// RUN: mlir-opt %s -split-input-file -affine-data-copy-generate -affine-data-copy-generate-dma=false -affine-data-copy-generate-fast-mem-space=0 -affine-data-copy-generate-skip-non-unit-stride-loops | FileCheck %s // Small buffer size to trigger fine copies. // RUN: mlir-opt %s -affine-data-copy-generate -affine-data-copy-generate-dma=false -affine-data-copy-generate-fast-mem-space=0 -affine-data-copy-generate-fast-mem-capacity=1 | FileCheck --check-prefix=CHECK-SMALL %s // -copy-skip-non-stride-loops forces the copies to be placed right inside the // tile space loops, avoiding the sensitivity of copy placement depth to memory // footprint -- so that one could write a definite test case and not have to // update it each time something related to the cost functions change. #map0 = affine_map<(d0) -> (d0)> #map1 = affine_map<(d0) -> (d0 + 128)> // Map used to index the original memref while copying. // CHECK-DAG: [[MEM_IDX_MAP:map[0-9]+]] = affine_map<(d0, d1) -> (d0 + d1)> // Map used to index the buffer while computing. // CHECK-DAG: [[BUF_IDX_MAP:map[0-9]+]] = affine_map<(d0, d1, d2, d3) -> (-d0 + d2, -d1 + d3)> // CHECK-LABEL: func @matmul func @matmul(%A: memref<4096x4096xf32>, %B: memref<4096x4096xf32>, %C: memref<4096x4096xf32>) -> memref<4096x4096xf32> { affine.for %i = 0 to 4096 step 128 { affine.for %j = 0 to 4096 step 128 { affine.for %k = 0 to 4096 step 128 { affine.for %ii = #map0(%i) to #map1(%i) { affine.for %jj = #map0(%j) to #map1(%j) { affine.for %kk = #map0(%k) to #map1(%k) { %5 = affine.load %A[%ii, %kk] : memref<4096x4096xf32> %6 = affine.load %B[%kk, %jj] : memref<4096x4096xf32> %7 = affine.load %C[%ii, %jj] : memref<4096x4096xf32> %8 = mulf %5, %6 : f32 %9 = addf %7, %8 : f32 affine.store %9, %C[%ii, %jj] : memref<4096x4096xf32> } } } } } } return %C : memref<4096x4096xf32> } // Buffers of size 128x128 get created here for all three matrices. // CHECK: affine.for %{{.*}} = 0 to 4096 step 128 { // CHECK: affine.for %{{.*}} = 0 to 4096 step 128 { // CHECK: [[BUFC:%[0-9]+]] = alloc() : memref<128x128xf32> // The result matrix's copy gets hoisted out. // Result matrix copy-in. // CHECK: affine.for %{{.*}} = 0 to 128 { // CHECK: %{{.*}} = affine.apply #[[MEM_IDX_MAP]](%{{.*}}, %{{.*}}) // CHECK: affine.for %{{.*}} = 0 to 128 { // CHECK: %{{.*}} = affine.apply #[[MEM_IDX_MAP]](%{{.*}}, %{{.*}}) // CHECK: %{{.*}} = affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<4096x4096xf32> // CHECK: affine.store %{{.*}}, [[BUFC]][%{{.*}}, %{{.*}}] : memref<128x128xf32> // CHECK: } // CHECK: } // LHS matrix copy-in. // CHECK: affine.for %{{.*}} = 0 to 4096 step 128 { // CHECK: [[BUFA:%[0-9]+]] = alloc() : memref<128x128xf32> // CHECK: affine.for %{{.*}} = 0 to 128 { // CHECK: %{{.*}} = affine.apply #[[MEM_IDX_MAP]](%{{.*}}, %{{.*}}) // CHECK: affine.for %{{.*}} = 0 to 128 { // CHECK: %{{.*}} = affine.apply #[[MEM_IDX_MAP]](%{{.*}}, %{{.*}}) // CHECK: %{{.*}} = affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<4096x4096xf32> // CHECK: affine.store %{{.*}}, [[BUFA]][%{{.*}}, %{{.*}}] : memref<128x128xf32> // CHECK: } // CHECK: } // RHS matrix copy-in. // CHECK: [[BUFB:%[0-9]+]] = alloc() : memref<128x128xf32> // CHECK: affine.for %{{.*}} = 0 to 128 { // CHECK: %{{.*}} = affine.apply #[[MEM_IDX_MAP]](%{{.*}}, %{{.*}}) // CHECK: affine.for %{{.*}} = 0 to 128 { // CHECK: %{{.*}} = affine.apply #[[MEM_IDX_MAP]](%{{.*}}, %{{.*}}) // CHECK: %{{.*}} = affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<4096x4096xf32> // CHECK: affine.store %{{.*}}, [[BUFB]][%{{.*}}, %{{.*}}] : memref<128x128xf32> // CHECK: } // CHECK: } // Computation on the fast buffers. // CHECK: affine.for %{{.*}} = #map7(%{{.*}}) to #map8(%{{.*}}) { // CHECK: affine.for %{{.*}} = #map7(%{{.*}}) to #map8(%{{.*}}) { // CHECK: affine.for %{{.*}} = #map7(%{{.*}}) to #map8(%{{.*}}) { // CHECK: %{{.*}} = affine.load [[BUFA]][-%{{.*}} + %{{.*}}, -%{{.*}} + %{{.*}}] : memref<128x128xf32> // CHECK: %{{.*}} = affine.load [[BUFB]][-%{{.*}} + %{{.*}}, -%{{.*}} + %{{.*}}] : memref<128x128xf32> // CHECK: %{{.*}} = affine.load [[BUFC]][-%{{.*}} + %{{.*}}, -%{{.*}} + %{{.*}}] : memref<128x128xf32> // CHECK: %{{.*}} = mulf %{{.*}}, %{{.*}} : f32 // CHECK: %{{.*}} = addf %{{.*}}, %{{.*}} : f32 // CHECK: affine.store %{{.*}}, [[BUFC]][-%{{.*}} + %{{.*}}, -%{{.*}} + %{{.*}}] : memref<128x128xf32> // CHECK: } // CHECK: } // CHECK: } // CHECK: dealloc [[BUFB]] : memref<128x128xf32> // CHECK: dealloc [[BUFA]] : memref<128x128xf32> // CHECK: } // CHECK: %{{.*}} = affine.apply #map0(%{{.*}}, %{{.*}}) // CHECK: %{{.*}} = affine.apply #map1(%{{.*}}, %{{.*}}) // Result matrix copy out. // CHECK: affine.for %{{.*}} = 0 to 128 { // CHECK: %{{.*}} = affine.apply #[[MEM_IDX_MAP]](%{{.*}}, %{{.*}}) // CHECK: affine.for %{{.*}} = 0 to 128 { // CHECK: %{{.*}} = affine.apply #[[MEM_IDX_MAP]](%{{.*}}, %{{.*}}) // CHECK: [[BUFA]] = affine.load [[BUFC]][%{{.*}}, %{{.*}}] : memref<128x128xf32> // CHECK: store [[BUFA]], %{{.*}}[%{{.*}}, %{{.*}}] : memref<4096x4096xf32> // CHECK: } // CHECK: } // CHECK: dealloc [[BUFC]] : memref<128x128xf32> // CHECK: } // CHECK: } // // This test case will lead to single element buffers. These are eventually // expected to be turned into registers via alloca and mem2reg. // // CHECK-SMALL: func @foo func @foo(%arg0: memref<1024x1024xf32>, %arg1: memref<1024x1024xf32>, %arg2: memref<1024x1024xf32>) -> memref<1024x1024xf32> { affine.for %i = 0 to 1024 { affine.for %j = 0 to 1024 { affine.for %k = 0 to 1024 { %6 = affine.load %arg1[%k, %j] : memref<1024x1024xf32> %7 = affine.load %arg2[%i, %j] : memref<1024x1024xf32> %9 = addf %6, %7 : f32 affine.store %9, %arg2[%i, %j] : memref<1024x1024xf32> } } } return %arg2 : memref<1024x1024xf32> } // CHECK-SMALL: affine.for %arg{{.*}} = 0 to 1024 { // CHECK-SMALL: affine.for %arg{{.*}} = 0 to 1024 { // CHECK-SMALL: %{{.*}} = affine.apply #map{{.*}}(%arg{{.*}}, %arg{{.*}}) // CHECK-SMALL: %{{.*}} = affine.apply #map{{.*}}(%arg{{.*}}, %arg{{.*}}) // CHECK-SMALL: %{{.*}} = alloc() : memref<1x1xf32> // CHECK-SMALL: %{{.*}} = affine.apply #map{{.*}}(%arg{{.*}}, %c0{{.*}}) // CHECK-SMALL: %{{.*}} = affine.apply #map{{.*}}(%arg{{.*}}, %c0{{.*}}) // CHECK-SMALL: %{{.*}} = affine.load %arg{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-SMALL: affine.store %{{.*}}, %{{.*}}[%c0{{.*}}, %c0{{.*}}] : memref<1x1xf32> // CHECK-SMALL: affine.for %arg{{.*}} = 0 to 1024 { // CHECK-SMALL: %{{.*}} = affine.apply #map{{.*}}(%arg{{.*}}, %arg{{.*}}) // CHECK-SMALL: %{{.*}} = affine.apply #map{{.*}}(%arg{{.*}}, %arg{{.*}}) // CHECK-SMALL: %{{.*}} = alloc() : memref<1x1xf32> // CHECK-SMALL: %{{.*}} = affine.apply #map{{.*}}(%arg{{.*}}, %c0{{.*}}) // CHECK-SMALL: %{{.*}} = affine.apply #map{{.*}}(%arg{{.*}}, %c0{{.*}}) // CHECK-SMALL: %{{.*}} = affine.load %arg{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-SMALL: affine.store %{{.*}}, %{{.*}}[%c0{{.*}}, %c0{{.*}}] : memref<1x1xf32> // CHECK-SMALL: %{{.*}} = affine.load %{{.*}}[0, 0] : memref<1x1xf32> // CHECK-SMALL: %{{.*}} = affine.load %{{.*}}[0, 0] : memref<1x1xf32> // CHECK-SMALL: %{{.*}} = addf %{{.*}}, %{{.*}} : f32 // CHECK-SMALL: affine.store %{{.*}}, %{{.*}}[0, 0] : memref<1x1xf32> // CHECK-SMALL: dealloc %{{.*}} : memref<1x1xf32> // CHECK-SMALL: } // CHECK-SMALL: %{{.*}} = affine.apply #map{{.*}}(%arg{{.*}}, %arg{{.*}}) // CHECK-SMALL: %{{.*}} = affine.apply #map{{.*}}(%arg{{.*}}, %arg{{.*}}) // CHECK-SMALL: %{{.*}} = affine.apply #map{{.*}}(%arg{{.*}}, %c0{{.*}}) // CHECK-SMALL: %{{.*}} = affine.apply #map{{.*}}(%arg{{.*}}, %c0{{.*}}) // CHECK-SMALL: %{{.*}} = affine.load %{{.*}}[%c0{{.*}}, %c0{{.*}}] : memref<1x1xf32> // CHECK-SMALL: affine.store %{{.*}}, %arg{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-SMALL: dealloc %{{.*}} : memref<1x1xf32> // CHECK-SMALL: } // CHECK-SMALL: } // CHECK-SMALL: return