintFatalError(loc, "unsupported NativeCodeCall argument numbers: " + Twine(tree.getNumArgs())); } for (int i = 0, e = tree.getNumArgs(); i != e; ++i) { attrs[i] = handleOpArgument(tree.getArgAsLeaf(i), tree.getArgName(i)); LLVM_DEBUG(llvm::dbgs() << "NativeCodeCall argument #" << i << " replacement: " << attrs[i] << "\n"); } return tgfmt(fmt, &fmtCtx, attrs[0], attrs[1], attrs[2], attrs[3], attrs[4], attrs[5], attrs[6], attrs[7]); } int PatternEmitter::getNodeValueCount(DagNode node) { if (node.isOperation()) { // If the op is bound to a symbol in the rewrite rule, query its result // count from the symbol info map. auto symbol = node.getSymbol(); if (!symbol.empty()) { return symbolInfoMap.getStaticValueCount(symbol); } // Otherwise this is an unbound op; we will use all its results. return pattern.getDialectOp(node).getNumResults(); } // TODO(antiagainst): This considers all NativeCodeCall as returning one // value. Enhance if multi-value ones are needed. return 1; } std::string PatternEmitter::handleOpCreation(DagNode tree, int resultIndex, int depth) { LLVM_DEBUG(llvm::dbgs() << "create op for pattern: "); LLVM_DEBUG(tree.print(llvm::dbgs())); LLVM_DEBUG(llvm::dbgs() << '\n'); Operator &resultOp = tree.getDialectOp(opMap); auto numOpArgs = resultOp.getNumArgs(); if (numOpArgs != tree.getNumArgs()) { PrintFatalError(loc, formatv("resultant op '{0}' argument number mismatch: " "{1} in pattern vs. {2} in definition", resultOp.getOperationName(), tree.getNumArgs(), numOpArgs)); } // A map to collect all nested DAG child nodes' names, with operand index as // the key. This includes both bound and unbound child nodes. ChildNodeIndexNameMap childNodeNames; // First go through all the child nodes who are nested DAG constructs to // create ops for them and remember the symbol names for them, so that we can // use the results in the current node. This happens in a recursive manner. for (int i = 0, e = resultOp.getNumOperands(); i != e; ++i) { if (auto child = tree.getArgAsNestedDag(i)) { childNodeNames[i] = handleResultPattern(child, i, depth + 1); } } // The name of the local variable holding this op. std::string valuePackName; // The symbol for holding the result of this pattern. Note that the result of // this pattern is not necessarily the same as the variable created by this // pattern because we can use `__N` suffix to refer only a specific result if // the generated op is a multi-result op. std::string resultValue; if (tree.getSymbol().empty()) { // No symbol is explicitly bound to this op in the pattern. Generate a // unique name. valuePackName = resultValue = getUniqueSymbol(&resultOp); } else { resultValue = tree.getSymbol(); // Strip the index to get the name for the value pack and use it to name the // local variable for the op. valuePackName = SymbolInfoMap::getValuePackName(resultValue); } // Create the local variable for this op. os.indent(4) << formatv("{0} {1};\n", resultOp.getQualCppClassName(), valuePackName); os.indent(4) << "{\n"; // Right now ODS don't have general type inference support. Except a few // special cases listed below, DRR needs to supply types for all results // when building an op. bool isSameOperandsAndResultType = resultOp.getTrait("OpTrait::SameOperandsAndResultType"); bool useFirstAttr = resultOp.getTrait("OpTrait::FirstAttrDerivedResultType"); if (isSameOperandsAndResultType || useFirstAttr) { // We know how to deduce the result type for ops with these traits and we've // generated builders taking aggregate parameters. Use those builders to // create the ops. // First prepare local variables for op arguments used in builder call. createAggregateLocalVarsForOpArgs(tree, childNodeNames); // Then create the op. os.indent(6) << formatv( "{0} = rewriter.create<{1}>(loc, tblgen_values, tblgen_attrs);\n", valuePackName, resultOp.getQualCppClassName()); os.indent(4) << "}\n"; return resultValue; } bool isBroadcastable = resultOp.getTrait("OpTrait::BroadcastableTwoOperandsOneResult"); bool usePartialResults = valuePackName != resultValue; if (isBroadcastable || usePartialResults || depth > 0 || resultIndex < 0) { // For these cases (broadcastable ops, op results used both as auxiliary // values and replacement values, ops in nested patterns, auxiliary ops), we // still need to supply the result types when building the op. But because // we don't generate a builder automatically with ODS for them, it's the // developer's responsiblity to make sure such a builder (with result type // deduction ability) exists. We go through the separate-parameter builder // here given that it's easier for developers to write compared to // aggregate-parameter builders. createSeparateLocalVarsForOpArgs(tree, childNodeNames); os.indent(6) << formatv("{0} = rewriter.create<{1}>(loc", valuePackName, resultOp.getQualCppClassName()); supplyValuesForOpArgs(tree, childNodeNames); os << "\n );\n"; os.indent(4) << "}\n"; return resultValue; } // If depth == 0 and resultIndex >= 0, it means we are replacing the values // generated from the source pattern root op. Then we can use the source // pattern's value types to determine the value type of the generated op // here. // First prepare local variables for op arguments used in builder call. createAggregateLocalVarsForOpArgs(tree, childNodeNames); // Then prepare the result types. We need to specify the types for all // results. os.indent(6) << formatv( "SmallVector tblgen_types; (void)tblgen_types;\n"); int numResults = resultOp.getNumResults(); if (numResults != 0) { for (int i = 0; i < numResults; ++i) os.indent(6) << formatv("for (auto v : castedOp0.getODSResults({0})) {{" "tblgen_types.push_back(v.getType()); }\n", resultIndex + i); } os.indent(6) << formatv("{0} = rewriter.create<{1}>(loc, tblgen_types, " "tblgen_values, tblgen_attrs);\n", valuePackName, resultOp.getQualCppClassName()); os.indent(4) << "}\n"; return resultValue; } void PatternEmitter::createSeparateLocalVarsForOpArgs( DagNode node, ChildNodeIndexNameMap &childNodeNames) { Operator &resultOp = node.getDialectOp(opMap); // Now prepare operands used for building this op: // * If the operand is non-variadic, we create a `Value` local variable. // * If the operand is variadic, we create a `SmallVector` local // variable. int valueIndex = 0; // An index for uniquing local variable names. for (int argIndex = 0, e = resultOp.getNumArgs(); argIndex < e; ++argIndex) { const auto *operand = resultOp.getArg(argIndex).dyn_cast(); if (!operand) { // We do not need special handling for attributes. continue; } std::string varName; if (operand->isVariadic()) { varName = formatv("tblgen_values_{0}", valueIndex++); os.indent(6) << formatv("SmallVector {0};\n", varName); std::string range; if (node.isNestedDagArg(argIndex)) { range = childNodeNames[argIndex]; } else { range = node.getArgName(argIndex); } // Resolve the symbol for all range use so that we have a uniform way of // capturing the values. range = symbolInfoMap.getValueAndRangeUse(range); os.indent(6) << formatv("for (auto v : {0}) {1}.push_back(v);\n", range, varName); } else { varName = formatv("tblgen_value_{0}", valueIndex++); os.indent(6) << formatv("Value {0} = ", varName); if (node.isNestedDagArg(argIndex)) { os << symbolInfoMap.getValueAndRangeUse(childNodeNames[argIndex]); } else { DagLeaf leaf = node.getArgAsLeaf(argIndex); auto symbol = symbolInfoMap.getValueAndRangeUse(node.getArgName(argIndex)); if (leaf.isNativeCodeCall()) { os << tgfmt(leaf.getNativeCodeTemplate(), &fmtCtx.withSelf(symbol)); } else { os << symbol; } } os << ";\n"; } // Update to use the newly created local variable for building the op later. childNodeNames[argIndex] = varName; } } void PatternEmitter::supplyValuesForOpArgs( DagNode node, const ChildNodeIndexNameMap &childNodeNames) { Operator &resultOp = node.getDialectOp(opMap); for (int argIndex = 0, numOpArgs = resultOp.getNumArgs(); argIndex != numOpArgs; ++argIndex) { // Start each argument on its own line. (os << ",\n").indent(8); Argument opArg = resultOp.getArg(argIndex); // Handle the case of operand first. if (auto *operand = opArg.dyn_cast()) { if (!operand->name.empty()) os << "/*" << operand->name << "=*/"; os << childNodeNames.lookup(argIndex); continue; } // The argument in the op definition. auto opArgName = resultOp.getArgName(argIndex); if (auto subTree = node.getArgAsNestedDag(argIndex)) { if (!subTree.isNativeCodeCall()) PrintFatalError(loc, "only NativeCodeCall allowed in nested dag node " "for creating attribute"); os << formatv("/*{0}=*/{1}", opArgName, handleReplaceWithNativeCodeCall(subTree)); } else { auto leaf = node.getArgAsLeaf(argIndex); // The argument in the result DAG pattern. auto patArgName = node.getArgName(argIndex); if (leaf.isConstantAttr() || leaf.isEnumAttrCase()) { // TODO(jpienaar): Refactor out into map to avoid recomputing these. if (!opArg.is()) PrintFatalError(loc, Twine("expected attribute ") + Twine(argIndex)); if (!patArgName.empty()) os << "/*" << patArgName << "=*/"; } else { os << "/*" << opArgName << "=*/"; } os << handleOpArgument(leaf, patArgName); } } } void PatternEmitter::createAggregateLocalVarsForOpArgs( DagNode node, const ChildNodeIndexNameMap &childNodeNames) { Operator &resultOp = node.getDialectOp(opMap); os.indent(6) << formatv( "SmallVector tblgen_values; (void)tblgen_values;\n"); os.indent(6) << formatv( "SmallVector tblgen_attrs; (void)tblgen_attrs;\n"); for (int argIndex = 0, e = resultOp.getNumArgs(); argIndex < e; ++argIndex) { if (resultOp.getArg(argIndex).is()) { const char *addAttrCmd = "if ({1}) {{" " tblgen_attrs.emplace_back(rewriter." "getIdentifier(\"{0}\"), {1}); }\n"; // The argument in the op definition. auto opArgName = resultOp.getArgName(argIndex); if (auto subTree = node.getArgAsNestedDag(argIndex)) { if (!subTree.isNativeCodeCall()) PrintFatalError(loc, "only NativeCodeCall allowed in nested dag node " "for creating attribute"); os.indent(6) << formatv(addAttrCmd, opArgName, handleReplaceWithNativeCodeCall(subTree)); } else { auto leaf = node.getArgAsLeaf(argIndex); // The argument in the result DAG pattern. auto patArgName = node.getArgName(argIndex); os.indent(6) << formatv(addAttrCmd, opArgName, handleOpArgument(leaf, patArgName)); } continue; } const auto *operand = resultOp.getArg(argIndex).get(); std::string varName; if (operand->isVariadic()) { std::string range; if (node.isNestedDagArg(argIndex)) { range = childNodeNames.lookup(argIndex); } else { range = node.getArgName(argIndex); } // Resolve the symbol for all range use so that we have a uniform way of // capturing the values. range = symbolInfoMap.getValueAndRangeUse(range); os.indent(6) << formatv( "for (auto v : {0}) tblgen_values.push_back(v);\n", range); } else { os.indent(6) << formatv("tblgen_values.push_back(", varName); if (node.isNestedDagArg(argIndex)) { os << symbolInfoMap.getValueAndRangeUse( childNodeNames.lookup(argIndex)); } else { DagLeaf leaf = node.getArgAsLeaf(argIndex); auto symbol = symbolInfoMap.getValueAndRangeUse(node.getArgName(argIndex)); if (leaf.isNativeCodeCall()) { os << tgfmt(leaf.getNativeCodeTemplate(), &fmtCtx.withSelf(symbol)); } else { os << symbol; } } os << ");\n"; } } } static void emitRewriters(const RecordKeeper &recordKeeper, raw_ostream &os) { emitSourceFileHeader("Rewriters", os); const auto &patterns = recordKeeper.getAllDerivedDefinitions("Pattern"); auto numPatterns = patterns.size(); // We put the map here because it can be shared among multiple patterns. RecordOperatorMap recordOpMap; std::vector rewriterNames; rewriterNames.reserve(numPatterns); std::string baseRewriterName = "GeneratedConvert"; int rewriterIndex = 0; for (Record *p : patterns) { std::string name; if (p->isAnonymous()) { // If no name is provided, ensure unique rewriter names simply by // appending unique suffix. name = baseRewriterName + llvm::utostr(rewriterIndex++); } else { name = p->getName(); } LLVM_DEBUG(llvm::dbgs() << "=== start generating pattern '" << name << "' ===\n"); PatternEmitter(p, &recordOpMap, os).emit(name); LLVM_DEBUG(llvm::dbgs() << "=== done generating pattern '" << name << "' ===\n"); rewriterNames.push_back(std::move(name)); } // Emit function to add the generated matchers to the pattern list. os << "void LLVM_ATTRIBUTE_UNUSED populateWithGenerated(MLIRContext " "*context, OwningRewritePatternList *patterns) {\n"; for (const auto &name : rewriterNames) { os << " patterns->insert<" << name << ">(context);\n"; } os << "}\n"; } static mlir::GenRegistration genRewriters("gen-rewriters", "Generate pattern rewriters", [](const RecordKeeper &records, raw_ostream &os) { emitRewriters(records, os); return false; });